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Abstract— We study identification of linear networks under
the assumption that only a subset of all the nodes in the
network can be observed. The observable nodes are called
manifest nodes and they form the manifest subnetwork. The
unobservable nodes are called latent nodes and the number of
latent nodes is unknown. We explore the possibility of
identifying the transfer function of the manifest subnetwork
and whether an interaction between two manifest nodes is
direct or mediated by latent nodes. In particular, we show
that if the external inputs are injected into a linear network
only through the manifest nodes, then there exists an
auto-regressive model whose transfer function is arbitrarily
close to the transfer function of the manifest subnetwork in
the H∞ norm sense. Moreover, we prove that the
least-squares method provides consistent estimate of the
auto-regressive model using the measured states of the
observed nodes. Finally, we show that if the latent
subnetwork is acyclic, then the transfer function of the
manifest subnetwork can be perfectly identified using the
least-squares auto-regressive method. Various examples
illustrate our results.

I. INTRODUCTION

Complex networks play an essential part in many areas
of modern science and engineering, such as biology [1],
[2], physics [3], finance [4], and the smart grid [5]. A
complex network typically consists of many dynamical
subsystems or nodes that interact with each other. The state
of a node evolves over time according to its internal
dynamics as well as the interactions with its neighbors.
While much emphasis has been put on the synthesis and
analysis of coordination algorithms where the interaction
topology is either given or the design objective itself, there
is a need to develop concepts and techniques to address the
identification of unknown topologies from measured data,
especially when not all the nodes in the network can be
directly manipulated or measured.

Literature review: The recent interest on network
topology identification is motivated by the need to better
identify the increasingly complex interactions in large-scale
networks and understand their role in driving network
behavior. Our work here is in particular inspired by the
wide use of auto-regressive (AR) models to analyze brain
data via Granger causality and the study of effective
connectivity among different areas of the brain, see
e.g., [6], [7], [8]. Broadly speaking, the objective in
network identification is to determine the causal
relationships among the nodes, that is, the direction and
strength of the interaction between them. It is common to
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model a complex network using a directed graph, where
interactions among neighboring nodes are represented by
directed edges whose weights reflect interaction strength.
Based on the cross-power spectral densities of the network
response to wide-sense stationary noises, [9] proposes
algorithms to identify the topology of directed linear
time-invariant networks that require a series of
node-knockout experiments. Also using a node-knockout
procedure, [10] considers the complete characterization of
the interaction topology in consensus-type networks. Under
the assumption that every node is manipulable and large
number of experiments are allowed, [3] presents a method
to infer the topology of a network from its stable response
dynamics. [11] considers the topology identification for tree
networks. Without the ability to manipulate every node and
perform a large number of experiments, it is in general
difficult to accurately identify the network topology. In
fact, [12] shows that, once the transfer function from
controlled inputs to measured outputs has been perfectly
identified, it is not possible to identify even the Boolean
structure of a network without additional information. As a
result, the focus has been put on particular realizations of
the network that explain the measured data, such as the
sparsest realization, sometimes with a design parameter to
manage the trade-off between model accuracy and sparsity,
see e.g. [1], [13]. Furthermore, in many cases, it is not
possible to obtain measurements from all the nodes or even
the existence of some nodes, called latent, might be
unknown [14]. [15] proposes a method to identify the
latent nodes and the network topology under assumptions
that the network is a polytree and the degree of each latent
node is at least three with out-degree of at least two.

