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Abstract— This paper considers a general class of stochastic
optimization problem for multiagent systems. We assume that
the probability distribution of the uncertain parameters is
unknown to the agents and instead, each agent gathers a certain
number of samples of it. The objective for the agents is to
cooperatively find, using the available data, a solution that has
performance guarantees for the stochastic problem. To this end,
we formulate a data-driven distributionally robust optimization
(DRO) problem using Wasserstein ambiguity sets that has the
desired performance guarantees. With the aim of solving this
optimization in a distributed manner, we identify a convex-
concave modified Lagrangian function whose saddle points are
in correspondence with the optimizers of the DRO problem. We
then design our distributed algorithm as the gradient descent in
the convex variable and gradient ascent in the concave variable
of this Lagrangian function. Our convergence analysis shows
that the trajectories of this dynamics converge asymptotically
to an optimizer of the DRO problem. Simulations illustrate our
results.

I. INTRODUCTION

Stochastic optimization for multiagent systems finds many
applications, for example, distributed estimation and target
tracking. For these settings, often, the probability distribution
of the random variable is not known. Instead, agents gather
instantiations of the variable and use it to find the solution
of the stochastic optimization. When the dataset is large,
machine learning algorithms are able to find the optimizer.
However, when the dataset is small these algorithms fail to
provide guarantees on the output obtained from the proce-
dure. Scenarios with small datasets appear in applications
where acquiring samples is expensive due to the size and
complexity of the system or decisions must be taken in real
time, leaving less room for gathering many samples. For
these cases, distributionally robust optimization (DRO) uses
the finite dataset to provide a solution that has desirable out-
of-sample performance guarantees. Motivated by this, we
consider the task for a group of agents to collaboratively
find a data-driven solution for a stochastic optimization
problem using the tools for DRO framework. Instead of
breaking the problem in two separate steps (model first the
uncertainty using data-fusion algorithms and then use it to
solve the stochastic optimization problem), the DRO method
jointly tackles them seeking to provide approximations to the
optimizers tailored to the quality and size of the gathered
data.
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Literature review

Optimization under uncertainty is a classical topic [1]. A
recent addition to the panoply of methods available to solve
these problems is data-driven distributionally robust opti-
mization (DRO), see e.g. [2], [3] and references therein. In
this setup, the distribution of the random variable is unknown
and so, a worst-case optimization is carried over a set of
distributions (termed ambiguity set) that contains the true dis-
tribution with high probability. This worst-case optimization
provides probabilistic performance bounds for the original
stochastic optimization. One way of designing the ambiguity
sets is to consider the set of distributions that are close (in
some distance metric over the space of distributions) to some
reference distribution constructed from the available data.
Depending on the metric, one gets different ambiguity sets
with different performance bounds. Some popular metrics
are φ-divergence [4], Prohorov metric [5], and Wasserstein
distance [2]. Here, we consider ambiguity sets defined using
the Wasserstein metric. Tractable reformulations for the data-
driven DRO methods have been well studied. However, de-
signing coordination algorithms to find a data-driven solution
when the data is gathered in a distributed way by a network
of agents has not been investigated. This is our focus in
the paper. In this context, our work has connections with
the growing body of literature on distribution optimization,
see e.g. [6] and references therein. Our work is in contrast
with the setup of distributed machine learning, see e.g. [7].
Unlike our setup, these works assume the availability of large
datasets and provide asymptotic guarantees on the learning
algorithms. Nonetheless, the coordination aspect in these
works is similar in spirit to what we emphasize on here.

Statement of contributions

Our starting point is the definition of the stochastic op-
timization problem that a group of agents aim to solve.
The probability distribution of the random variable involved
in this problem is unknown and instead, agents collect a
finite set of samples of the random variable. Given this data,
each agent can individually find a data-driven solution of the
stochastic optimization. However, agents wish to cooperate
to leverage on the data collected by everyone in the group.
With this perspective, we formulate a convex optimization
problem that uses the group’s collective dataset to seek
a solution having guarantees on the out-of-sample perfor-
mance for the stochastic optimization. By augmenting the
decision variables, we reformulate the convex optimization
problem to yield a structure amenable to the design of



distributed algorithm. That is, the objective function is the
aggregate of individual objectives and constraints involve
consensus among decision variables. Next, we identify a
convex-concave function that has two important properties:
first, its saddle-points are in one-to-one correspondence with
the optimizers of the reformulated problem; and second,
the saddle-point dynamics written for this convex-concave
function is implementable in a distributed manner. This
forms our distributed algorithm. We establish that this saddle-
point dynamics asymptotically converges to a saddle point
of the convex-concave function and hence, to a solution of
the convex optimization problem. Simulations illustrate our
results. For reasons of space, the proofs are omitted and will
appear elsewhere.

