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Abstract

This paper studies the multi-agent average consensus problem under the requirement of differential privacy of the agents’
initial states against an adversary that has access to all the messages. We first establish that a differentially private consensus
algorithm cannot guarantee convergence of the agents’ states to the exact average in distribution, which in turn implies the
same impossibility for other stronger notions of convergence. This result motivates our design of a novel differentially private
Laplacian consensus algorithm in which agents linearly perturb their state-transition and message-generating functions with
exponentially decaying Laplace noise. We prove that our algorithm converges almost surely to an unbiased estimate of the
average of agents’ initial states, compute the exponential mean-square rate of convergence, and formally characterize its
differential privacy properties. We show that the optimal choice of our design parameters (with respect to the variance of the
convergence point around the exact average) corresponds to a one-shot perturbation of initial states and compare our design
with various counterparts from the literature. Simulations illustrate our results.

Key words: Average consensus, Differential privacy, Multi-agent systems, Exponential mean-square convergence rate,
Networked control systems

1 Introduction

The social adoption of new technologies in networked cy-
berphysical systems relies heavily on the privacy preser-
vation of individual information. Social networking, the
power grid, and smart transportation are only but a
few examples of domains in need of privacy-aware de-
sign of control and coordination strategies. In these sce-
narios, the ability of a networked system to fuse infor-
mation, compute common estimates of unknown quan-
tities, and agree on a common view of the world is crit-
ical. Motivated by these observations, this paper stud-
ies the multi-agent average consensus problem, where a
group of agents seek to agree on the average of their in-
dividual values by only interchanging information with
their neighbors. This problem has numerous applica-
tions in synchronization, network management, and dis-
tributed control/computation/optimization. In the con-
text of privacy preservation, the notion of differential pri-
vacy has gained significant popularity due to its rigorous
formulation and proven security properties, including re-
silience to post-processing and side information, and in-

? A preliminary version of this paper appeared as [Nozari
et al., 2015] at the 5th IFAC Workshop on Distributed Esti-
mation and Control in Networked Systems.

dependence from the model of the adversary. Roughly
speaking, a strategy is differentially private if the infor-
mation of an agent has no significant effect on the aggre-
gate output of the algorithm, and hence its data cannot
be inferred by an adversary from its execution. This pa-
per is a contribution to the emerging body of research
that studies privacy preservation in cooperative network
systems, specifically focused on gaining insight into the
achievable trade-offs between privacy and performance
in multi-agent average consensus.

Literature Review

The problem of multi-agent average consensus has been
a subject of extensive research in networked systems and
it is impossible to survey here the vast amount of results
in the literature. We provide [Bullo et al., 2009, Ren
and Beard, 2008, Mesbahi and Egerstedt, 2010, Olfati-
Saber et al., 2007] and the references therein as a start-
ing point for the interested reader. In cyberphysical sys-
tems, privacy at the physical layer provides protection
beyond the use of higher-level encryption-based tech-
niques. Information-theoretic approaches to privacy at
the physical layer have been actively pursued [Gündüz
et al., 2010, Mukherjee et al., 2014]. Recently, these ideas
have also been utilized in the context of control [Tanaka
and Sandberg, 2015]. The paper [Mukherjee et al., 2014]
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also surveys the more recent game-theoretic approach
to the topic. In computer science, the notion of differ-
ential privacy, first introduced in [Dwork et al., 2006,
Dwork, 2006], and the design of differentially private
mechanisms have been widely studied in the context of
privacy preservation of databases. The work [Dwork and
Roth, 2014] provides a recent comprehensive treatment.
A well-known advantage of differential privacy over other
notions of privacy is its immunity to post-processing and
side information, which makes it particularly well-suited
for multi-agent scenarios where agents do not fully trust
each other and/or the communication channels are not
fully secure. As a result, this notion has been adopted
by recent works in a number of areas pertaining to net-
worked systems, such as control [Huang et al., 2012,
2014, Wang et al., 2014], estimation [Ny and Pappas,
2014], and optimization [Han et al., 2014, Huang et al.,
2015, Nozari et al., 2017]. Of relevance to our present
work, the paper [Huang et al., 2012] studies the average
consensus problem with differentially privacy guarantees
and proposes an adjacency-based distributed algorithm
with decaying Laplace noise and mean-square conver-
gence. The algorithm preserves the differential privacy
of the agents’ initial states but the expected value of
its convergence point depends on the network topology
and may not be the exact average, even in expectation.
By contrast, the algorithm proposed in this work en-
joys almost sure convergence, asymptotic unbiasedness,
and an explicit characterization of its convergence rate.
Our results also allow individual agents to independently
choose their level of privacy. The problem of privacy-
preserving average consensus has also been studied using
other notions of privacy. The work [Manitara and Hadji-
costis, 2013] builds on [Kefayati et al., 2007] to let agents
have the option to add to their first set of transmitted
messages a zero-sum noise sequence with finite random
length, which in turn allows the coordination algorithm
to converge to the exact average of their initial states.
As long as an adversary cannot listen to the transmit-
ted messages of an agent as well as all its neighbors, the
privacy of that agent is preserved, in the sense that dif-
ferent initial conditions may produce the same transmit-
ted messages. This idea is further developed in [Mo and
Murray, 2014, 2015], where agents add an infinitely-long
exponentially-decaying zero-sum sequence of Gaussian
noise to their transmitted messages. The algorithm has
guaranteed mean-square convergence to the average of
the agents’ initial states and preserves the privacy of the
nodes whose messages and those of their neighbors are
not listened to by the malicious nodes, in the sense that
the maximum-likelihood estimate of their initial states
has nonzero variance. Finally, [Duan et al., 2015] con-
siders the problem of privacy preserving maximum con-
sensus.

Statement of Contributions

We study the average consensus problem where a group
of agents seek to compute and agree on the average of
their local variables while seeking to keep them differ-

entially private against an adversary with potential ac-
cess to all group communications. This privacy require-
ment also applies to the case where each agent wants to
keep its initial state private against the rest of the group
(e.g., due to the possibility of communication leakages).
The main contributions of this work are the character-
ization and optimization of the fundamental trade-offs
between differential privacy and average consensus. Our
first contribution is the formulation and formal proof of
a general impossibility result. We show that as long as a
coordination algorithm is differentially private, it is im-
possible to guarantee the convergence of agents’ states
to the average of their initial values, even in distribution.
This result automatically implies the same impossibil-
ity result for stronger notions of convergence. Motivated
by it, our second contribution is the design of a linear
Laplacian-based consensus algorithm that achieves av-
erage consensus in expectation —the most that one can
expect. We prove the almost sure convergence and dif-
ferential privacy of our algorithm and characterize its
accuracy and convergence rate. Our final contribution
is the computation of the optimal values of the design
parameters to achieve the most accurate consensus pos-
sible. Letting the agents fix a (local) desired value of the
privacy requirement, we minimize the variance of the al-
gorithm convergence point as a function of the noise-to-
state gain and the amplitude and decay rate of the noise.
We show that the minimum variance is achieved by the
one-shot perturbation of the initial states by Laplace
noise. This result reveals the optimality of one-shot per-
turbation for static average consensus, previously (but
implicitly) shown in the sense of information-theoretic
entropy. Various simulations illustrate our results.

