
Quantifying the robustness of power networks against initial failure

Yifu Zhang and Jorge Cortés

Abstract— This paper proposes a notion of robustness met-
ric for a power network in terms of the minimal power
disturbance required to cause an initial failure. We allow
multiple disturbances to act upon different load-side nodes. We
formulate the computation of the robustness metric in terms of
various equivalent optimization problems with affine inequality
constraints. To obtain these results, our analysis identifies a
polyhedral cone determined by the topology of the power
network whose extreme rays determine the affine inequality
constraints. We employ the Double Description method to
calculate these extreme rays and discuss how to properly
initialize it. Simulations on an IEEE 9-bus power network
illustrate our results.

I. INTRODUCTION

The vulnerability or robustness analysis of electrical power
network under voltage and frequency fluctuation plays a
crucial role in power grid management. Despite the careful
design of power networks, large blackouts still happen due
to various factors, including relatively small power flow de-
viations after disconnecting some transmission lines and loss
of frequency synchronization leading to cascading failures.
There is a need for metrics and methods that can serve to
quantify the robustness of power networks at steady state
and help determine why and how failure could happen. The
availability of such tools is of great practical value and this
motivates us in the study here of a robustness metric for
linearized AC power networks under transmission and source
constraints.

Literature review: Examples of power blackouts include
the 2003 blackout in-between the Northeastern America and
Canada, and the 2006 blackout in Europe [1], [2]. Robustness
of complex network is a topic of much recent interest, see
e.g. [3], [4], [5]. In the context of power networks, some
works [6], [7] have employed concepts from control theory,
such as Lyapunov functions and Nyquist criterion, to study
the stability, stability margins, and robustness in both AC
and DC power networks. One recent research direction [8]
focuses on identifying the set of most vulnerable lines in a
power network which may lead to a given amount of load
shedding to guarantee the existence of a feasible solution
to the power flow equation. A related line of research [9]
employs reactive power flow equations to establish neces-
sary condition for voltage collapse. In the investigation of
cascading failures in power systems, see [10] and references
therein, it is common to provide a model for what constitutes
a failure in a transmission line or a bus, and then quantify a
posteriori the robustness of the power network by observing
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the remaining demand after the end of the cascading failure
normalized by the original demand. The work [11] carries out
an interdependence analysis of the physical power network
and its communication network, and shows how this inter-
dependence may lead to cascading failures, which motivates
the design of a control policy to improve its robustness. In
general, there is a lack of metrics that quantify a priori (e.g.,
before a cascading failure occurs) the robustness of power
networks. In this work we specifically focus on quantifying
the cost to trigger an initial failure as a result of disruptions
in transmission lines and/or source nodes.

Statement of contributions: We consider a linearized AC
power system model composed by sources, loads, and trans-
mission lines. We define a failure in the power network as the
non-existence of solution to the power flow equations with
capacity constraints on source injections and transmission
lines. Our first contribution is the introduction of a metric to
measure the robustness of the power network against failure
given multiple disturbances injected at the load side. The
value of the robustness metric is defined as the minimal
power injection under a pre-defined measurement function
of load-side disturbance injection that is able to cause a
failure. We allow for power disturbances from different load-
side nodes, reflecting the fact that in reality demands of
various power consumers may deviate from their nominal
values, and the collective power fluctuation from different
nodes can jointly initiate a failure. Our second contribu-
tion concerns the computation of the robustness metric in
terms of a set of equivalent optimization problems under
affine inequality constraints. We rely on tools from algebraic
graph theory and polyhedral cone theory to obtain these
equivalent formulations. Specifically, our analysis identifies a
polyhedral cone which is determined by the topology of the
power network and whose extreme rays determine the affine
inequality constraints. We employ the Double Description
method to calculate these extreme rays and identify a relaxed
polyhedral cone to properly initialize the algorithm. Various
simulations illustrate the results. For space reasons, all proofs
are omitted and will appear elsewhere.

Organization: Section II introduces notations and prelim-
inaries. Section III presents the power system model and the
problem statement. Section IV shows how the computation
of the proposed robustness metric can be cast as several
equivalent optimization problems under affine inequality
constraints. Finally, Section V provides simulation results.
We gather our conclusions and ideas for future work in
Section VI.



II. PRELIMINARIES

This section introduces basic notions from algebraic graph
theory, inequality constraint systems, and polyhedral cones.