Statement of contributions: We assume that one can only
stimulate and observe a subset of all the nodes, termed
manifest, in a linear time-invariant (LTI) network with
unknown topology. We also assume that the total number
of nodes is unknown, i.e., latent nodes might be present.
The objective is to identify the transfer function of the
manifest subnetwork (the manifest transfer function), which
is a submatrix of the transfer function (matrix) of the entire
network. While most of the existing topology identification
algorithms are restrained to acyclic graphs, our results
allow cycles in the network topology. Under the
assumption that all the latent nodes are passive, that is,
there are no external inputs acting directly on them, our
first contribution is showing that there exists a class of AR
models whose transfer functions converge (exponentially in
the H∞ norm) to the manifest transfer function as the
order of the AR model increases. An advantage of the AR



model is that it distinguishes direct interaction between a
pair of manifest nodes from indirect interaction mediated
by latent nodes. This provides more information about the
network structure than the manifest transfer function matrix
and may be helpful in latent node identification. Next, we
describe the least-squares auto-regressive method to
estimate the AR model. Our second contribution shows that
the least-squares auto-regressive method obtains an
arbitrarily small H∞ norm error as the length of data and
the model order grow. In fact, once the order of the AR
model candidates exceeds a certain threshold, the H∞
norm error decays exponentially. We also show that if the
latent subnetwork is acyclic, then the method achieves
perfect identification of the manifest transfer function.
Simulations on ring networks and Erdős–Rényi random
illustrate our results. For reasons of space, all proofs are
omitted and will appear elsewhere.

Notation: For a vector x ∈ Rn, we use xi to denote its
i-th element. Given a sequence {x(k)}∞k=0 ⊂ Rn and
j1 ≤ j2 ∈ Z≥0, we use {x}j2j1 to denote the finite sequence
{x(j1), x(j1 + 1), . . . , x(j2)}. We omit j1 if j1 = 0 and

denote ||{x}j2j1 || ,
( j2∑
k=j1

xT (k)x(k)
) 1

2 . For a real matrix

M ∈ Rm×n, we denote its singular values by decreasing
order as σ1(M) ≥ σ2(M) ≥ . . . ≥ σmin(m,n)(M) ≥ 0 and
its spectral norm by ‖M‖ = σ1(M). The max norm of M
is defined by ‖M‖max = maxi,j |Mij |. We denote the
spectral radius of a square matrix M by ρ(M). M is Schur
stable if and only if ρ(M) < 1. The m× n matrix with all
zero elements is denoted by 0m×n and the identity matrix
of dimension n × n is denoted by In. The H∞ norm of a
discrete transfer function T is denoted by
||T ||∞ , sup−π≤ω≤π‖T (ω)‖. A sequence of random
variables {x}∞ converges in probability to a random
variable X (denoted plimk→∞ x(k) = X) if
limk→∞ Pr(|x(k)−X| ≥ ε) = 0 for all ε > 0.

II. PROBLEM FORMULATION

We consider a discrete-time, linear time-invariant (LTI)
network dynamics with state-space representation

x(k + 1) = Ax(k) + u(k),

y(k) = Cx(k), (1)

where k ∈ Z≥0 is the time index, x(k) ∈ Rn is the
network state (with xi(k) representing the state of node i,
i ∈ {1, . . . , n}), u(k) ∈ Rn is the control input (with ui(k)
acting on node i), and y(k) ∈ Rm is the network output.
Here, A ∈ Rn×n is the adjacency matrix of the network
characterizing the interactions among neighboring nodes
and C ∈ Rm×n is the observation matrix.

In the network dynamics (1), we have assumed that there
is a control input at every node. Nevertheless, we do not
assume all the control inputs are user-specified. In particular,
we allow that ui(k) ≡ 0 for all k ∈ Z≥0 or {ui} is a
stochastic process. We have also assumed that all the nodes
are of order 1, that is, x(k + 1) depends directly only on
x(k) and conditionally independent of {x}k−1 given x(k).

Assumption 2.1: The network adjacency matrix A is un-
known with spectral norm smaller than 1.

Note that if A is symmetric, then Assumption 2.1 is
equivalent to the Schur stability of A.