2 Preliminaries

This section introduces notations and basic concepts.
We denote the set of reals, positive reals, non-negative
reals, positive integers, and nonnegative integers by R,
R>0, R≥0, N, and Z≥0, respectively. We denote by ‖ · ‖
the Euclidean norm. We let (Rn)N denote the space of
vector-valued sequences in Rn. For {x(k)}∞k=0 ∈ (Rn)N,
we use the shorthand notation x = {x(k)}∞k=0 and xk =
{x(j)}kj=0. In ∈ Rn×n and 1n ∈ Rn denote the identity
matrix and the vector of ones, respectively. For x ∈ Rn,
Ave(x) = 1

n1Tnx denotes the average of its components.

We let Πn = 1
n1n1Tn . Note that Πn is diagonalizable,

has one eigenvalue equal to 1 with eigenspace

R1n , {a1n | a ∈ R},

and all other eigenvalues equal 0. For a vector space
V ⊂ Rn, we let V ⊥ denote the vector space orthogo-
nal to V . A matrix A ∈ Rn×n is stable if all its eigen-
values have magnitude strictly less than 1. A function
γ : [0,∞) → [0,∞) belongs to class K if it is contin-
uous and strictly increasing and γ(0) = 0. Similarly, a
function β : [0,∞) × [0,∞) → [0,∞) belongs to class
KL if β(·, s) belongs to class K for any s ∈ [0,∞) and
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β(r, ·) is decreasing and lims→∞ β(r, s) = 0 for any
r ∈ [0,∞). For q ∈ (0, 1), the Euler function is given by
ϕ(q) =

∏∞
k=1(1− qk) > 0. Note that

lim
k→∞

∞∏
j=k

(1− qj) = lim
k→∞

ϕ(q)∏k−1
j=1 (1− qj)

= 1.

For a function f : X → Y and sets A ⊆ X and B ⊆ Y ,
we use f(A) = {f(x) ∈ Y |x ∈ A} and f−1(B) = {x ∈
X|f(x) ∈ B}. In general, f(f−1(B)) ⊆ B. Finally, for
any topological space X, we denote by B(X) the set of
Borel subsets of X.

2.1 Graph Theory

We present some useful notions on algebraic graph the-
ory following [Bullo et al., 2009]. Let G = (V,E,A) de-
note a weighted undirected graph with vertex set V of
cardinality n, edge set E ⊂ V ×V , and symmetric adja-
cency matrix A ∈ Rn×n≥0 . A path from i to j is a sequence
of vertices starting from i and ending in j such that any
pair of consecutive vertices is an edge. The set of neigh-
bors Ni of i is the set of nodes j such that (i, j) ∈ E. A
graph is connected if for each node there exists a path to
any other node. The weighted degree matrix is the diag-
onal matrix D ∈ Rn×n with diagonal A1n. The Lapla-
cian is L = D −A and has the following properties:

• L is symmetric and positive semi-definite;
• L1n = 0 and 1TnL = 0, i.e., 0 is an eigenvalue of L

corresponding to the eigenspace R1n;
• G is connected if and only if rank(L) = n − 1, so 0 is

a simple eigenvalue of L;
• All eigenvalues of L belong to [0, 2dmax], where dmax

is the largest element of D.

For convenience, we define Lcpt = In −Πn.

2.2 Probability Theory

Here we briefly review basic notions on probability fol-
lowing [Papoulis and Pillai, 2002, Durrett, 2010]. Con-
sider a probability space (Ω,Σ,P). If E,F ∈ Σ are two
events with E ⊆ F , then P{E} ≤ P{F}. For simplicity,
we may sometimes denote events of the type Ep = {ω ∈
Ω | p(ω)} by {p}, where p is a logical statement on the
elements of Ω. Clearly, for two statements p and q,

(p⇒ q)⇒ (P{p} ≤ P{q}) . (1)

A random variable is a measurable function X : Ω→ R.
For any N ∈ R>0 and any random variable X with
finite expected value µ and finite nonzero variance σ2,
Chebyshev’s inequality states that

P{|X − µ| ≥ Nσ} ≤ 1

N2
. (2)

For a random variable X, let E[X] and FX denote its ex-
pectation and cumulative distribution function, respec-

tively. A sequence of random variables {Xk}k∈Z≥0
con-

verges to a random variable X

• almost surely (a.s.) if P{limk→∞Xk = X} = 1;
• in mean square if E[X2

k ],E[X2] < ∞ for all k ∈ Z≥0
and limk→∞ E[(Xk −X)2] = 0;

• in probability if limk→∞ P{|Xk−X| < υ} = 1 for any
υ > 0;

• in distribution or weakly if limk→∞ FXk(x) = FX(x)
for any x ∈ R at which FX is continuous.

Almost sure convergence and convergence in mean
square imply convergence in probability, which it-
self implies convergence in distribution. Moreover, if
P{|Xk| ≤ X̄} = 1 for all k ∈ Z≥0 and some fixed ran-
dom variable X̄ with E[X̄2] < ∞, then convergence in
probability implies mean square convergence, and if X
is a constant, then convergence in distribution implies
convergence in probability.

A zero-mean random variable X has Laplace distribu-
tion with scale b ∈ R>0, denotedX ∼ Lap(b), if its pdf is

given by L(x; b) , 1
2be
− |x|b for any x ∈ R. It is easy to see

that |X| has exponential distribution with rate λ = 1
b .

2.3 Input-to-State Stability of Discrete-Time Systems

This section briefly describes notions of robustness for
discrete-time systems following [Jiang and Wang, 2001].
Consider a discrete-time system of the form

x(k + 1) = f(x(k), u(k)), (3)

where u : Z≥0 → Rm is a disturbance input, x : Z≥0 →
Rn is the state, and f : Rn × Rm → Rn is a vector field
satisfying f(0, 0) = 0. The system (3) is globally input-
to-state stable (ISS) if there exists a class KL function β
and a class K function γ such that, for any bounded
input u, any initial condition x0 ∈ Rn, and all k ∈ Z≥0,

‖x(k)‖ ≤ β(‖x0‖, k) + γ(‖u‖`∞),

where ‖u‖`∞ = sup{‖u(k)‖ | k ∈ Z≥0}. The system (3)
has aK-asymptotic gain if there exists a classK function
γa such that, for any initial condition x0 ∈ Rn,

lim sup
k→∞

‖x(k)‖ ≤ γa
(

lim sup
k→∞

‖u(k)‖
)
.

If a system is ISS, then it has a K-asymptotic gain. Fur-
thermore, any LTI system x(k + 1) = Ax(k) +Bu(k) is
ISS if A is stable.