A. Notation

Let R and N denote the set of real and natural num-
bers, respectively. Let Rn

> (resp. Rn
>) denote the set of

n-dimensional vectors that are element-wise non-negative
(resp. non-negative with at least one positive element). Vari-
ables are assumed to belong to the Euclidean space if not
specified otherwise. Denote by a 6 b (<,>,>) the element-
wise set of inequalities for vectors a and b. Let 1n and
0n denote the vector of ones and zeros with dimension n,
respectively. For p,q ∈ N, let ]p,q[=

{
x ∈ N

∣∣ p 6 x 6 q
}

.
We denote the cardinality of a set σ by |σ |.

Denote by In the n-dimension identity matrix. For a matrix
A ∈ Rm×n, let [A]i denote the ith row of A. For a vector
a ∈ Rn, let diag(a) be the diagonal matrix whose diagonal
are the elements of a. Given σ ⊆]1,n[, Aσ is the matrix
composed by rows of A indexed by σ , e.g.,

A{1,2} =
[
[A]1
[A]2

]
.

With a slight abuse of notation, we use v ∈ A to denote that
v is a column vector of the matrix A.

B. Algebraic Graph Theory

We review basic notions from algebraic graph theory
from [12], [13]. An weighted undirected graph (or simply
weighted graph) is a tuple G = (I ,E ,B), where I =
{1, . . . ,n} is the vertex set, E = {e1, . . . ,em} ⊆I ×I is the
edge set, and B = (b1, . . . ,bm)

T is the weight set with bα > 0
representing the weight of edge eα , for each α ∈]1,m[. A
path is an ordered sequence of vertices such that any pair
of consecutive vertices in the sequence is an edge of the
graph. A graph is connected if there exists a path between
any two vertices. For each edge eα ∈ E with vertices i, j, the
orientation procedure consists of choosing either i or j to be
the positive end of eα and the other vertex to be the negative
end. The incidence matrix D = (dαi)∈Rm×n associated with
G is then defined as

dαi =

 1 if i is the positive end of eα ,
−1 if i is the negative end of eα ,
0 otherwise,

The Laplacian matrix associated with G is L = DT bD, where
the weight matrix b = diag(B). Note that L is independent
from the ordering of the edges or the orientation procedure.

C. Inequality Constraint Systems

We gather here some basic notions on inequality constraint
systems following [14]. For A∈Rm×n, a∈Rm, we define the
affine inequality intersection set

S =
{

x ∈ Rn ∣∣ Ax > a
}
.

For k ∈]1,m[, let Sk denote the set obtained from S by
deleting its kth inequality, i.e.,

Sk =
{

x ∈ Rn ∣∣ [A]ix > ai, ∀i ∈]1,m[\{k}
}
.

In the rest of this section, we assume that the set S is non-
empty. For k ∈]1,m[, the constraint [A]kx > ak is redundant
in S if and only if Sk = S. A constraint is non-redundant if
it is not redundant. The following results provides a test to
check whether a constraint of S is redundant.

Lemma 2.1: (Redundant constraint of affine inequality
intersection set). The constraint [A]k > ak is redundant in
S if and only if

min
{
[A]kx−ak

∣∣ x ∈ Rn s.t. [A]ix > ai, ∀i ∈]1,m[\{k}
}
> 0.

A set S′ is a minimal representation of the affine inequality
intersection set S if it takes the form

S′ =
{

x ∈ Rn ∣∣ A′x > a′
}
,

with A′ ∈ Rm′×n and a′ ∈ Rm′ , and every other set of
affine inequality intersection set describing S has at least m′

constraints. The set S′ is a minimal representation of S if and
only if it contains non-redundant constraints.

Similarly, for E ∈ Rm×n and e ∈ Rm, we define the affine
inequality union set as

V =
⋃

i∈]1,m[

{
x ∈ Rn ∣∣ [E]ix 6 ei

}
. (1)

One can define the notions of (non-)redundant constraint and
minimal representation of V analogously, and also obtain the
following result.

Lemma 2.2: (Redundant constraint of affine inequality
union set). The constraint [E]kx 6 ek is redundant in V if
and only if

min
{
[E]kx− ek

∣∣ x ∈ Rn s.t. [E]ix > ei,∀i ∈]1,m[\{k}
}
> 0.
•

Algorithm 1 describes a procedure to remove all redundant
constraints from (1).