Organization

Section II introduces basic preliminary notions. Section III
describes our problem statement. Section IV presents a refor-
mulation geared towards our distributed algorithmic design,
which we tackle in Section V, along with the establishment
of its convergence guarantees. Section VI shows simulations
results. We gather our conclusions in Section VII.

II. PRELIMINARIES

This section introduces our notation and basic notions on
graph theory, data-driven stochastic optimization, and saddle
points.

A. Notation

We start with some notation and basic definitions. Let R,
R≥0, and Z≥1 denote the set of real, nonnegative real, and
positive integer numbers. The extended reals are denoted as
R = R∪{−∞,∞}. We let ‖ · ‖ and 〈·, ·〉 denote the 2-norm
and the inner product on Rn. Given x, y ∈ Rn, xi denotes
the i-th component of x, and x ≤ y denotes xi ≤ yi for
i ∈ [n]. For vectors u ∈ Rn and w ∈ Rm, the vector (u;w) ∈
Rn+m denotes their concatenation. We use the shorthand
notation 0n = (0, . . . , 0) ∈ Rn, 1n = (1, . . . , 1) ∈ Rn,
and In ∈ Rn×n for the identity matrix. For A ∈ Rn1×n2

and B ∈ Rm1×m2 , A⊗B ∈ Rn1m1×n2m2 is the Kronecker
product. The Cartesian product of any set of objects {Si}ni=1

is denoted by
∏n
i=1 Si := S1 × · · · × Sn. For a real-valued

function f : Rn×Rm → R, (x, ξ)→ f(x, ξ), we denote the
partial derivative of f with respect to the first argument by
∇xf and with respect to the second argument by ∇ξf .

A function F : X ×Y → R is convex-concave (on X ×Y)
if, given any point (x̃, ỹ) ∈ X × Y , x 7→ F (x, ỹ) is convex
and y 7→ F (x̃, y) is concave. When the space X ×Y is clear
from the context, we refer to this property as F being convex-
concave in (x, y). A point (x∗, y∗) ∈ X ×Y is a saddle point
of F over the set X×Y if F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗),
for all x ∈ X and y ∈ Y . The set of saddle points of
a convex-concave function F is convex. Each saddle point
is a critical point of F , i.e., if F is differentiable, then

∇xF (x∗, z∗) = 0 and ∇zF (x∗, z∗) = 0. Additionally,
if F is twice differentiable, then ∇xxF (x∗, z∗) � 0 and
∇zzF (x∗, z∗) � 0.

B. Graph theory

Following [8], an undirected graph, or simply a graph, is
a pair G = (V, E), where V is the vertex set and E ⊆ V×V is
the edge set. For a graph (v, u) ∈ E if and only if (u, v) ∈ E .
A path is an ordered sequence such that any ordered pair
of vertices appearing consecutively is an edge. A graph is
connected if there is a path between any pair of distinct
vertices. Let Nv ⊆ V denote the set of neighbors of vertex
v ∈ V , i.e., Nv = {u ∈ V | (v, u) ∈ E}. A weighted graph
is a triplet G = (V, E ,A), where (V, E) is a digraph and
A ∈ Rn×n≥0 is the adjacency matrix of G, with the property
that aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. Also,
aij = aji for all (i, j) ∈ E . The weighted degree of i ∈ [n]
is wi =

∑n
j=1 aij . The weighted degree matrix D is the

diagonal matrix defined by (D)ii = wi, for all i ∈ [n]. The
Laplacian matrix is L = D − A. Note that L = L> and
L1n = 0. If G is connected, then zero is a simple eigenvalue
of L.