3 Problem statement

Consider a group of n agents whose interaction topology
is described by an undirected connected graph G. The
group objective is to compute the average of the agents’
initial states while preserving the privacy of these values
against potential adversaries eavesdropping on all the
network communications. Note that this privacy require-
ment is the same as the case where each agent wants to
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keep its initial state private against the rest of the group
due to the possibility of communication leakages. We
next generalize the exposition in [Huang et al., 2012] to
provide a formal presentation of this problem. The state
of each agent i ∈ {1, . . . , n} is represented by θi ∈ R.
The message that agent i shares with its neighbors about
its current state is denoted by xi ∈ R. For convenience,
the aggregated network state and the vector of trans-
mitted messages are denoted by θ = (θ1, . . . , θn) ∈ Rn
and x = (x1, . . . , xn) ∈ Rn, respectively. Agents update
their states in discrete time according to some rule,

θ(k + 1) = f(θ(k), x(k)), k ∈ Z≥0, (4)

with initial states θ(0) = θ0, where the state-transition
function f : Rn × Rn → Rn is such that its ith element
depends only on θi and {xj}j∈Ni∪{i}. The messages are
calculated from

x(k) = h(θ(k), η(k)), k ∈ Z≥0, (5)

where h : Rn×Rn → Rn is such that its ith element de-
pends only on θi and ηi. For simplicity, we assume that
f and h are continuous. η(k) ∈ Rn is a vector random
variable, with ηi(k) being the noise generated by agent i
at time k from an arbitrary distribution. Consequently,
θ and x are sequences of vector random variables on
the total sample space Ω = (Rn)N whose elements are
noise sequences η. Although one could choose h to only
depend on θ, corrupting the messages by noise is neces-
sary to preserve privacy. Given an initial state θ0, x is
uniquely determined by η according to (4)-(5). There-
fore, the function Xθ0 : (Rn)N → (Rn)N such that

Xθ0(η) = x

is well defined. We next introduce the notion of differ-
ential privacy.

Definition 3.1 (Differential Privacy) Given δ ∈
R>0, the initial network states θ

(1)
0 and θ

(2)
0 are δ-

adjacent if, for some i0 ∈ {1, . . . , n},

|θ(2)0,i − θ
(1)
0,i | ≤

{
δ if i = i0,

0 if i 6= i0,
(6)

for i ∈ {1, . . . , n}. Given δ, ε ∈ R≥0, the dynamics (4)-

(5) is ε-differentially private if, for any pair θ
(1)
0 and θ

(2)
0

of δ-adjacent initial states and any set O ∈ B
(
(Rn)N

)
,

P{η ∈ Ω |X
θ
(1)
0

(η) ∈ O} ≤ eεP{η ∈ Ω | X
θ
(2)
0

(η) ∈ O}.

A final aspect to consider is that, because of the presence
of noise, the agents’ states under (4) might not converge
exactly to their initial average Ave(θ0), but to a neigh-
borhood of it. This is captured by the notion of accuracy.

Definition 3.2 (Accuracy) For p ∈ [0, 1] and r ∈
R≥0, the dynamics (4)-(5) is (p, r)-accurate if, from any
initial state θ0, the network state θ(k) converges to θ∞ ∈
Rn as k → ∞, with E[θ∞] = Ave(θ0)1n and P{‖θ∞ −
Ave(θ0)1n‖ ≤ r} ≥ 1− p.

In Definition 3.2, the type of convergence of θ(k) to
θ∞ can be any of the four classes described in Sec-
tion 2.2. Furthermore, for each notion of convergence,
(0, 0)-accuracy is equivalent to the convergence of θ(k)
to Ave(θ0)1n. We are finally ready to formally state our
problem.

Problem 1 (Differentially Private Average Con-
sensus) Design the dynamics (4), the inter-agent mes-
sages (5), and the distribution of noise sequences η such
that asymptotic average consensus is achieved with (p, r)-
accuracy while guaranteeing ε-differential privacy for (fi-
nite) ε, r, and p ∈ R≥0 as small as possible. •

4 Obstructions to Exact Differentially Private
Average Consensus

In this section we establish the impossibility of solving
Problem 1 with (0, 0)-accuracy, even if considering the
weakest notion of convergence.

Proposition 4.1 (Impossibility Result) Consider a
group of agents executing a distributed algorithm of the
form (4) with messages generated according to (5). Then,
for any δ, ε > 0, agents cannot simultaneously converge
to the average of their initial states in distribution and
preserve ε-differential privacy of their initial states.

PROOF. We reason by contradiction. Assume there
exists an algorithm that achieves convergence in distri-
bution to the exact average of the network initial state
and preserves ε-differential privacy of it. Since the algo-
rithm must preserve the privacy of any pair of δ-adjacent
initial conditions, consider a specific pair satisfying

θ
(2)
0,i0

= θ
(1)
0,i0

+ δ,

for some i0 ∈ {1, . . . , n} and θ
(2)
0,i = θ

(1)
0,i for all i 6= i0.

Since Ave(θ0) is fixed (i.e., deterministic), the conver-
gence of θi(k), i ∈ {1, . . . , n} to Ave(θ0) is also in prob-
ability. Thus, for any i ∈ {1, . . . , n} and any υ > 0,

we have limk→∞ P{|θ(`)i (k) − Ave(θ
(`)
0 )| < υ} = 1, for

` = 1, 2. Therefore, for any υ′ > 0, there exists k ∈ Z≥0
such that for all i ∈ {1, . . . , n},

P{|θ(`)i (k)−Ave(θ
(`)
0 )| < υ} > 1− υ′, ` = 1, 2. (7)

Now, considering (4)-(5), it is clear that, for any fixed ini-
tial state θ0 and any k ∈ Z≥0, xk is uniquely determined
by ηk and θk is uniquely determined by xk. Therefore,
the functionsXk,θ0 ,Θk,θ0 : Rn(k+1) → Rn(k+1) such that

Xk,θ0(ηk) = xk, Θk,θ0(xk) = θk, (8)
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are well defined and continuous (due to continu-

ity of f and g). Next, for ` = 1, 2, define R
(`)
k =

X−1
k,θ

(`)
0

(
Θ−1
k,θ

(`)
0

(
N (`)
k

))
, where N (`)

k , Rnk ×
(
I(`)

)n
and

I(`) ⊂ R is the υ-neighborhood of Ave(θ
(`)
0 ). By (7), we

have

P(R
(`)
k ) > 1− υ′, ` = 1, 2. (9)

Note that R
(1)
k is open as it is the continuous pre-image

of an open set, so Ok , X
k,θ

(1)
0

(
R

(1)
k

)
is Borel. To reach

a contradiction, we define R
′(2)
k = X−1

k,θ
(2)
0

(Ok) and show

that P(R
′(2)
k ) can be made arbitrarily small by showing

that R
′(2)
k ∩ R(2)

k = ∅. To do this, note that by the

definitions of R
′(2)
k , Ok and R

(1)
k , we have

Θ
k,θ

(1)
0

(
X
k,θ

(2)
0

(
R
′(2)
k

))
⊆ N (1)

k . (10)

Recall that in (4), f is such that the next state of each
agent only depends on its current state and the messages

it receives. Hence, since for all i 6= i0, θ
(2)
0,i = θ

(1)
0,i , we

have from (10) that

Θ
k,θ

(2)
0

(
X
k,θ

(2)
0

(
R
′(2)
k

))
⊆ N (1)

k ,

where N (1)

k , Rnk × (I(1))i0−1 × R × (I(1))n−i0 is

the same as N (1)
k except that the requirement on

θi0(k) (to be close to Ave(θ
(1)
0 )) is relaxed. Now,

since Θ
k,θ

(2)
0

(
X
k,θ

(2)
0

(
R

(2)
k

))
⊆ N (2)

k and, by choosing

υ < δ
2n , we get N (1)

k ∩ N (2)
k = ∅, we conclude that

Θ
k,θ

(2)
0

(
X
k,θ

(2)
0

(
R

(2)
k

))
∩ Θ

k,θ
(2)
0

(
X
k,θ

(2)
0

(
R
′(2)
k

))
= ∅,

which implies R
(2)
k ∩R

′(2)
k = ∅, so we get

P(R
(2)
k ) < υ′, (11)

as desired. Now, let O = Ok × (Rn)N ∈ B
(
(Rn)N

)
. For

any initial condition θ0,

P{η|Xθ0(η) ∈ O} = P{ηk|Xk,θ0(ηk) ∈ Ok}.