Algorithm 1: Redundant constraint removal
Data: E ∈ Rm×n,e ∈ Rm;
Result: Em,em that constructs a minimal representation;

1 initialization: E0 = E,e0 = e
2 for j = 1 : m do
3 w j = number of rows in E j−1

4 RCC =
min

{
[E j−1]1x− e1

∣∣ [E j−1]ix > ei,∀i ∈]2,w j[
}

5 if RCC > 0 then
6 Delete the first row of both E j−1 and e j−1

7 else
8 Move the first row of both E j−1 and e j−1 to its

corresponding last row
9 end

10 Let E j and e j be the revised E j−1 and e j−1 after
deletion or removal, respectively

11 end



D. Polyhedral Cones

Here we present some basic results from (convex) poly-
hedral cones [15]. Given G ∈ Rm1×n and H ∈ Rm2×n, the
convex set

C =
{

x ∈ Rn ∣∣ Gx = 0m1 , Hx > 0m2

}
(2)

is a polyhedral cone. If
{

x ∈ Rn
∣∣ Gx = 0m1 , Hx = 0m2

}
=

{0n}, then C is called a pointed polyhedral cone. A set F is
a face of C if F ⊆C and

F =
{

x ∈ Rn ∣∣ Gx = 0m1 ,Hσ̄ x = 0|σ̄ |,Hσ x > 0|σ |
}

for some σ ⊆]1,m2[, where σ̄ =]1,m2[\σ . The dimension of
F is the number of linearly independent points in F . A non-
zero vector r ∈C is called a ray of C. A ray r is an extreme
ray of C if the set

{
ηr
∣∣ η ∈ R>

}
is a one-dimensional face.

Throughout the paper, we identify the extreme rays r and ηr,
for η ∈ R>, as the same extreme ray. With this convention,
the minimal generating matrix of C, denoted as RC, is the
matrix whose columns correspond to the extreme rays of C.
We let µC denote the number of extreme rays of C.

The following result illustrates a crucial property of
pointed polyhedral cones.

Lemma 2.3: (Double description of pointed polyhedral
cones). Given a pointed polyhedral cone described by (2), it
holds that C = {λ T RC|λ ∈ RµC

> } and C\{0n}= {λ T RC|λ ∈
RµC
> }.

III. PROBLEM STATEMENT

Here we lay out the problem statement in detail. Consider
a power network whose physical structure is described by
a connected undirected graph G = (I ,E ,B). The n nodes
correspond to the buses whereas the m edges correspond to
the transmission lines. The weight bα associated with the
edge eα corresponds to the line susceptance. For notational
simplicity, we arrange the nodal indices so that the first k1
nodes are load nodes and the last k2 nodes are source nodes
(k1 + k2 = n). For each edge arbitrarily define its positive
and negative end. We use the linearized AC power flow
model as described next. Denote the power injection vector
by P =

[
ZT UT ]T , where Z ∈ Rk1 denotes the load power

injection vector and U ∈ Rk2 stands for the source power
injection vector. Both the load and source power injection
vectors have lower and upper limits, represented by Zmin
and Zmax ∈ Rk1 for the loads, and Uc

min and Uc
max ∈ Rk2

for the sources. Let Θ = [θ1,θ2, . . . ,θn]
T denote the voltage

angle vector, with θi the voltage angle at node i. Finally, we
denote by F = [F1,F2, . . . ,Fm]

T the power flow vector, with
minimum Fmin ∈ Rm and maximum Fmax ∈ Rm transmission
line capacity bounds. For every α ∈]1,m[, the magnitude of
Fα stands for that of the power flow in edge eα ; the sign
of Fα is positive if the power flows into the negative end of
eα , and is negative if the other way around. The power flow
equations at steady state (P̄,Θ̄ , F̄) can be written as

P̄ = LΘ̄ , (3a)
F̄ = bDΘ̄ , (3b)

where L, b, and D are the Laplacian, weight, and incidence
matrix associated with the graph G . Note that, if (P̄,Θ̄ , F̄) is
a steady state of the power network, Θ̄ (up to a translation)
and F̄ are uniquely determined by P̄. For this reason, in the
rest of the paper, we only use P̄ to represent a steady state.