In a large-scale network, it is common that one can
control and observe only a subset of the nodes due to
computational constraints, measurement costs, or physical
limitations. Assume that one can only control and observe
nm ≤ n nodes, called the manifest nodes, with indices
i1, i2, . . . , inm in the network (1), where
(i1, i2, . . . , inm , inm+1, . . . , in) is a permutation of
(1, 2, . . . , n). The uncontrollable and unobservable nodes
inm+1, . . . , in are called the latent nodes. Denote the state
and the input vectors of the manifest subnetwork by
xm(k) =

[
xi1(k) . . . xinm

(k)
]T

and
um(k) =

[
ui1(k) . . . uinm

(k)
]T

, respectively, and the state
and input vectors of the latent subnetwork by xl(k) and
ul(k), respectively, and let y(k) = xm(k). If further
ul,j(k) ≡ 0 for some j ∈ {inm+1, . . . , in}, then the latent
node j is called a passive latent node. With the
decomposition of the nodes into manifest and latent ones,
the state-space representation (1) becomes[

xm(k + 1)
xl(k + 1)

]
=

[
A11 A12

A21 A22

] [
xm(k)
xl(k)

]
+

[
um(k)
ul(k)

]
,

y(k) = xm(k). (2)

In the remainder of this paper, we consider the network in
the relabeled form (2) directly. This relabeling is illustrated
in Figure 1.
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Fig. 1. Node relabeling in a ring network so that manifest and latent nodes
have consecutive indices.

Assumption 2.2: The input process to the manifest
subnetwork, {um}, is a zero-mean stochastic process with
independent and identically distributed (i.i.d.) random
vectors um(k) with covariance σ2

um
Inm

, where
σum ∈ R>0.

Assumption 2.2 guarantees that the input signal {um} is
persistently exciting of arbitrary order and its power
spectral density does not vanish for any frequency ω,
whose variations are commonly seen in system
identification [16], [9]. The zero-mean assumption can be
relaxed by assuming a nonzero but known expectation
E[um(k)], which corresponds to the scenario where the
designer injects a deterministic stimulating signal into
every manifest node that is subject to the disturbance of a



zero-mean white noise. Without loss of generality, we
assume E[um(k)] ≡ 0 for notational simplicity.

Given the setup above, our objective is to identify the
transfer function Txmum

(ω) of the manifest subnetwork, that
is, the transfer function from um to xm, absent knowledge
of the latent nodes. In the following, we define this problem
formally.

Problem 2.3: (Identification of the manifest transfer
function). Given the measured data sequence {y}N1 , find a
linear auto-regressive model of order τ (N � τ ) of the
form

x̃m(k + 1) =

τ−1∑
i=0

Ãix̃m(k − i) + um(k), (3)

such that the transfer function Tx̃mum
from um to x̃m and

Txmum
from um to xm in (1) are close in the H∞ norm,

i.e., ‖Tx̃mum
− Txmum

‖∞ is small.
There are alternative methods to identify the transfer

function matrix Txmum
besides the AR method in (3). For

instance, one can try to estimate Txmum
directly using

frequency domain approaches such as power spectral
analysis [9]. However, the transfer function matrix Txmum

alone does not differentiate between direct connections
(two manifest nodes interact directly) and latent
connections (two manifest nodes interact via latent nodes).
In contrast, we will show later that the AR model (3)
provides information about the network structure by
predicting whether two manifest nodes are connected
directly or through some latent nodes. Further, if the latent
subnetwork is acyclic, then the number of latent nodes in a
path connecting two manifest nodes can be predicted.

Remark 2.4: (Assumption 2.1 implies stability of
subnetworks). It is well known [17] that if M is a
submatrix of A, then σj(M) ≤ σj(A). Thus, Assumption
2.1 implies that ‖Aii‖≤ ‖A‖< 1 for i = 1, 2, which further
indicates A11 and A22 are Schur stable, since
ρ(M) ≤ ‖M‖ for any M ∈ Rn×n. Note that if A is only
Schur stable then both A11 and A22 may be unstable. •