Hence, since the algorithm is ε-differentially private,

P(R
(1)
k ) =P{ηk|Xk,θ

(1)
0

(ηk) ∈ Ok}

≤ eεP{ηk|Xk,θ
(2)
0

(ηk) ∈ Ok} = eεP(R
′(2)
k ).

Thus, using (9) and (11), we have for all υ′ > 0,

1− υ′ < eευ′ ⇒ 1

1 + eε
< υ′,

which is clearly a contradiction because ε is a finite num-
ber, completing the proof. 2

Since convergence in distribution is the weakest notion of
convergence, Proposition 4.1 implies that a differentially
private algorithm cannot guarantee any type of conver-
gence to the exact average. Therefore, in our forthcoming
discussion, we relax the exact convergence requirement
and allow for convergence to a random variable that is
at least unbiased (i.e., centered at the true average).

5 Differentially Private Average Consensus Al-
gorithm

Here, we develop a solution to Problem 1. Consider the
following linear distributed dynamics,

θ(k + 1) = θ(k)− hLx(k) + Sη(k), (12)

for k ∈ Z≥0, where h < (dmax)−1 is the step size,
S is a diagonal matrix with diagonal (s1, . . . , sn) and
si ∈ (0, 2) for each i ∈ {1, . . . , n}, and the messages are
generated according to

x(k) = θ(k) + η(k), (13)

where the ith component of the noise vector η(k) has
the Laplace distribution ηi(k) ∼ Lap(bi(k)) at any time
k ∈ Z≥0 with

bi(k) = ciq
k
i , ci ∈ R>0, qi ∈ (|si − 1|, 1). (14)

Note that (12) is a special case of (4) (since η(k) =
x(k)−θ(k)) and (13) a special case of (5). Also note that
without the term Sη(k), the average of the agents’ initial
states would be preserved throughout the evolution.

Remark 5.1 (Comparison with the Literature)
The proposed algorithm (12)-(14) has similarities and
differences with the algorithm proposed in [Huang et al.,
2012] which can be expressed (with a slight change of
notation in using si instead of σi) as

θ(k + 1) = (In − S)θ(k) + SD−1Ax(k)

=
[
In − SD−1L

]
θ(k) +

[
S − SD−1L

]
η(k).

If each agent selects si = dih < 1, then we recover (12)-
(14). As we show later, this particular choice results in
an unbiased convergence point, while in general the ex-
pected value of the convergence point of the algorithm
in [Huang et al., 2012] depends on the graph structure
and may not be the true average. Furthermore, this al-
gorithm is only shown to exhibit mean square conver-
gence of θ(k) for si ∈ (0, 1), while here we provide an ex-
plicit expression for the convergence point and establish
convergence in the stronger a.s. sense for larger range
of si ∈ (0, 2). As we show later, the inclusion of si = 1
is critical, as it leads to identifying the optimal algo-
rithm performance. On a different note, the algorithms
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in [Wang et al., 2014] and [Mo and Murray, 2014, 2015]
add a noise sequence to the messages which is correlated
over time – the latter using a different notion of privacy.
Wang et al. [2014] generate a single noise at time k = 0
and add a scaled version of it to the messages at every
time k ≥ 1, leading to an effectively “one-shot”-type of
perturbation. We show in Section 5.3 that the one-shot
approach is optimal for static average consensus while
sequential perturbation is necessary for dynamic scenar-
ios. •

5.1 Convergence Analysis

This section analyzes the asymptotic correctness of the
algorithm (12)-(14) and characterizes its rate of conver-
gence. We start by establishing convergence.

Proposition 5.2 (Asymptotic Convergence) Con-
sider a network of n agents executing the distributed dy-
namics (12)-(14). Define the random variable θ∞ as

θ∞ , Ave(θ0) +

n∑
i=1

si
n

∞∑
j=0

ηi(j). (15)

Then, θ∞ is well-defined a.s., and the states of all agents
converge to θ∞ almost surely.

PROOF. Note that si ∈ (0, 2) ensures that (|si−1|, 1)
is not empty. Substituting (13) into (12), the system
dynamics is

θ(k + 1) = Aθ(k) +Bη(k), (16)

with A = In − hL and B = S − hL. For any θ ∈ Rn, let

θ̃ = θ −Ave(θ)1n = Lcptθ ∈ (R1n)⊥. (17)

Multiplying both sides of (16) by Lcpt on the left and
using the fact that Lcpt and L commute, the dynamics

of θ̃ can be expressed as

θ̃(k + 1) = (In − hL)θ̃(k) + Lcpt(S − hL)η(k). (18)

Notice that (R1n)⊥ is forward invariant under (18).
Therefore, considering (R1n)⊥ as the state space for (18)
and noting that In − hL is stable on it, we deduce
that (18) is ISS. Consequently, this dynamics has a
K-asymptotic gain (c.f. Section 2.3), i.e., there exists
γa ∈ K such that

lim sup
k→∞

‖θ̃(k)‖ ≤ γa
(

lim sup
k→∞

‖η(k)‖
)
.

Therefore, limk→∞ θ̃(k) 6= 0 implies limk→∞ ‖η(k)‖ 6= 0.
By definition, the latter means that there is υ > 0 such
that for all K ∈ N there exists k ≥ K with ‖η(k)‖ > υ.
In other words, there exists a subsequence {η(k`)}`∈N

such that ‖η(k`)‖ > υ for all ` ∈ N. This, in turn, implies
that for all ` ∈ N, ‖η(k`)‖∞ > υ/

√
n, i.e.,

∃i` ∈ {1, . . . , n} with |ηi`(k`)| >
υ√
n
.

According to (1), this chain of implications gives

P{ lim
k→∞

θ̃(k) 6= 0} ≤ P{∀` ∈ N, ∃i` s.t. |ηi`(k`)| >
υ√
n
}

=

∞∏
`=1

e
− υ√

nbi`
(k`) = 0.

The last equality holds because lim`→∞ bi`(k`) =

lim`→∞ ci`q
k`
i`

= 0. Therefore, we conclude

P{ lim
k→∞

θ̃(k) = 0} = 1. (19)

From (17), we see that a.s. convergence of θ requires a.s.
convergence of Ave(θ) as well. Left multiplying (12) by
1Tn , we obtain for all k ∈ Z≥0,

1

n
1Tnθ(k + 1) =

1

n
1Tnθ(k) +

1

n
1TnSη(k)

=
1

n
1Tnθ0 +

1

n

k∑
j=0

n∑
i=1

siηi(j),

which in turn implies

Ave(θ(k)) = Ave(θ0) +

n∑
i=1

si
n

k−1∑
j=0

ηi(j). (20)

We next prove that Ave(θ(k)) converges almost surely
to θ∞. In order for the latter to be well-defined
over Ω, we simply set θ∞ , Ave(θ0) when the series
does not converge. Clearly, for any η ∈ Ω such that∑∞
j=0 ηi(j) converges for all i ∈ {1, . . . , n}, we have

limk→∞Ave(θ(k)) = θ∞. Therefore, using (1),

P{ lim
k→∞

Ave(θ(k)) = θ∞} ≥
n∏
i=1

P
{ ∞∑
j=0

ηi(j) converges
}
.