We are interested in studying scenarios where additional
power is required by the load nodes and the effect that this
might have on the operation of the power network. Formally,
given the additional load injection Z ∈ Rk1 , let Ω(Z) denote
the set of all feasible adjustments (U,Θ ,F)∈Rk2+n+m to the
power network that compensate for this additional load, i.e.,[

Z̄
Ū

]
+

[
Z
U

]
= LΘ , (4a)

F = bDΘ , (4b)
Uc

min <U +Ū <Uc
max, (4c)

Ud
min <U <Ud

max, (4d)
Fmin < F < Fmax. (4e)

Here, (4a)-(4b) are the power flow equations, (4c) and (4e)
are the source power injection and the power flow con-
straints, respectively, and (4d) captures limitations on the
rate of change of power generation at the sources, with lower
Ud

min and upper Ud
max ∈ Rk2 bounds.

With all these elements in place, we are ready to introduce
a metric to measure the robustness of the power network
against unexpected demands in the form of changing loads.
Given a steady state P̄ ∈ Rn, let γ(P̄) be the optimal value
of the following optimization problem

(P1)

inf f (Z)

s.t. Zmin 6 Z 6 Zmax (5a)
Ω(Z) = /0. (5b)

Here, the function f : Rk1 → R provides a measure of the
cost f (Z) of adding the additional load Z to the power
network. For instance, a common choice is simply f (Z) =
∑

k1
i=1 |Zi| with Zi the ith component of Z. In the rest of

the paper, we assume that the feasible set of (P1) is non-
empty. Intuitively, the value γ(P̄) corresponds to the smallest
(measured according to f ) power disturbance injected at the
loads that is able to cause a failure of the power network at
steady state P̄.

IV. COMPUTATION OF THE ROBUSTNESS METRIC VIA
OPTIMIZATION PROBLEMS UNDER AFFINE CONSTRAINTS

In this section, we show that the computation of the robust-
ness metric, cf. problem (P1), can be cast as an optimization
problem under non-convex constraints, and it can be further
transformed into several optimization problems under convex
affine constraints. The following result characterizes the load
injections for which no adjustment to the power network
exist that can compensate for the additional load.

Lemma 4.1: (Constraint equivalence). For fixed Z, P̄,
Uc

min, Uc
max, Ud

min, Ud
max, Fmin and Fmax, let U r

min =



max
{

Uc
min,U

d
min +Ū

}
and U r

max = min
{

Uc
max,U

d
max +Ū

}
.

The following three statements are equivalent
(i) There does not exist Θ ∈ Rn satisfying

Z̄ +Z =
[
Ik1 0k1×k2

]
LΘ , (6a)

U r
min <

[
0k2×k1 Ik2

]
LΘ <U r

max, (6b)

b−1Fmin < DΘ < b−1Fmax. (6c)

(ii) There exists Y ∈ Rn+k2+2m satisfying

QY = 0n, (7a)
TY > 02k2+2m, (7b)[

Z + Z̄
W

]T

Y 6 0, (7c)

Y 6= 0n+k2+2m, (7d)

where

Q =

[
M
N

]T

, M =
[
Ik1 0k1×k2

]
L ∈ Rk1×n,

N =


[
0k2×k1 Ik2

]
L

−
[
0k2×k1 Ik2

]
L

D
−D

 ∈ R(2k2+2m)×n,

T =
[
0(2k2+2m)×k1 I(2k2+2m)×(2k2+2m)

]
,

W =


U r

max
−U r

min
b−1Fmax
−b−1Fmin

 ∈ R(2k2+2m).

Lemma 4.1 shows that constraint (5b) can be equivalently
transformed into (7) by introducing an auxiliary variable Y
coupled with Z. The next result shows how to decouple
these variables using the polyhedral cone theory reviewed
in Section II.

Lemma 4.2: (Feasible set equivalence). Consider the
polyhedral cone Φ defined by

Φ =
{

Y ∈ Rn+k2+2m ∣∣ QY = 0n,TY > 02k2+2m

}
. (8)

Then, it holds that ∆(RΦ) = ∆(Φ\{0}), where

∆(Π) =
⋃

Y∈Π

{
Z ∈ Rk1

∣∣ [Z + Z̄
W

]T

Y 6 0

}
,

and RΦ denotes the minimal generating matrix of Φ.
Building on Lemmas 4.1 and 4.2, the following result

shows that the computation of the robustness metric γ as
specified in (P1) can be posed as a non-convex optimization
problem whose feasible set is the intersection of a box con-
straint and the union of a finite number of affine constraints.