C. Data-driven stochastic optimization

Here we present notions on data-driven stochastic op-
timization following [2]. Let (Ω,F , P ) be a probability
space and ξ be a random variable mapping this space to
(Rm, Bσ(Rm)), where Bσ(Rm) is the Borel σ-algebra on
Rm. Let P and Ξ ⊆ Rm be the distribution and the support of
the random variable ξ. Assume that Ξ is closed and convex.
Consider the stochastic optimization problem

inf
x∈X

EP[f(x, ξ)], (1)

where X ⊆ Rn is a closed convex set, f : Rn × Rm →
R is a continuously differentiable function, and EP[ · ] is
the expectation under the distribution P. Assume that P is
unknown and so, solving (1) is not possible. However, we are
given N independently drawn samples Ξ̂ := {ξ̂ k}Nk=1 ⊂ Ξ

of the random variable ξ. Note that, until it is revealed, Ξ̂ is
a random object with probability distribution PN :=

∏N
i=1 P

supported on ΞN :=
∏N
i=1 Ξ. The objective is to find a data-

driven solution of (1), denoted x̂N ∈ X , constructed using
the dataset Ξ̂, that has desirable properties for the expected
cost EP[f(x̂N , ξ)] under a new sample. The property we are
looking for is the finite-sample guarantee given by

PN
(
EP[f(x̂N , ξ)] ≤ ĴN

)
≥ 1− β, (2)

where ĴN might also depend on the training dataset and
β ∈ (0, 1) is the parameter which governs x̂N and ĴN . The
quantities ĴN and 1−β are referred to as the certificate and
the reliability of the performance of x̂N . The goal is to find
a data-driven solution with a low certificate and a high reli-
ability. To do so, we use the available information Ξ̂N . The
strategy is to determine a set P̂N of probability distributions



supported on Ξ that contain the true distribution P with high
confidence. The set P̂N is referred to as the ambiguity set.
Once such a set is designed, the certificate ĴN is defined
as the optimal value of the following distributionally robust
optimization problem

ĴN := inf
x∈X

sup
Q∈P̂N

EQ[f(x, ξ)]. (3)

This is the worst-case optimal value considering all dis-
tributions in P̂N . A good candidate for P̂N is the set of
distributions that are close (under a certain metric) to the
uniform distribution on Ξ̂N , termed the empirical distribu-
tion. Formally, the empirical distribution is

P̂N :=
1

N

N∑
k=1

δξ̂ k , (4)

where δξ̂ k is the unit point mass at ξ̂ k. Let M(Ξ) be the
space of probability distributions Q supported on Ξ with
finite first moment, i.e., EQ[‖ξ‖] =

∫
Ξ
‖ξ‖Q(dξ) < ∞. The

2-Wasserstein metric 1 dW2 :M(Ξ)×M(Ξ)→ R≥0 is

dW2(Q1,Q2) =
(

inf
{∫

Ξ2

‖ξ1−ξ2‖2Π(dξ1, dξ2)
∣∣∣

Π ∈ H(Q1,Q2)
}) 1

2

, (5)

where H(Q1,Q2) is the set of all distributions on Ξ×Ξ with
marginals Q1 and Q2. Given ε ≥ 0, we use the notation

Bε(P̂N ) := {Q ∈M(Ξ) | dW2
(P̂N ,Q) ≤ ε} (6)

to define the set of distributions that are ε-close to P̂N under
the defined metric. LetMlt(Ξ) ⊂M(Ξ) be the set of light-
tailed distributions P ∈ Mlt(Ξ) for which there exists an
exponent a > 2 such that

A := EP[exp(‖ξ‖a)] =

∫
Ξ

exp(‖ξ‖a)P(dξ) <∞.

The next result gives a lower bound on the probability with
which the true distribution P is ε-close to P̂N .

Theorem II.1. (Finite-sample guarantee of P belonging to
the Wasserstein ambiguity set): Let P ∈Mlt(Ξ). Then,

PN (dW2
(P, P̂N )≥ε)≤

{
c1e
−c2Nεmax{4,m}

, if ε ≤ 1,

c1e
−c2Nεa , if ε > 1,

(7)

for all N ≥ 1, m 6= 4, and ε > 0, where c1, c2 are positive
constants that only depend on a, A, and m.

The proof is a direct application of [9, Theorem 2]. This
result gives a method to construct the ambiguity set P̂N .

1We note that [2] employs the 1-Wasserstein metric instead of the 2-
Wasserstein metric considered here.