Remark 2.5: (Direct versus latent interactions). The
interaction graph of the manifest subnetwork is
characterized by A11. In particular, the state of node p
affects the state of node q directly if and only if the entry
on the q-th row and the p-th column, denoted by A11(q, p),
is nonzero. However, even if A11(q, p) = 0, it is still
possible that node p affects node q indirectly through some
latent nodes. We show later in Remark 3.3 that identifying
the parameters of the AR model in (3) distinguishes direct
from indirect interactions. •

III. ASYMPTOTICALLY EXACT IDENTIFICATION OF
MANIFEST TRANSFER FUNCTION VIA AR MODELS

In this section, we show that there exists a group of AR
models in the form of (3) whose transfer functions
converges to Txmum

exponentially in the H∞ sense.
Moreover, if the latent subnetwork is acyclic, then there
exists an AR model (3) whose transfer function is exactly
the manifest transfer function.

Theorem 3.1: (AR model whose transfer function
converges to the manifest transfer function). Consider the
LTI network described by (2). Assume all latent nodes are
passive and

(1− ‖A11‖)(1− ‖A22‖) > ‖A12‖ · ‖A21‖ (4)

holds. Then, there exists γ̄ ∈ R>0 such that, for all τ ∈ Z≥0,
the AR model (3) with the matrix sequence in Rnm×nm

Ã∗0 = A11, Ã∗i = A12A
i−1
22 A21, (5)

for i ∈ {1, . . . , τ − 1}, guarantees

‖Tx̃mum(ω, τ)− Txmum(ω)‖∞ ≤ γ̄‖A22‖τ . (6)
Theorem 3.1 shows that if the latent nodes in a network

do not receive any external inputs, then there exists a group
of AR models in the form of (3) with transfer functions
converging to the manifest transfer function exponentially in
H∞-norm.

Remark 3.2: (Stability degree versus interaction strength
between the manifest and latent subnetworks). The
requirement (4) relates the stability degrees of the manifest
and latent subnetworks and their interaction strengths.
Roughly speaking, under Assumption 2.1, for networks
with increasingly small stability margin, i.e., as ρ(Aii) gets
close to 1 (which implies that ‖Aii‖ ≥ ρ(Aii) is also close
to 1), the term (1 − ‖A11‖)(1 − ‖A22‖) becomes
increasingly small and thus ‖A12‖ · ‖A21‖ (characterizing
the subnetwork interaction strength) should be increasingly
small as well. •

Remark 3.3: (Direct versus latent interactions - cont’d).
It follows immediately from (2) that

xm(k+1) =

k∑
i=0

Ã∗i xm(k−i)+A12A
k
22xl(0)+um(k). (7)

By virtue of (7), we can distinguish whether two manifest
nodes interact directly or indirectly through latent nodes by
looking at the matrix sequence {Ã∗i }. First, the state of
manifest node p affects the state of manifest node q
directly if and only if Ã∗0(q, p) = A11(q, p) 6= 0. Similarly,
the state of manifest node p affects the state of manifest
node q indirectly through latent nodes iff Ã∗i (q, p) 6= 0 for
some i ≥ 1. In particular, from the relation (5) one can see
that the state of p first affects some latent nodes (that
correspond to the nonzero entries in the p-th column of
A21) through A21, then propagates through the latent
subnetwork (reflected by Ai−122 ), and finally affects q
through A12. Furthermore, if the latent subnetwork is
acyclic, then Ã∗i (q, p) 6= 0 implies that there are exactly i
latent nodes in a path connecting p to q. •

Next, we show that there exists an AR model (3) whose
transfer function coincides with the manifest transfer
function if the latent subnetwork is acyclic.