Theorem 4.3: (Computation of the robustness metric as
non-convex optimization problem). (P1) is equivalent to the
following optimization problem
(P2)

inf f (Z)

s.t. Zmin 6 Z 6 Zmax (9a)
Z ∈ ∆(RΦ). (9b)

Note that the feasible set (P2) is compact. If it is also non-
empty and f is continuous on it, then the infimum can be
replaced by the minimum. Notice also that (9b) is composed
by the union of as many affine constraints as the number µΦ

of extreme rays. However, some of these constraints might
be redundant. For instance, the IEEE 3-bus power network
with 2 sources has 85 extreme rays, so (9b) contains 85
constraints; nevertheless, at least 83 of which are redundant,
since in this case (9b) can at most give an upper and lower
bound of Z due to the fact that the dimension of Z is
only 1. In general, one can remove redundant constraints
of ∆(RΦ) applying Algorithm 1. We refer to an extreme ray
that generates a redundant (resp. non-redundant) constraint
as a redundant (resp. non-redundant) extreme ray, and denote
the set of non-redundant extreme rays as R̃Φ. Therefore, as
reviewed in Section II, ∆(R̃Φ) is a minimal representation of
∆(RΦ), and the following result follows immediately.

Corollary 4.4: (Non-convex optimization problem without
redundant constraints). The following optimization problem
is equivalent to (P2).
(P3)

inf f (Z)

s.t. Zmin 6 Z 6 Zmax (10a)
Z ∈ ∆(R̃Φ). (10b)

Remark 4.5: (Relationship between (non-)redundant ex-
treme rays, network structure, steady state and capacity
bounds). By definition, any element in R̃Φ must be a column
of RΦ. We have observed in simulations, see Section V
below, that the cardinality of R̃Φ might be much smaller
than that of RΦ when the number of source nodes is large.
Notice from (8) that the polyhedral cone Φ and its minimal
generating matrix RΦ only depend on the network topology
and the number and location of source nodes. Therefore, one
can obtain RΦ without knowledge of P̄, U r

max,U
r
min,Fmax and

Fmin. However, from the procedure of transforming ∆(RΦ)
into ∆(R̃Φ), it is clear that R̃Φ depends on both RΦ and the
above parameters, which means that if the steady state or
some bounds change, non-redundant extreme rays for the
old values can become redundant for the new ones, and vice
versa. •

In general, the optimization problem (P3) is easier to solve
than (P2) due to the fewer number of affine constraints.
However, the procedure to remove the redundant constraints
requires knowledge of the steady state and the capacity
bound of every transmission line and source node to be able
to execute Algorithm 1. This presents interesting challenges
for distributed optimization or real-time optimization with
time-varying capacity bounds or changing steady state.

Note that, in general, the feasible set of (P2) (or equiv-
alently (P3)) is non-convex. In fact, the set defined by the
constraint (9b), as an affine inequality union set, is concave.
The next result shows that the optimization problem can
be decomposed into several sub-optimization problems, each
with a convex and compact feasible set.

Corollary 4.6: (Computation of the robustness metric as
collection of optimization problems with convex constraints).



Let µ̃C be the cardinality of R̃Φ. For each i∈]1, µ̃C[, consider
the optimization problem

(P4i)

inf f (Z)

s.t. Zmin 6 Z 6 Zmax[
Z + Z̄

W

]T

R̃i
Φ 6 0.

Denote by γi as its optimal value, and set γi = +∞ if the
feasible set of the corresponding (P4i) is empty. Then,

γ(P̄) = min
i∈]1,µ̃C [

{γi}.

Furthermore, if f is convex within the feasible set of (P4i),
then the infimum can be replaced by the minimum. The
above statement also holds if µ̃C is replaced by µC, and R̃i

Φ

by Ri
Φ

, where Ri
Φ

denotes ith column of RΦ.
We conclude this section showing how to find all extreme

rays of the polyhedral cone Φ defined in (8), or equivalently,
the minimal generating matrix RΦ, using the Double De-
scription (DD) method introduced in [15]. To initiate this
method, one needs to select an pointed polyhedral cone Φr
(termed ‘relaxed’) by discarding some inequality constraints
from Φ, for which the minimal generating matrix RΦr can be
‘easily’ computed. The DD method can then find RΦ by some
incremental algorithms. The main obstacle for the application
of the DD method is the determination of the initial relaxed
pointed polyhedral cone. The following result addresses this
question for our specific problem.