Equating the right-hand side of (7) with the chosen β ∈
(0, 1), we define for each N ∈ Z≥1,

εN (β)=


(

log(c1β
−1)

c2N

)1/max{4,m}
, if N≥ log(c1β

−1)
c2

,(
log(c1β

−1)
c2N

)1/a

, if N< log(c1β
−1)

c2
.

(8)

Plugging this value in (7) yields PN (dW2(P, P̂N ) ≥
εN (β)) ≤ β. That is, if we let P̂N := BεN (β)(P̂N ), then

PN (P ∈ P̂N ) ≥ 1− β, (9)

i.e., the true distribution belongs to the ambiguity set with
probability at least 1 − β. This leads us to the following
result.

Theorem II.2. (Finite-sample guarantee of (3) with P̂N =
BεN (β)(P̂N )): For P ∈ Mlt(Ξ) and β ∈ (0, 1), let ĴN and
x̂N be the optimal value and an optimizer of the distribution-
ally robust optimization (3) with P̂N = BεN (β)(P̂N ). Then,
the finite-sample guarantee (2) holds.

The proof follows by using (3) and (9) to yield (2). We end
this section by discussing the tractability of solving (3) with
P̂N = BεN (β)(P̂N ). The next result shows that under mild
conditions on the objective function, one can reformulate the
problem as a convex optimization problem.

Theorem II.3. (Tractable reformulation of (3)): Assume that
for all x̃ ∈ X and ξ̃ ∈ Ξ, maps ξ 7→ −f(x̃, ξ) and x 7→
f(x, ξ̃) are convex. Then, for any β ∈ (0, 1) and N ∈ Z≥1,
the optimal value of (3) with P̂N = BεN (β)(P̂N ) is equal to
the optimum of the following convex optimization problem

inf
λ≥0,x∈X

{
λε2N (β) +

1

N

N∑
k=1

max
ξ∈Ξ

(
f(x, ξ)− λ‖ξ − ξ̂ k‖2

)}
.

III. PROBLEM STATEMENT

Consider n ∈ Z≥1 agents communicating over an undi-
rected weighted graph G = (V, E ,A). The set of vertices
are enumerated as V := [n]. Each agent i ∈ [n] can send
and receive information from its neighbors Ni in G. Let
f : Rd × Rm → R, (x, ξ) → f(x, ξ), be a continuously
differentiable, convex-concave function satisfying f(x, ξ̃)→
∞ as ‖x‖ → ∞ for all ξ̃ ∈ Rm. We assume all agents know
this function. Given a random variable ξ ∈ Rm with support
Rm and distribution P, the original objective for the agents
is to solve the following stochastic optimization problem

inf
x∈Rd

EP

[
f(x, ξ)

]
, (10)

which is not feasible given that P is unknown. Instead, each
agent has a certain number of independent and identically
distributed realizations of the random variable ξ. We denote
the data available to agent i by Ξ̂i ⊂ Ξ̂. Assume that Ξ̂i ∩
Ξ̂j = ∅ for all i, j ∈ [n] and let Ξ̂ = ∪i=1Ξ̂i containing N
samples be the available data set.



The goal for the agents is then to collectively find, in
a distributed manner, a data-driven solution x̂N ∈ Rd to
approximate the optimizer of (10) with guaranteed perfor-
mance bounds. To achieve this, we rely on the framework
of distributionally robust optimization, cf. Section II-2. From
Theorem II.3, a data-driven solution for (10) can be obtained
by solving the following convex optimization problem

inf
λ≥0,x

{
λε2N (β)+

1

N

N∑
k=1

max
ξ∈Rm

(
f(x, ξ)−λ‖ξ − ξ̂ k‖2

)}
(11)

where β ∈ (0, 1) and εN (β) is given in (8). Assume that
there exists a finite optimizer of (11), e.g., one of the
conditions for existence of finite optimizers given in [10]
is met. This optimizer, denoted x̂N , has the performance
guarantee

PN
(
EP[f(x̂N , ξ)] ≤ ĴN

)
≥ 1− β,

where ĴN is the optimum value (11). The agents in the
network aim to solve (11) in a distributed manner, that is

(i) each agent i has the information

Ii := {Ξ̂i, f, a, c1, c2, A, β, n,N}, (12)

where a, c1, c2, and A are parameters associated
with the distribution P, as defined in Section II-2 and
β ∈ (0, 1) is a parameter that agents agree upon
beforehand,

(ii) each agent i can only communicate with its neighbors
Ni in the graph G,

(iii) each agent i does not share with its neighbors any
element of the dataset Ξ̂i available to it, and

(iv) there is no central coordinator or leader that can
communicate with all agents.