Note that, for each i ∈ {1, . . . , n} and any ` ∈ N, if
|ηi(j)| ≤ 1

j2 for all j ≥ `, then
∑∞
j=0 ηi(j) converges.

Therefore, using (1) and the definition of Laplace distri-
bution, we have for all ` ∈ N,

P{ lim
k→∞

Ave(θ(k)) = θ∞} ≥
n∏
i=1

∞∏
j=`

P
{
|ηi(j)| ≤

1

j2

}
=

n∏
i=1

∞∏
j=`

(
1− e

− 1

ciq
j
i
j2
)
.
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For each i ∈ {1, . . . , n}, because 0 < qi < 1, there exists
βi such that 1

ciq
j
i
j2
≥ βij for j ≥ 1. Therefore, using the

Euler function ϕ,

P{ lim
k→∞

Ave(θ(k)) = θ∞} ≥
n∏
i=1

ϕ(e−βi)∏`−1
j=1(1− e−βij)

,

for all ` ∈ N, and hence,

P{ lim
k→∞

Ave(θ(k)) = θ∞}≥ lim
`→∞

n∏
i=1

ϕ(e−βi)
`−1∏
j=1

(1− e−βij)
= 1.

This, together with (17) and (19), implies that
P{limk→∞ θ(k) = θ∞1n} = 1, which completes the
proof. 2

Remark 5.3 (Mean-Square Convergence) From (16)
and the fact that ‖A‖ = 1, we have

‖θ(k)‖ ≤ ‖θ0‖+ ‖B‖
k−1∑
j=0

‖η(j)‖

≤ ‖θ0‖+ ‖B‖
∞∑
j=0

‖η(j)‖ , Z,

for all k ∈ Z≥0. It is straightforward to show E[Z2] <∞,
so, using Proposition 5.2, θ(k) also converges to θ∞1n
in mean square. •
Our next aim is to characterize the convergence rate of
the distributed dynamics (12)-(14). Given the result in
Proposition 5.2, we define the exponential mean-square
convergence rate of the dynamics (12)-(14) as

µ = lim
k→∞

(
sup

θ(0)∈Rn

E
[
(θ(k)− θ∞1n)T (θ(k)− θ∞1n)

]
E
[
(θ(0)− θ∞1n)T (θ(0)− θ∞1n)

]) 1
2k

.

In the absence of noise (η = 0), this definition coincides
with the conventional exponential convergence rate of
autonomous linear systems, see e.g., Bullo et al. [2009].

Proposition 5.4 (Convergence Rate) Under the hy-
potheses of Proposition 5.2, the exponential mean-square
convergence rate of the distributed dynamics (12)-(14) is

µ = max{q, λ} ∈ (0, 1), (21)

where q = max
1≤i≤n

qi and λ < 1 is the spectral radius of

In − hL−Πn.

PROOF.

For convenience, we let θ̂(k) = θ(k) − θ∞1n denote

the convergence error at k ∈ Z≥0 and θ̂0 = θ̂(0). Our

first goal is to obtain an expression for E
[
θ̂(k)T θ̂(k)

]
.

From (15) and the proof of Proposition 5.2, we have

θ∞ =
1

n
1Tnθ0 +

1

n
1TnS

∞∑
j=0

η(j),

almost surely. Then, from (16), we have almost surely
for all k ∈ Z≥0,

θ̂(k) = Akθ0 +

k−1∑
j=0

Ak−1−jBη(j)−Πnθ0 −ΠnB

∞∑
j=0

η(j),

where we have used the fact that ΠnS = ΠnB. Next,
note that for all k ∈ N,

(A−Πn)k =

k∑
j=0

(
k

j

)
(−Πn)k−jAj (22)

= Ak +

k−1∑
j=0

(
k

j

)
(−1)k−jΠn = Ak −Πn,

where we have used the facts that Πn is idempotent
and ΠnA

j = Πn for any j ∈ Z≥0. Let A = A − Πn.

Notice that A has spectral radius λ < 1 and the same
eigenvectors asL. Then, using (22) twice, we have almost
surely for all k ∈ N,

θ̂(k) = Akθ0 +

k−2∑
j=0

Ak−1−jBη(j)

+ LcptBη(k − 1)−
∞∑
j=k

ΠnSη(j).

By the independence of {η(j)}∞j=0 over time, we have

E
[
θ̂(k)T θ̂(k)

]
= θT0 A2kθ0

+

k−2∑
j=0

E[η(j)TBA2k−2−2jBη(j)]

+ E[η(k − 1)TBL2
cptBη(k − 1)]

+
∞∑
j=k

E[η(j)TSΠ2
nSη(j)], (23)

for all k ∈ N. Next, we upper bound the exponential
mean-square convergence rate µ. Let c = max

1≤i≤n
ci and

note that for any N ∈ Rn×n and any j ∈ Z≥0,

E[η(j)TNTNη(j)] =

n∑
i=1

2b2i (j)(N
TN)ii

≤ 2c2q2jtr(NTN) = 2c2q2j‖N‖2F ,
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where ‖ · ‖F denotes the Frobenius norm. Therefore,

E
[
θ̂(k)T θ̂(k)

]
≤ θT0 A2kθ0 + 2c2

k−2∑
j=0

q2j‖Ak−1−jB‖2F

+ 2c2q2(k−1)‖LcptB‖2F + 2c2
∞∑
j=k

q2j‖ΠnS‖2F .

Since the Frobenius norm is submultiplicative, ‖N‖2F ≤
n‖N‖2 for any matrix N , and ‖A‖ = λ, we have

E
[
θ̂(k)T θ̂(k)

]
≤ θT0 A2kθ0 + C1

k−2∑
j=0

q2jλ
2k−4−2j

+ C2q
2k,

where C1 = 2nc2‖B‖2Fλ
2

and C2 = 2c2(‖LcptB‖2F /q2 +
‖ΠnS‖2F /(1− q2)) are constants. Note that for any 0 ≤
j ≤ k−2, we have q2jλ

2k−4−2j ≤ max{q, λ}2k−4. There-
fore, using the fact that the supremum of a sum is less
than or equal to the sum of suprema, we have

sup
θ0∈Rn

E
[
θ̂(k)T θ̂(k)

]
E
[
θ̂T0 θ̂0

] ≤ sup
θ0∈Rn

θT0 A2kθ0

E
[
θ̂T0 θ̂0

]
+ sup
θ0∈Rn

C3(k − 1) max{q, λ}2k + C2q
2k

E
[
θ̂T0 θ̂0

] ,

where C3 = C1 max{q, λ}−4. Let θ̃0 = Lcptθ0 be the
initial disagreement vector. It is straightforward to verify
that θT0 A2kθ0 = θ̃T0 A2kθ̃0 and

E
[
θ̂T0 θ̂0

]
= θ̃T0 θ̃0 +

1

n

n∑
i=1

2c2i s
2
i

1− q2i
, θ̃T0 θ̃0 + C4.

Therefore,

sup
θ0∈Rn

E
[
θ̂(k)T θ̂(k)

]
E
[
θ̂T0 θ̂0

] ≤ sup
θ̃0∈(R1n)⊥

θ̃T0 A2kθ̃0

θ̃T0 θ̃0 + C4

+
C3(k − 1) max{q, λ}2k + C2q

2k

inf θ̃0∈(R1n)⊥(θ̃T0 θ̃0 + C4)

= λ
2k

+ C3C
−1
4 (k − 1) max{q, λ}2k + C2C

−1
4 q2k.