Lemma 4.7: (Definition and properties of relaxed cone).
Let σ =]k2,2k2 + 2m[ and consider the relaxed polyhedral
cone

Φr =
{

Y ∈ Rn+k2+2m ∣∣ QY = 0n,TσY > 02m+k2+1

}
. (12)

Let X =
[
Q̄T T T

σ

]T , where Q̄ is obtained by arbitrarily
remove one row from Q. Then, Φr is a pointed polyhedral
cone whose extreme rays are the last 2m+ k2 + 1 columns
of X−1.

Algorithm 2 summarizes the procedure to compute the
robustness metric for a given power network.

Algorithm 2: Compute robustness metric γ(P̄)

Data: L, A, b, P̄, Uc
min, Uc

max, Ud
min, Ud

max, Fmin, Fmax,
Zmin and Zmax as defined in (P1);

Result: robustness metric γ(P̄);
1 Compute the minimal generating matrix RΦr of the

pointed polyhedral cone Φr in (12) using Lemma 4.7.
2 Compute the minimal generating matrix RΦ of the

pointed polyhedral cone Φ by the DD method
3 Remove all redundant constraints of ∆(RΦ) using

Algorithm 1 to obtain R̃Φ

4 Solve optimization problem (P4i) for each i ∈]1, µ̃C[,
with optimal value γi

5 Set γ(P̄) = min∈]1,µ̃C [{γi}

V. SIMULATIONS

In this section we illustrate the computation of the robust-
ness metric on a set of networks with the IEEE-9 network
topology [16] and varying numbers of source and load nodes.
In doing so, we also compute the number of extreme rays
and non-redundant extreme rays in each case.
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Fig. 1. Topology of IEEE 9-bus power network.

Figure 1 shows the topology structure of the IEEE 9-bus
power network. We adopt the convention that the last k2
nodes by index stand for source nodes and the rest k1 nodes
stand for load nodes, e.g., if k2 = 3, then node 7, 8 and
9 are sources, and the rest are loads. Let b = I9, Uc

max =
−Uc

min = 30 · 1k2 , Ud
max = −Ud

min = 10 · 1k2 , Zmax = 0k1 , and
Zmin = −10 · 1k1 . Since the power flow capacity bound of
each transmission line is the same, there is no need to number
them.

In our first simulation, we vary k2 from 1 to 8 to observe
how the number of sources affects the number of extreme
rays and non-redundant extreme rays. We select Z̄ =−2 ·1k1 ,
Ū = 2k1/k2 · 1k2 and Fmax = −Fmin = 20 · 19. As shown
in Figure 2, the number of extreme rays increases with
respect to k2, reaching up to almost 1400, but the number
of non-redundant extreme rays truly involved in (P3) (or
equivalently, (P4i)), does not increase dramatically (e.g., 2
when the number of sources is 8).
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Fig. 2. Number of extreme rays and of non-redundant extreme rays with
respect to number of sources.

Next we show how changing the power flow capacity
bounds affect the robustness of the power network. We select



Scenario P̄T γ(P̄)
1 [−4 −4 −4 −4 −4 −4 −4 14 14 ] 20.57
2 [−4 −4 −4 −4 −4 −4 −4 24 4 ] 5.14
3 [−2 −2 −2 −2 −2 −2 −16 14 14 ] 16
4 [−2 −2 −2 −2 −16 −2 −2 14 14 ] 20.57

TABLE I
IMPACT OF P̄ ON THE ROBUSTNESS METRIC.

k2 = 2, Z̄ = −4 · 17 and Ū = 14 · 12. The cost function is
f (Z) = ‖Z‖2

2 = ∑
7
i=1(Zi)

2. Let all transmission lines take
the same upper and lower capacity bound with these two
bounds opposite (i.e., for all i, j ∈]1,9[, [Fmax]i = [Fmax] j
and [Fmax]i = −[Fmin]i). Then we vary the flow capacity
bound from 15 to 30 and observe the changes in γ(P̄). As
illustrated in Figure 3, initially γ(P̄) increases if the power
flow capacity increases. However, once Fmax =−Fmin reaches
24 ·19, U r

max and U r
min become the primary cause that restricts

further growth of the value γ(P̄), i.e., the robustness metric
is saturated with respect to higher power flow capacity.
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Fig. 3. Computation result of robustness metric γ(P̄) with respect to
different power flow capacity.