The challenge in solving (11) in a distributed manner lies in
the fact that the data is distributed over the network and the
optimizer x̂N depends on it all. In Section IV, we overcome
this hurdle by reformulating the problem allowing us, in
Section V, to synthesize a distributed algorithm to solve it.

IV. DISTRIBUTED PROBLEM FORMULATION AND SADDLE
POINTS

This section studies the structure of the optimization
problem presented in Section III with the ulterior goal of fa-
cilitating the design of a distributed algorithmic solution. Our
first step is a reformulation of (11) that, by augmenting the
decision variables of the agents, leads us to an optimization
where the objective function is the aggregate of individual
functions that can be independently evaluated by the agents
and constraints which display a distributed structure. Our
second relevant step is the identification of a convex-concave
function whose saddle points correspond to the optimizers of
the reformulated problem, opening the way to consider the
associated saddle-point dynamics as our candidate distributed
algorithm. The structure of the original optimization problem
makes this step particularly nontrivial.

A. Reformulation as distributed optimization problem

We have each agent i ∈ [n] maintain a copy of λ and
x, denoted by λi ∈ R and xi ∈ Rd, respectively. Thus, the
decision variables for i are (xi, λi). For notational ease, let
the concatenated vectors be λv := (λ1; . . . ;λn), and xv :=
(x1; . . . ;xn). Let vk ∈ [n] be the agent that holds the k-
th sample ξ̂ k of the dataset. Consider the following convex
optimization problem

min
xv,λv≥0n

h(λv) +
1

N

N∑
k=1

max
ξ∈Rm

gk(xvk , λvk , ξ) (13a)

subject to Lλv = 0n, (13b)
(L⊗ Id)xv = 0nd, (13c)

where L ∈ Rn×n is the Laplacian of the graph G and we
have used the shorthand notation h : Rn → R for

h(λv) :=
ε2N (β)(1>n λv)

n

and, for each k ∈ [N ], gk : Rd × R× Rm → R for

gk(x, λ, ξ) := f(x, ξ)− λ‖ξ − ξ̂ k‖2.

The following result establishes the correspondence be-
tween the optimizers of (11) and (13), respectively.

Lemma IV.1. (One-to-one correspondence between optimiz-
ers of (11) and (13)): The following holds:

(i) If (x∗, λ∗) is an optimizer of (11), then (1n⊗x∗, λ∗1n)
is an optimizer of (13).

(ii) If (x∗v, λ
∗
v) is an optimizer of (13), then there exists an

optimizer (x∗, λ∗) of (11) such that x∗v = 1n⊗x∗ and
λ∗v = λ∗1n.

Note that constraints (13b) and (13c) force agreement and
that each of their components is computable by an agent of
the network using only local information. Moreover, the ob-
jective function (13a) can be written as

∑n
i=1 Ji(x

i, λi, Ξ̂i),
where

Ji(x
i, λi, Ξ̂i) :=

ε2N (β)λi

n
+

1

N

∑
k:ξ̂ k∈Ξ̂i

max
ξ∈Rm

gk(xi, λi, ξ),

for all i ∈ [n]. Therefore, the problem (13) has the adequate
structure from a distributed optimization viewpoint: an aggre-
gate objective function and locally computable constraints.

B. Optimizers as saddle points

Our next step is to map the optimizers of (13) to the saddle
points of an (appropriate variant of the) Lagrangian function.
Once this is established, the saddle-point dynamics associ-
ated to the Lagrangian function is the obvious candidate for a
distributed algorithm to solve the original problem. Note that
the Lagrangian of (13) is L : Rnd ×Rn≥0 ×Rn ×Rnd → R,

L(xv, λv, ν, η) := h(λv) +
1

N

N∑
k=1

max
ξ∈Rm

gk(xvk , λvk , ξ)



+ ν>Lλv + η>(L⊗ Id)xv, (14)

where ν ∈ Rn and η ∈ Rnd are dual variables corresponding
to the equality constraints (13b) and (13c), respectively.
L is convex-concave in ((xv, λv), (ν, η)) on the domain
λv ≥ 0n. The next result establishes important properties of
the Lagrangian giving a correspondence between its saddle
points and the optimizers of (13).