By raising the right hand side of the above expression to
the power 1/2k and taking the limit as k →∞, the con-
stant/polynomial factors converge to 1 and the terms
containing max{q, λ} dominate the sum, proving that
µ ≤ max{q, λ}. Similarly, we can lower bound µ as fol-
lows. From (23), we have for all k ∈ N,

E
[
θ̂(k)T θ̂(k)

]
≥ θT0 A2kθ0

⇒ µ ≥ lim
k→∞

(
sup

θ̃0∈(R1n)⊥

θ̃T0 A2kθ̃0

θ̃T0 θ̃0 + C4

)1/2k

= λ,

and

E
[
θ̂(k)T θ̂(k)

]
≥ E[η(k)TSΠ2

nSη(k)] =

n∑
i=1

C5iq
2k
i

⇒ µ ≥ lim
k→∞

(
sup

θ̃0∈(R1n)⊥

∑n
i=1 C5iq

2k
i

θ̃T0 θ̃0 + C4

)1/2k

= q,

where C5i = 2c2i (SΠ2
nS)ii for all i ∈ {1, . . . , n}. There-

fore, µ ≥ max{q, λ}, completing the proof. 2

Note that λ is the convergence rate of the noise-free
(and non-private) Laplacian-based average consensus al-
gorithm, while q is the worst-case decay rate of the noise
sequence among the agents. From (21), the convergence
rate µ is the larger of these two values, confirming our
intuition that the slower rate among them is the bottle-
neck for convergence speed. Also, note that λ depends
on the network topology G while q is independent of it.

5.2 Accuracy and Differential Privacy

Having established the convergence properties of the al-
gorithm (12), this section characterizes the extent to
which our design solves Problem 1 by providing guaran-
tees on its accuracy and differential privacy. The next re-
sult elaborates on the statistical properties of the agree-
ment value of the algorithm.

Corollary 5.5 (Accuracy) Under the hypotheses of
Proposition 5.2, the convergence point θ∞ is an unbiased
estimate of Ave(θ0) with bounded dispersion,

var {θ∞} =
2

n2

n∑
i=1

s2i c
2
i

1− q2i
. (24)

As a result, the algorithm (12)-(14) is
(
p, 1

n

√
2
p

∑n
i=1

s2i c
2
i

1−q2
i

)
-

accurate for any p ∈ (0, 1).

PROOF. Since noises are independent over time and
among agents, we deduce from (20) that for any k ∈ Z≥0,
E{Ave(θ(k))} = Ave(θ0) and

var{Ave(θ(k))} =
2

n2

k∑
j=0

n∑
i=1

s2i c
2
i q

2j
i ,

which establishes unbiasedness and bounded dispersion
for any time. As k →∞, we get E{θ∞} = Ave(θ0) and

var{θ∞} =
2

n2

n∑
i=1

s2i c
2
i

1− q2i
.

The (p, r)-accuracy follows directly by applying Cheby-
shev’s inequality (2) for N = 1/

√
p. 2
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Remark 5.6 (Comparison with the Literature –
Cont’d) Proposition 5.2 and Corollary 5.5 establish al-
most sure convergence, with the expected value of con-
vergence being the average of the agents’ initial states.
In contrast, the results in [Huang et al., 2012] establish
convergence in mean square, and the expected value of
convergence depends on the network topology. In both
cases, the accuracy radius r decreases with the number
of agents as O(1/

√
n). •

The expression for (p, r)-accuracy in Corollary 5.5 shows
that one cannot obtain the ideal case of (0, 0)-accuracy,
and that r is a decreasing function of p, with r → ∞
as p → 0. This is an (undesirable) consequence of the
lack of preservation of the average under (12) due to the
term Sη. In turn, the presence of this expression helps
establish the differential privacy of the algorithm with
bounded, asymptotically vanishing noise, as we show
next.

Proposition 5.7 (Differential Privacy) Under the
hypotheses of Proposition 5.2, let

εi = δ
qi

ci(qi − |si − 1|)
, (25)

for each i ∈ {1, . . . , n}, where δ is the adjacency bound
in (6). Then, the algorithm preserves the εi-differential
privacy of agent i’s initial state for all i ∈ {1, . . . , n}.
Consequently, the algorithm is ε-differential private with
ε = maxi εi.

PROOF. Consider any pair of δ-adjacent initial condi-

tions θ
(1)
0 and θ

(2)
0 and an arbitrary set O ⊂ (Rn)N. For

any k ∈ Z≥0, let

R
(`)
k = {ηk ∈ Ωk | Xk,θ

(`)
0

(ηk) ∈ Ok}, ` = 1, 2, (26)

where Ωk = Rn(k+1) is the sample space up to time k,
Xk,θ0 is given in (8), and Ok ⊆ Rn(k+1) is the set com-
posed by truncating the elements of O to finite subse-
quences of length k+1. Then, by the continuity of prob-
ability [Durrett, 2010, Theorem 1.1.1.iv],

P{η ∈ Ω | X
θ
(`)
0

(η) ∈ O}

= lim
k→∞

∫
R

(`)

k

fn(k+1)(η
(`)
k )dη

(`)
k , (27)

for ` = 1, 2, where fn(k+1) is the n(k + 1)-dimensional
joint Laplace pdf given by

fn(k+1)(ηk) =

n∏
i=1

k∏
j=0

L(ηi(j); bi(j)). (28)

Next, we define a bijection betweenR
(1)
k andR

(2)
k . With-

out loss of generality, assume θ
(2)
0,i0

= θ
(1)
0,i0

+ δ1 for some

i0 ∈ {1, . . . , n}, where 0 ≤ δ1 ≤ δ and θ
(2)
0,i = θ

(1)
0,i for all

i 6= i0. Then, for any η
(1)
k ∈ R

(1)
k , define η

(2)
k by

η
(2)
i (j) =

{
η
(1)
i (j)− (1− si)jδ1, if i = i0,

η
(1)
i (j), if i 6= i0,

for j ∈ {0, . . . , k}. It is not difficult to see that

X
k,θ

(1)
0

(η
(1)
k ) = X

k,θ
(2)
0

(η
(2)
k ), so η

(2)
k ∈ R

(2)
k . Since the

converse argument is also true, the above defines a bi-

jection. Therefore, for any η
(2)
k ∈ R

(2)
k there exists a

unique (η
(1)
k ,∆ηk) ∈ R(1)

k × Rn(k+1) such that

η
(2)
k = η

(1)
k + ∆ηk.

Note that ∆ηk is fixed and does not depend on η
(2)
k .

Thus, we can use a change of variables to get

P{η ∈ Ω | X
θ
(2)
0

(η) ∈ O}

= lim
k→∞

∫
R

(1)

k

fn(k+1)(η
(1)
k + ∆ηk)dη

(1)
k . (29)

Comparing (27) for ` = 1 with (29), we see that both in-

tegrals are over R
(1)
k with different integrands. Dividing

the integrands for any η
(1)
k ∈ R

(1)
k yields,

fn(k+1)(η
(1)
k )

fn(k+1)(η
(1)
k + ∆ηk)

=

∏n
i=1

∏k
j=0 L(η

(1)
i (j); bi(j))∏n

i=1

∏k
j=0 L(η

(1)
i (j) + ∆ηi(j); bi(j))

=

∏k
j=0 L(η

(1)
i0

(j); bi0(j))∏k
j=0 L(η

(1)
i0

(j) + ∆ηi0(j); bi0(j))

≤
k∏
j=0

e
|∆ηi0 (j)|
bi0

(j) ≤ e

∑k

j=0

|1−si0 |
jδ

ci0
q
j
i0

⇒ fn(k+1)(η
(1)
k ) ≤ e

δ
ci0

k∑
j=0

(
|1−si0 |
qi0

)j
fn(k+1)(η

(1)
k + ∆ηk).