Lastly we compute the value of the robustness metric for
different steady states P̄. In this simulation, we select k2 =
2, Fmax = −Fmin = 20 · 19. We keep the total source power
injection constant, but change the source and load power
injection allocation across the network. Table I shows how
changes in the power allocation Ū for source nodes and Z̄
for load nodes can have a significant effect in the robustness
of the power network. In future work, we plan to investigate
ways of providing a given load profile to the power network
in a way that optimizes its robustness.

VI. CONCLUSIONS

We have introduced a robustness metric to quantify the
minimal power injection of load-side disturbance that can
cause an initial failure in a power network constrained by
transmission line and source power injection bounds. Using
a special form of the Kuhn-Fourier theorem and the theory

of pointed polyhedral cones, our analysis of the robustness
metric has established several characterizations for its com-
putation, including a non-convex optimization problem and
the minimum of finitely many optimal values of optimization
problems with affine inequality constraints. Finally, we have
described a method to systematically determine all inequality
constraints. Various simulations have illustrated the results.
Future work will explore the formal characterization of the
number of (both redundant and non-redundant) extreme rays,
the efficient computation of the robustness metric under
changes in the parameters, and the design of strategies to
enhance power network robustness.

ACKNOWLEDGMENTS

The authors thank Dr. Yingbo Zhao for insightful sug-
gestions. The research was partially supported by Award
FA9550-15-1-0108.

REFERENCES

[1] G. A. Mass, M. Bial, and J. Fijalkowski, “Final report-system
disturbance on 4 november 2006,” Union for the Coordination of
Transmission of Electricity in Europe, Tech. Rep, 2007.

[2] M. Amin, “North America’s electricity infrastructure: Are we ready
for more perfect storms?” IEEE Security & Privacy, no. 5, pp. 19–25,
2003.

[3] R. Albert, H. Jeong, and A. L. Barabási, “Error and attack tolerance
of complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.

[4] M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle,
and H. Kitano, “Robustness as a measure of plausibility in models
of biochemical networks,” Journal of Theoretical Biology, vol. 216,
no. 1, pp. 19–30, 2002.

[5] M. J. O. Pocock, D. M. Evans, and J. Memmott, “The robustness and
restoration of a network of ecological networks,” Science, vol. 335,
no. 6071, pp. 973–977, 2012.

[6] A. Pai, Energy Function Analysis for Power System Stability. Springer
Science & Business Media, 2012.

[7] X. Feng, J. Liu, and F. C. Lee, “Impedance specifications for stable dc
distributed power systems,” IEEE Transactions on Power Electronics,
vol. 17, no. 2, pp. 157–162, 2002.

[8] A. Pinar, J. Meza, V. Donde, and B. Lesieutre, “Optimization strategies
for the vulnerability analysis of the electric power grid,” SIAM Journal
on Optimization, vol. 20, no. 4, pp. 1786–1810, 2010.

[9] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Voltage collapse in
complex power grids,” Nature Communications, vol. 7, 2016, article
number: 10790.

[10] S. Soltan, D. Mazauric, and G. Zussman, “Analysis of failures in power
grids,” IEEE Transactions on Control of Network Systems, 2016, to
appear.

[11] M. Parandehgheibi, E. Modiano, and D. Hay, “Mitigating cascading
failures in interdependent power grids and communication networks,”
in IEEE International Conference on Smart Grid Communications,
Venice, Italy, 2014, pp. 242–247.

[12] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009, electronically available at http://coordinationbook.info.

[13] N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University
Press, 1994.

[14] J. Telgen, “Minimal representation of convex polyhedral sets,” Journal
of Optimization Theory and Applications, vol. 38, no. 1, pp. 1–24,
1982.

[15] K. Fukuda and A. Prodon, “Double description method revisited,” in
Combinatorics and Computer Science. New York: Springer, 1996,
pp. 91–111.

[16] B. Zhang, “Control and optimization of power systems with renew-
ables: Voltage regulation and generator dispatch,” Ph.D. dissertation,
University of California, Berkeley, 2013.