Lemma IV.2. (Min-max equality for L): The set of saddle
points of L over the domain (Rnd ×Rn≥0)× (Rn ×Rnd) is
nonempty and

inf
xv,λv≥0n

sup
ν,η

L(xv, λv, ν, η) = sup
ν,η

inf
xv,λv≥0n

L(xv, λv, ν, η).

Furthermore, the following holds:

(i) If (xv, λv, ν̄, η̄) is a saddle point of L over (Rnd ×
Rn≥0) × (Rn × Rnd), then (xv, λv) is an optimizer
of (13).

(ii) If (xv, λv) is an optimizer of (13), then there exists
(ν̄, η̄) such that (xv, λv, ν̄, η̄) is a saddle point of L
over (Rnd × Rn≥0)× (Rn × Rnd).

One could potentially write a saddle-point dynamics for
the Lagrangian L as a distributed algorithm to find the opti-
mizers. However, without strict or strong convexity assump-
tions on the objective function, the resulting dynamics is in
general not guaranteed to converge, see e.g., [11]. In order
to overcome this hurdle, we augment the Lagrangian with
quadratic terms in the primal variables. Let the augmented
Lagrangian Laug : Rnd × Rn≥0 × Rn × Rnd → R be

Laug(xv, λv, ν, η) := L(xv, λv, ν, η)

+
1

2
x>v (L⊗ Id)xv +

1

2
λ>v Lλv.

Note that Laug is also convex-concave in ((xv, λv), (ν, η))
on the domain λv ≥ 0n. The next result shows that this
augmentation step does not change the saddle points.

Lemma IV.3. (Saddle points of L and Laug are the same):
A point (x∗v, λ

∗
v, ν
∗, η∗) is a saddle point of L over (Rnd ×

Rn≥0)×(Rn×Rnd) if and only if it is a saddle point of Laug

over the same domain.

The proof follows by using the convexity property of the
objective function in [12, Theorem 1.1]. The above result
implies that finding the saddle points of Laug would take
us to the optimizers of (13). However, there is one more
roadblock remaining, and that is writing a gradient-based
dynamics for Laug. Notice that Laug itself involves a set of
maximizations in its definition and so, the gradient of Laug

with respect to xv is undefined for λv = 0. Thus, our next
task is to get rid of these internal optimization routines and
identify a function for which the gradient-based dynamics is
well defined over the feasible domain. Note that

Laug(xv, λv, ν, η) = max
{ξk}

L̃aug(xv, λv, ν, η, {ξk}), (15)

where

L̃aug(xv, λv, ν, η, {ξk}) := h(λv)

+
1

N

N∑
k=1

gk(xvk , λvk , ξk) + ν>Lλv

+ η>(L⊗ Id)xv +
1

2
x>v (L⊗ Id)xv +

1

2
λ>v Lλv. (16)

Lemma IV.3 implies that saddle points of Laug exist and so,

min
xv,λv≥0n

max
ν,η

Laug(xv,λv, ν, η)

= max
ν,η

min
xv,λv≥0n

Laug(xv, λv, ν, η).

Using (15) in the above expression yields

min
xv,λv≥0n

max
ν,η

max
{ξk}

L̃aug(xv, λv, ν, η, {ξk})

= max
ν,η

min
xv,λv≥0n

max
{ξk}

L̃aug(xv, λv, ν, η, {ξk}). (17)

Note that L̃aug is convex-concave in the variables
((xv, λv), (ν, η, {ξk})) over the domain λv ≥ 0n. The next
result shows that, for a fixed (ν, η), the min and the max
operator in the right-hand side of the above equality can be
interchanged. This paves the way to show that saddle points
of L̃aug exist and are in correspondence with those of Laug.

Lemma IV.4. (Min-max operators can be interchanged
for L̃aug): Given any (ν, η) ∈ Rn×Rnd, the following holds

min
xv,λv≥0n

max
{ξk}

L̃aug(xv, λv, ν, η, {ξk})

= max
{ξk}

min
xv,λv≥0n

L̃aug(xv, λv, ν, η, {ξk}). (18)

Using Lemma IV.4 in (17), we obtain

min
xv,λv≥0n

max
ν,η,{ξk}

L̃aug(xv, λv, ν, η, {ξk})

= max
ν,η,{ξk}

min
xv,λv≥0n

L̃aug(xv, λv, ν, η, {ξk}).