Corollary 3.4: (Exact manifest transfer function matching
when the latent subnetwork is acyclic). Under the hypotheses
of Theorem 3.1, further assume that the latent subnetwork is



acyclic, i.e., there exists τ22 ∈ Z≥1 such that Aτ22
22 = 0nl×nl

.
Then, the matrix sequence Ã∗0, . . . , Ã

∗
τ22

in (5) ensures

Tx̃mum = Txmum .
Theorem 3.1 and Corollary 3.4 show that it is possible to

identify the transfer function of the manifest subnetwork
without any knowledge of the passive latent nodes.
However, (5) cannot be directly applied to determine the
auto-regressive model because its evaluation requires
knowledge of the adjacency matrix A of the whole
network, which is unknown. Instead, we determine the AR
model using the measured data sequence {y}N1 , as
explained in the next section.

IV. MANIFEST TRANSFER FUNCTION IDENTIFICATION
VIA LEAST-SQUARES

In this section, we describe the least-squares (LS)
estimation method and show that the parameters resulting
from it asymptotically converge in probability, as the data
length N and model order τ increase, to the optimal matrix
sequence identified in Theorem 3.1.

A. Least-squares AR estimation

Given a vector sequence {y}N1 ⊂ Rnm , the problem of
least-squares auto-regressive (LSAR) model estimation with
order τ ∈ Z≥1 is to find a matrix sequence {Â}τ−10 that
minimizes the 2-norm of the residual sequence {e}N−1τ ,

e(k) = y(k + 1)−
τ−1∑
i=0

Âiy(k − i). (8)

Equation (8) can be written in a compact vector form as

~yN = ÂτΦN + ~eN , (9)

where

~yN =
[
y(τ + 1) y(τ + 2) . . . y(N)

]
∈ Rnm×(N−τ),

~eN =
[
e(τ) e(τ + 1) . . . e(N − 1)

]
∈ Rnm×(N−τ),

Âτ =
[
Â0 Â1 . . . Âτ−1

]
∈ Rnm×nmτ ,

ΦN =


y(τ) y(τ + 1) . . . y(N − 1)

y(τ − 1) y(τ) . . . y(N − 2)
...

...
. . .

...
y(1) y(2) . . . y(N − τ)

 ,
with ΦN ∈ Rnmτ×(N−τ). We immediately obtain that

‖{e}N−1τ ‖2 = tr(~eN~e
T
N ) = tr

(
(~yN − ÂτΦN )(~yN − ÂτΦN )T

)
= tr

(
(Âτ − ~yNΦTN (ΦNΦTN )−1)ΦN

· ΦTN (Âτ − ~yNΦTN (ΦNΦTN )−1)T

+ ~yN (IN−τ − ΦTN (ΦNΦTN )−1ΦN )~yTN
)
,

where we have added and subtracted the term
~yNΦTN (ΦNΦTN )−1ΦN~y

T
N . The minimum for this expression

is achieved for

Âτ = ~yNΦTN (ΦNΦTN )−1. (10)

We sometimes use Âτ ({y}N1 ) to explicitly indicate its
dependency upon the measured data sequence.

B. Identification of manifest transfer function

Next, we show that as N, τ →∞, the LS estimate in (10)
converges in probability to

Ã∗τ =
[
Ã∗0 Ã∗1 . . . Ã∗τ−1

]
∈ Rnm×nmτ .

Lemma 4.1: (The LS estimate Âτ converges to Ã∗τ in
probability). Consider the LTI network described in (2)
with all the latent nodes passive and let (4) hold. Given the
measured data sequence {y}N1 generated from the unknown
LTI network (2) stimulated by the white noise input {um},
the LS estimate ~̂

Aτ ({y}N1 ) in (10) satisfies

‖ plim
N→∞

Âτ ({y}N1 )− Ã∗τ‖max ≤ βτ‖A22‖τ , (11)

where β is a constant that depends only on the network ad-
jacency matrix A and the input power σ2

um
.

When it is clear from context, we refer to
plimN→∞ Âi({y}N1 ) simply as Âi.