Due to (14), the geometric series in the exponent of the
multiplicative term is convergent. Therefore, integrating

both sides over R
(1)
k and letting k →∞, we have

P{η ∈ Ω | X
θ
(1)
0

(η) ∈ O}

≤ eδ
qi0

ci0
(qi0
−|1−si0 |)P{η ∈ Ω | X

θ
(2)
0

(η) ∈ O},

which establishes the εi0 -differential privacy for agent i0.
The fact the i0 can be any agent establishes (25), while
the last statement follows from Definition 3.1. 2
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Since the algorithm (12)-(14) converges almost surely
(cf. Proposition 5.2) and is differentially private (cf.
Proposition 5.7), Proposition 4.1 implies that it cannot
achieve (0, 0)-accuracy, as noted above when discussing
Corollary 5.5. The explicit privacy-accuracy trade-off
is given by the relation between var{θ∞} and {εi}ni=1,
i.e., (c.f. (24), (25))

var {θ∞} =
2δ2

n2

n∑
i=1

s2i q
2
i

ε2i (qi − |si − 1|)2(1− q2i )
, (30)

so var {θ∞} increases as any εi is decreased and vice
versa. We optimize this trade-off over {si, qi}ni=1 in Sec-
tion 5.3 and depict the optimal trade-off curve for a test
network in Section 6.

Remark 5.8 (Laplacian Noise Distribution) Even
though the choice of Laplacian noise in (14) is not the
only one that can be made to achieve differential pri-
vacy, it is predominant in the literature [Dwork et al.,
2006, Dwork, 2006]. The work [Wang et al., 2014] shows
that Laplacian noise is optimal (among all possible dis-
tributions) in the sense that it minimizes the entropy of
the transmitted messages while preserving differential
privacy. •
Remark 5.9 (Comparison with the Literature –
Cont’d) Proposition 5.7 guarantees the εi-differential
privacy of agent i’s initial state independently of the
noise levels chosen by other agents. Therefore, each agent
can choose its own level of privacy, and even opt not to
add any noise to its messages, without affecting the pri-
vacy of other agents. In contrast, in [Huang et al., 2012],
agents need to agree on the level of privacy before exe-
cuting the algorithm. In both cases, privacy is achieved
against an adversary that can hear everything, indepen-
dently of how it processes the information. In contrast,
the algorithm in [Mo and Murray, 2014, 2015] assumes
the adversary uses maximum likelihood estimation and
only preserves the privacy of those agents who are suffi-
ciently “far” from it in the graph (an agent is sufficiently
far if the adversary cannot listen to it and all of its neigh-
bors). The latter work uses a different notion of privacy
based on the covariance of the maximum likelihood esti-
mate which allows for guaranteed exact convergence, in
the mean-square sense, to the true average. •

5.3 Optimal Noise Selection

In this section, we discuss the effect on the algorithm’s
performance of the free parameters present in our de-
sign. Given the trade-off between accuracy and privacy,
cf. (30), we fix the privacy levels {εi}ni=1 constant and
study the best achievable accuracy of the algorithm as
a function of the remaining free parameters. Each agent
i ∈ {1, . . . , n} gets to select the parameters si, ci, qi de-
termining the amount of noise introduced in the dynam-
ics, with the constraint that (si, ci, qi) ∈ P, where

P = {(s, c, q) | s ∈ (0, 2), c > 0, q ∈ (|s− 1|, 1)}.

Given the characterization of accuracy in Corollary 5.5,
we consider as cost function the variance of the agents’
convergence point, i.e., θ∞, around Ave(θ0), giving

J({si, ci, qi}ni=1) =
2

n2

n∑
i=1

s2i c
2
i

1− q2i
. (31)

The next result characterizes its global minimization.

Proposition 5.10 (Optimal Parameters for Vari-
ance Minimization) For the adjacency bound δ > 0
and privacy levels {εi}ni=1 fixed, the optimal value of the
variance of the agents’ convergence point is

J∗ = inf
{si,ci,qi}ni=1

∈Pn
J({si, ci, qi}ni=1) =

2δ2

n2

n∑
i=1

1

ε2i
.

The infimum is not attained over Pn but approached as

ci = δ
qi

εi(qi − |si − 1|)
, si = 1, (32)

and qi → 0 for all i ∈ {1, . . . , n}.

PROOF. For each i ∈ {1, . . . , n}, with the privacy level
fixed, the expression (32) follows directly from (25). For
convenience, we re-parameterize the noise decaying ra-
tio qi as

αi =
qi − |si − 1|
1− |si − 1|

∈ (0, 1). (33)

Note that qi = αi + (1 − αi)|si − 1|. Substituting (32)
and (33) into (31), we obtain (with a slight abuse of
notation, we also use J to denote the resulting function),

J({si, αi}ni=1) =
2

n2

n∑
i=1

δ2

ε2i
φ(αi, si),

φ(α, s) =
s2(α+ (1− α)|s− 1|)2

α2(1− |s− 1|)2
[
1− (α+ (1− α)|s− 1|)2

] .
Therefore, to minimize J , each agent has to indepen-
dently minimize the same function φ of its local param-
eters (αi, si) over D = (0, 1)× (0, 2). Figure 1 illustrates
the graph of this function over D. Since D is not com-
pact, the infimum might not be attained, and in fact,
this is the case. It is easy verify that limα→0 φ(α, 1) = 1.
Now, for all (α, s) ∈ D, 1− (α+ (1− α)|s− 1|)2 < 1 so

φ(α, s) > φ21(α, s), φ1(α, s) =
(α+ (1− α)|s− 1|)s

α(1− |s− 1|)
.

If s ≤ 1, then φ1(α, s) = s + 1−s
α > 1. If s > 1, then

φ1(α, s) > 1 + s−1
α(2−s) > 1. Therefore, for all (α, s) ∈ D,

φ(α, s) > 1, which completes the proof. 2
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Fig. 1. Local objective function φ of each agent as a function
of its parameters. s is the noise-to-state gain and α is related
to the noise decaying ratio. We cap the function values at
7 for visualization purposes. The function approaches its
infimum as α→ 0 while s = 1.

Given that differential privacy is resilient to post-
processing, an alternative design strategy to preserve
the differential privacy of agents’ initial states is to in-
ject noise only at the initial time, k = 0. From (14), the
introduction of a one-shot noise by agent i corresponds
to qi = 0 which is not feasible if si 6= 1. This can also be
seen by rewriting (12) as

θ(k + 1) = (I − S)θ(k) + (S − hL)x(k),

so if si 6= 1 for any i, θi(k) directly (not only through
xi(0)) depend on θi(0). However, if si = 1, one can verify
using a simplified version of the proof of Proposition 5.7
that qi = 0 also preserves εi-differential privacy of θi(0)
with εi = δ

ci
. This results in a cost of

J =
2

n2

n∑
i=1

c2i =
2δ2

n2

n∑
i=1

1

ε2i
= J∗,

showing that the optimal accuracy is also achieved by
one-shot perturbation of the initial state at time k = 0
and injection of no noise thereafter. A similar conclu-
sion (that one-shot Laplace perturbation minimizes the
output entropy) can be drawn from [Wang et al., 2014],
albeit this is not explicitly mentioned therein.