Since L̃aug is convex-concave in ((xv, λv), (ν, η, {ξk})), the
above equality along with a straightforward computation
establishes the following result.

Lemma IV.5. (Correspondence between saddle points of
Laug and L̃aug): The set of saddle points of L̃aug is nonempty,
convex, and compact and the following holds:

(i) If (xv, λv, ν, η) is a saddle point of Laug, then there
exists {ξk} such that (xv, λv, ν, η, {ξk}) is a saddle
point of L̃aug.

(ii) If (xv, λv, ν, η, {ξk}) is a saddle point of L̃aug, then
(xv, λv, ν, η) is a saddle point of Laug.

Finally, combining Lemmas ??, IV.3 and IV.5, we arrive
at the one-to-one correspondence between the saddle points
of L̃aug and the optimizers of (13).

Proposition IV.6. (Correspondence between optimizers
of (13) and the saddle points of L̃aug): The following holds:



(i) If ((x∗v, λ
∗
v, ν
∗, η∗, {(ξ∗)k}) is a saddle point of L̃aug

over (Rnd×Rn≥0)×(Rn×Rnd×RmN ), then (x∗v, λ
∗
v)

is an optimizer of (13).
(ii) If (x∗v, λ

∗
v) is an optimizer of (13), then there exists

(ν∗, η∗, {(ξ∗)k}) such that ((x∗v, λ
∗
v, ν
∗, η∗, {(ξ∗)k}) is

a saddle point of L̃aug over (Rnd×Rn≥0)×(Rn×Rnd×
RmN ).

This result opens the way to our distributed algorith-
mic design based on the saddle-point dynamics associated
with L̃aug, which we tackle in the next section.

V. DISTRIBUTED ALGORITHM DESIGN AND
CONVERGENCE ANALYSIS

We introduce here our distributed algorithmic solution
and present its convergence analysis. The purpose of the
algorithm is to find the saddle points of L̃aug (as these points
correspond to the optimizers of (13), cf. Proposition IV.6).
One way of reaching the saddle points of a convex-concave
function is by performing gradient-descent in the convex
variables and gradient-ascent in the concave ones. This is
popularly termed as the saddle-point or the primal-dual
dynamics [11], [13]. The saddle-point dynamics for L̃aug

is

dxv

dt
= −∇xv L̃aug(xv, λv, ν, η, {ξk}), (19a)

dλv

dt
= [−∇λv L̃aug(xv, λv, ν, η, {ξk})]+λv

, (19b)

dν

dt
= ∇νL̃aug(xv, λv, ν, η, {ξk}), (19c)

dη

dt
= ∇ηL̃aug(xv, λv, ν, η, {ξk}), (19d)

dξk

dt
= ∇ξk L̃aug(xv, λv, ν, η, {ξk}), ∀k ∈ [N ]. (19e)

For convenience, denote (19) by the vector field Xsp : Rnd×
Rn≥0 × Rnd+n+mN → Rnd × Rn≥0 × Rnd+n+mN . In this
notation, the first, second, and third components correspond
to the dynamics of xv, λv, and (ν, η, {ξk}), respectively.

Remark V.1. (Distributed implementation of Xsp): We de-
note the components of the dual variables η and ν by
η = (η1; η2; . . . ; ηn) and ν = (ν1; ν2; . . . ; νn), so that agent
i ∈ [n] maintains ηi ∈ Rd and νi ∈ R. Further, let Ki ⊂ [N ]
be the set of indices representing the samples held by i
(k ∈ Ki if and only if ξ̂ k ∈ Ξ̂i). For implementing Xsp, we
assume that each agent i maintains and updates the variables
(xi, λi, νi, ηi, {ξk}k∈Ki

). The collection of these variables
for all i ∈ [n] forms (xv, λv, ν, η, {ξk}). From (19), one can
write the dynamics of variables maintained by i and notice
that the this dynamics is computable by agent i using the
variables that it maintains and information collected from its
neighbors. Hence, Xsp can be implemented in a distributed
manner. Note that the number of variables in the set {ξk},
grows with the size of the data, whereas the size of all other
variables is independent of the number of samples. Further,

for any agent i, {ξk}k∈Ki
can be interpreted as its internal

state that is not communicated to its neighbors. •

The following result establishes the convergence of the
dynamics Xsp to the saddle points of L̃aug and hence to the
desired optimizers.