Remark 4.2: (Direct versus latent interactions – cont’d).
Lemma 4.1 shows that Âi converges to Ã∗i exponentially
with the increase of τ . Using the arguments in Remark 3.3,
from Â0 one could tell whether two manifest nodes interact
directly and from Âi, i ≥ 1 that whether two manifest nodes
interact indirectly through latent nodes. •

The next result shows that the H∞-norm of the transfer
function from e to y in (8) is uniformly upper bounded with
respect to the model order τ . This result will be used to
prove the main result in Theorem 4.4.

Lemma 4.3: (Norm of Tye is uniformly upper bounded
w.r.t τ ). Denote the transfer function from e to y in (8) by
Tye({y}N1 , τ). There exist positive scalars τ0 and U∞Tye

such that for τ ≥ τ0,

‖ plim
N→∞

Tye({y}N1 , τ)‖∞ ≤ U∞Tye
. (12)

We are ready to show that the transfer function Tye in (8)
obtained using the LSAR method converges to Txmum

.
Theorem 4.4: (The LSAR method consistently estimates

the manifest transfer function using measured data).
Consider the LTI network described in (2) with all the
latent nodes passive and let (4) hold. Then, there exist
positive scalars β̄, γ̄ and τ0 such that, for τ ≥ τ0,

‖ plim
N→∞

Tye({y}N1 , τ)− Txmum
‖∞ ≤ (β̄τ2 + γ̄)‖A22‖τ .

(13)
As a consequence, one has that

plim
N→∞,τ→∞

Tye({y}N1 , τ) = Txmum .

Theorem 4.4 states that when the length N of the
measurement data is sufficiently large and the model order
τ exceeds a certain threshold, the error
‖Tye(τ) − Txmum‖∞ obtained by the LSAR method
decreases exponentially with τ .

Remark 4.5: (It is more difficult to identify the manifest
subnetwork when the latent subnetwork is less stable). One
can show that the threshold τ0 in Theorem 4.4 decreases with
the size of ‖A22‖. Consequently, a smaller ‖A22‖ makes τ0
smaller. On the other hand, a less stable latent subnetwork



makes ‖A22‖ ≥ ρ(A22) closer to 1 and the corresponding
τ0 will be larger, which further requires the order of the AR
model to be higher. •

C. Exact identification for acyclic latent subnetworks

In this section, we show that if the latent subnetwork is
acyclic, then the transfer function of the manifest subnetwork
can be perfectly identified using the LSAR method. First,
we show that a stronger result than Lemma 4.1 holds in that
Âτ ({y}N1 ) converges to Ã∗τ in the mean-square sense as
N →∞ for any τ ≥ τ22 + 1.

Lemma 4.6: (The LS estimate Âτ converges to Ã∗τ in
mean square if the latent subnetwork is acyclic). Consider
the LTI network described in (2) with all the latent nodes
passive, let (4) hold and further assume that the latent
subnetwork is acyclic (Aτ22

22 = 0nl×nl
). For any

τ ≥ τ22 + 1 the LS estimate Âτ ({y}N1 ) in (10) satisfies

lim
N→∞

E[(Âτ ({y}N1 )−Ã∗τ )T (Âτ ({y}N1 )−Ã∗τ )] = 0nmτ×nmτ .

The manifest transfer function can be perfectly identified
using the LSAR method if the latent subnetwork is acyclic.

Theorem 4.7: (Exact manifest transfer function
identification when the latent subnetwork is acyclic).
Consider the setup in Lemma 4.6. For any τ ≥ τ22 + 1 the
LS estimate Âτ ({y}N1 ) in (10) guarantees

plim
N→∞

Tye({y}N1 , τ) = Txmum .

V. SIMULATIONS

Here, we illustrate our results in two examples. For both of
them, the input signal {um}N−1τ is a white Gaussian process
with unit variance.