Remark 5.11 (Dynamic Average Consensus)
One-shot perturbation would no longer be optimal in
dynamic average consensus scenarios [Bai et al., 2010,
Zhu and Mart́ınez, 2010, Kia et al., 2015], where agents
seek to compute the average of individual exogenous,
time-varying signals (the “static” average consensus
considered here would correspond to the exogenous
signals being constant). In such scenarios, there is a re-
current flow of information at each node whose privacy
can no longer be preserved with one-shot perturbation.
Sequential perturbation as in (13)-(14) is then necessary
and the variance of the noise sequence has to dynam-
ically depend on the rate of information flow to each

node. Although the detailed design of such algorithms
is beyond the scope of this work, such an algorithm can
be designed following the idea of the sequential pertur-
bation design of this work and the proof of its privacy
in Proposition 5.7. To see this, note that (for S 6= In)
we “tune” the amount of noise injection ηi(k) so that
the privacy of (1 − si)kθ0,i is preserved at each round
k ≥ 1, but (1 − si)kθ0,i is the amount of “retained in-
formation” of θ0,i at round k and plays the same role as
u(k) in the dynamic average consensus problem. •

6 Simulations

In this section, we report simulation results of the dis-
tributed dynamics (12)-(14) on a network of n = 50
agents. Figure 2 shows the random graph used through-
out the section, where edge weights are i.i.d. and each one
equals a sum of two i.i.d. Bernoulli random variables with
p = 0.1. The agents’ initial states are also i.i.d. with dis-
tributionN (50, 100). As can be seen from (24) and (25),
neither accuracy nor privacy depend on the initial values
or the communication topology (albeit according to (21)
the convergence rate depends on the latter). In all the
simulations, δ = 1 and ci = δqi/εi(qi − |si − 1|) for all
i ∈ {1, . . . , n}.

Fig. 2. Random graph used for simulation.

Figure 3 depicts simulations with ε = 0.1·1n andS = sIn
while sweeping s over [0.8, 1.2] with logarithmic step size.
For each value of s, we set qi = αi + (1−αi)|s− 1| with
αi = 10−6 for each i ∈ {1, . . . , n} and repeat the simu-
lation 104 times. For each run, to capture the statistical
properties of the convergence point, the graph topology
and initial conditions are the same and only noise realiza-
tions change. Figure 3(a) shows the empirical (sample)
standard deviation of the convergence point as a func-
tion of s, verifying the optimality of one-shot perturba-
tion. In particular, notice the sensitivity of the accuracy
to s close to s = 1. Figure 3(b) shows the ‘settling time’,
defined as the number of rounds until convergence (mea-
sured by a tolerance of 10−2), as a function of s. The
fastest convergence is achieved for s = 1, showing that
one-shot noise is also optimal in the sense of convergence
speed. We have observed the same trends as in Figure 3
for different random choices of initial conditions and net-
work topologies. Note that the settling time depends on
both the convergence rate and the initial distance from
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the convergence point ‖θ(0)−θ∞1n‖. The former is con-
stant at µ = λ = 0.84 for s ∈ [0.8, 1.2]. The latter de-
pends on {ci}ni=1, which in turn depend on s by (32).
This explains the trend observed in Figure 3(b).
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Fig. 3. Executions of the algorithm (12)-(14) for random
topology and initial conditions. (a) shows the empirical (i.e.,
sample) variance of the convergence point and (b) shows the
settling time. The trend in (a) validates Proposition 5.10
while (b) shows the optimality of one-shot perturbation for
convergence speed.

Figure 4 depicts the privacy-accuracy trade-off for the
proposed algorithm. We have set S = In, q = 0 · 1n,
and ε = ε · 1n and then swept ε logarithmically over
[10−2, 102]. In Figure 4(a), the algorithm is run 25 times
for each value of the ε and the error |θ∞ − Ave(θ0)|
for each run is plotted as a circle. In Figure 4(b), the
sample variance of the convergence point θ∞ is shown as
a function of ε together with the theoretical value given
in Proposition 5.10. In both plots, we see an inversely-
proportional relationship between accuracy and privacy,
as expected.

Figure 5 shows the histogram of convergence points for
106 runs of the algorithm with ε = 0.1 · 1n, S = In
and q = 0 · 1n (optimal accuracy). The distribution of
the convergence point is a bell-shaped curve with mean
exactly at the true average, in accordance with Corol-
lary 5.5. Although the distribution of θ∞ is provably
non-Gaussian, the central limit theorem, see e.g., [Dur-
rett, 2010], implies that it is very close to Gaussian since
the number of agents is large.

Finally, Figure 6 illustrates the convergence rate of the
algorithm. Here, for ε = 0.11n, S = 0.9In, q = 0.21n,
and the same topology as in the previous plots, the ini-
tial agents states are randomly selected and the whole
algorithm is run 100 times with different noise realiza-
tions η, each time until 100 iterations. For each value of
initial states and each k ∈ {1, . . . , 100}, we empirically
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Fig. 4. The privacy-accuracy trade-off for the proposed algo-
rithm (12)-(14) for random topology and initial conditions.
(a) shows the norm of the error for 25 different realizations
of the noise and (b) shows the sample variance over 100
noise realizations as well as the theoretical value provided by
Proposition 5.10. The trend in both figures conforms with
the theoretical characterization of θ∞ given in Corollary 5.5.
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Fig. 5. Statistical distribution of the convergence point. The
sample mean (starred) matches the true average (green ver-
tical line).

approximate the quantity(
E
[
(θ(k)− θ∞1n)T (θ(k)− θ∞1n)

]
E
[
(θ(0)− θ∞1n)T (θ(0)− θ∞1n)

])1/2k

by taking the sample mean instead of the expectation in
the numerator and denominator. We repeat this whole
process 50 times for different random initial conditions
and plot the result, together with the theoretical value of
µ (which in this case equals λ) given by Proposition 5.4.
As Figure 6 shows, the supremum of the resulting curves
converges to µ as k →∞, as expected.

7 Conclusions

We have studied the problem of multi-agent average con-
sensus subject to the differential privacy of agents’ initial
states. We have showed that the requirement of differen-
tial privacy cannot be satisfied if agents’ states weakly
converge to the exact average of their initial states. This
result suggests that the most one can expect of a differen-
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Fig. 6. Illustration of the convergence rate of the algo-
rithm (12)-(14). The limit of the supremum of the solid
lines converges to the theoretical value of the exponential
mean-square convergence rate µ given by Proposition 5.4.
The curves with higher values correspond to initial states θ0
that are closer to the eigenvector of In−hL−Πn associated
with λ.

tially private consensus algorithm is that the consensus
value is unbiased, i.e., its expected value is the true av-
erage, and the variance is minimized. We have designed
a linear consensus algorithm that meets this objective,
and have carefully characterized its convergence, accu-
racy, and differential privacy properties. Future work will
include the investigation of the limitations and advan-
tages of differential privacy in multi-agent systems, the
extension of the results to distributed optimization, fil-
tering, and estimation, and the design of algorithms for
privacy preservation of the network structure and other
parameters such as edge weights and vertex degrees.
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