Theorem V.2. (Convergence of trajectories of Xsp to the op-
timizers of (13)): Assume there exists an optimizer (x∗v, λ

∗
v)

of (13) that satisfies λ∗v 6= 0. Then, starting from any ini-
tial condition (xv(0), λv(0), ν(0), η(0), {ξk(0)}) satisfying
λv(0) ≥ 0n, the trajectory of the saddle-point dynamics for
L̃aug (19) converges asymptotically to a saddle point of L̃aug

over (Rnd × Rn≥0) × (Rn × Rnd × RmN ). Consequently,
the components (xv, λv) of the trajectory converge to an
optimizer of (13).

VI. SIMULATIONS

Here we illustrate the application of our distributed al-
gorithm (19) to find, in a distributed manner, a data-driven
solution for the least absolute deviations problem [14, Chap-
ter 3]. Assume n = 6 agents with communication topology
defined by an undirected ring with additional edges (1, 4)
and (2, 6). The weight of each edge is equal to one. In this
problem, each data point ξ̂ k = (ŵk, ŷk) consists of a set
of input ŵk ∈ R and output ŷk ∈ R pairs. The objective
is to find a affine predictor x ∈ R2 using the dataset such
that, ideally, for any new data point ξ = (w, y), the predictor
x>(w; 1) is equal to y. One popular way of finding such a
predictor x is to solve the following problem

inf
x

EP

[
f(x,w, y)

]
(20)

where P is the probability distribution of the data (w, y) and
f : R2 × R2 → R is the absolute value of the residual, i.e.,
f(x,w, y) =

∣∣x>(w; 1)− y
∣∣. Note that f is convex-concave.

For generating the dataset, we assume that the input vector
w has a standard normal distribution and the output y is as-
signed values y = 4w+v where v is a random variable, uni-
formly distributed over the interval [−0.1, 0.1]. This defines
completely the distribution P of (w, y). For finding the data-
driven solution, we assume that each agent in the network has
10 i.i.d samples of (w, y) and hence N = 60 is the total num-
ber of samples. Let β be some value belonging to the interval
(0, 1) such that εN (β) = 0.05. This value is assumed to be
computed by the agents beforehand. This defines completely
the distributed optimization problem (13). Figure 1 shows
the execution of the distributed algorithm (19) that solves
this problem. Note that f is nondifferentiable and therefore,
in (19) we replace the gradient operators with generalized
gradients which makes (19) a differential inclusion. The
trajectories converge to an equilibrium of the dynamics (19)
establishing that the optimizers of (13) are obtained.
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Fig. 1. Illustration of the execution of the dynamics Xsp (19) to find a
data-driven solution for the least absolute deviations problem (20). Plots
(a) and (b) depict the evolution of the primal variables of the distributed
optimization problem (13) defined for (20) with εN (β) = 0.05 (for the
sake of simplicity we have not shown the dual variables). The number of
agents is 6 and each agent collects 10 i.i.d samples of the random variable
as described in Section VI. The initial condition (xv(0), λv(0)) is chosen
randomly from the set [0, 5]12 × [0, 5]6 and ν(0) = 06, η(0) = 012,
and ξk(0) = 02 for all k ∈ [N ]. The primal variables converge to the
optimizer of (13), λ∗v = λ∗16 and x∗v = 16 ⊗ x∗ with λ∗ = 23.37 and
x∗ = [2.13; 1.27].

VII. CONCLUSIONS

We have considered a stochastic optimization problem
where the probability distribution of the random variable
is unknown and a group of agents collect samples of it.
We have formulated a convex optimization problem that
finds a data-driven solution to the stochastic optimization
problem and designed a distributed algorithm that converges
asymptotically to its solutions. The algorithm is a saddle-
point dynamics for a convex-concave modified Lagrangian
function whose saddle points correspond to the optimizers
of the problem.

Future work will generalize the results for nonsmooth
objective functions that are not necessarily concave in the
random variable. We also wish to extend the algorithms to

handle scenarios with streaming data and network chance-
constrained optimization problems.
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