Example 5.1: (Ring network). Consider a ring network
as the one described in Figure 1 with 40 nodes. All edges,
including self-loops, have the same weight α = 0.25. The
nodes with indices 1 and 3 are assumed to be manifest and
the rest 38 nodes are latent. The identification error
‖Tye − Txmum

‖∞ of the LSAR model is shown in Fig. 2
for different lengths of measured data and different model
orders. In Fig. 3, we fix the length of measured data
N = 105 and compare the error of the LSAR model with
the error ‖Tx̃mum − Txmum‖∞ of the ideal AR model in
Theorem 3.1. Note that the AR model in Theorem 3.1 is
not practical because it requires the knowledge of A, and
we use its performance merely for comparison purposes.
We make the following observations:

(i) When the measured data length N is too small,
increasing the AR model order τ does not provide
better estimation of the manifest transfer function.
Similarly, when the model order τ is too low,
increasing the data length N is not helpful, either.

(ii) When N and τ increase simultaneously, the LSAR
method provides good estimation of the manifest
transfer function without any knowledge of the latent
nodes, as predicted by our results.

(iii) The performance of the LSAR model is fairly close to
the performance of the ideal model in Theorem 3.1. •
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Fig. 2. Illustration of the H∞ norm error of the LSAR method with respect
to the length N of measured data and model order τ for the ring network
in Example 5.1. Performance improves with the increase of N and τ .

1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Model candidate order

H
∞
 n

or
m

 e
rr

or

 

 

LSAR estimation
AR model in Theorem 1

Fig. 3. Comparison of the H∞ norm errors of the LSAR method and the
optimal AR model from Theorem 3.1 for the ring network in Example 5.1.
The length of measured data is N = 105.

Example 5.2: (Erdős–Rényi random network). In this
example, we use a group of 10 G(10, 0.25) Erdős–Rényi
random networks [18] with 3 manifest nodes to test the
identification performance of the LSAR method.
Specifically, every network in the group contains 10 nodes
and any edge (i, j), 1 ≤ i, j ≤ 10 is assigned a nonzero
weight with probability 0.25. The weight has a uniform
distribution in {x ∈ R|0 < x < 0.35}. The 3 manifest
nodes are chosen randomly. We consider a fixed length
N = 105 of measured data and analyze the effect of
varying the model order. Figure 4 illustrates the error in
manifest transfer function identification for all 10 networks
and shows the improvement as the model order increases.
To illustrate our observations on the identification of
manifest versus latent interactions, Figure 5 shows both the
network with index 1 in Figure 4 and the reconstruction
obtained by the LSAR method. Finally, Figure 6 shows the
corresponding identification error compared against the
error of the optimal AR model from Theorem 3.1. •

VI. CONCLUSIONS

We have proposed a method to identify the transfer
function of the manifest subnetwork in an LTI network,
which corresponds to the transfer function from the inputs
of the manifest nodes to their states. We have shown that,
if all external inputs enter the network through only the
manifest nodes, then the manifest transfer function can be
identified with arbitrarily small H∞ norm error using
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Fig. 4. Illustration of the H∞ norm error of the LSAR with respect to the
length N of measured data and model order τ for the group of G(10, 0.25)
Erdős–Rényi random networks in Example 5.2. Performance improves with
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Fig. 5. (a) Erdős–Rényi random network corresponding to the network
with index 1 in Figure 4. (b) reconstructed interaction graph of the mani-
fest subnetwork using the LSAR method. Blue solid edge represents direct
interaction and black dashed edge represents indirect interaction through
latent nodes.
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Fig. 6. Comparison of the H∞ norm errors of the AR model found using
the LS method and the AR model in Theorem 3.1 for the Erdős–Rényi
random network described in Fig. 5.

auto-regressive models. These models are estimated without
any knowledge of the latent nodes from the measured
states of the manifest nodes using least-squares. We have
illustrated the results in ring networks and Erdős–Rényi
random networks. Future work will investigate the
sensitivity of the identification performance to latent nodes,
the problem of network identification when latent nodes are
not passive and in scenarios where controllable and
observable nodes are separate, the impact of the network
structure on the requirement relating the stability degrees of
the manifest and latent subnetworks and their interaction
strengths, and the application of our results to analysis of
brain data.
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