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Abstract—This paper studies an electricity market consisting of
an independent system operator (ISO) and a group of generators.
The goal is to solve the DC optimal power flow (DC-OPF)
problem: have the generators collectively meet the power demand
while minimizing the aggregate generation cost and respecting
line flow limits. The ISO by itself cannot solve the DC-OPF
problem as the generators are strategic and do not share their
cost functions. Instead, each generator submits to the ISO a
bid, consisting of the price per unit of electricity at which it is
willing to provide power. Based on the bids, the ISO decides how
much production to allocate to each generator to minimize the
total payment while meeting the load and satisfying the line
limits. We provide a provably correct, decentralized iterative
scheme, termed BID ADJUSTMENT ALGORITHM for the
resulting Bertrand competition game. The algorithm takes the
generators bids to any desired neighborhood of the efficient Nash
equilibrium at a linear convergence rate. As a consequence, the
optimal production of the generators converges to the optimizer
of the DC-OPF problem. Our algorithm can be understood as
“learning via repeated play”, where generators are “myopically
selfish”, changing their bid at each iteration with the sole aim of
maximizing their payoff.

I. INTRODUCTION

The future power grid will have numerous different types of
distributed energy resources (DERs). Robust DER integration
into the grid calls for the design of architectures defining
the interaction between DERs and the independent system
operator (ISO) so that power generation can be planned in a
tractable way. At the core of generation planning is the optimal
power flow (OPF) problem, where a group of generators need
to decide upon their production level so that loads can be
met in a cost effective manner while network constraints are
satisfied. The need to solve the OPF problem may arise at
different layers of the grid architecture, from large-capacity
generators competing to meet a demand dispatch event to a
group of small-capacity DERs coordinating their response to
meet an assigned load. In this paper, we are interested in
the competition version of this problem: we study policies
that individual generators, in conjunction with the ISO, can
implement to solve the OPF problem while acting in a selfish
and rational fashion.

Literature review: Competition in electricity markets is a
classical topic of study [1], [2]. Extensively studied models
are supply function, Bertrand (price) and Cournot (capacity)
bidding, see [3], [4], [5], respectively, and references therein.
Most of these studies focus on the properties of the game that

different bidding models lead to. In particular, they analyze the
existence of the Nash equilibrium of the game and estimate
its efficiency. Some works [6], [7], [8], [9], on the other
hand, propose iterative algorithms for the players that compute
the Nash equilibrium of the game. The factors differentiating
these setups include pricing mechanisms, bidding functions,
nature of the demand, and the consideration of power flow
constraints. However, for these algorithms to work, either
the generators need to have some information about other
generators (cost functions or bids) or the demand of each
generator should be a continuous function of the bids. We
do not make any such assumptions in this work, which in
turn, also rules out the possibility of using various other Nash
equilibrium learning algorithms, such as best-response [10],
fictitious play [11], and extremum seeking [12]. Our electricity
market game belongs to the class of multi-leader-single-
follower games [13], [14]. Equilibria of such games can
be thought of as optimizers of mathematical programs with
equilibrium constraints (MPEC) [15], [16] that are traditionally
solved in a centralized manner [17]. The work [18] presents a
distributed method to find the equilibria of an MPEC problem
but requires the follower’s (the ISO in our case) optimization
to have a unique solution for each action of the leaders (the
generators). This is in general not the case for electricity
markets. In a related set of works [19], [20], decentralized
generation planning is achieved by assuming the generators
to be price-takers and designing iterative schemes based on
dual-decomposition [21]. In our work, however, we consider
a strategic scenario where generators bid into the market and
are hence price-setters. The work [22] proposes an iterative
auction algorithm for a market where both generators and
consumers are strategic but does not provide convergence
guarantees for the generated bid sequences. The paper [23],
closer in spirit to our work, proposes an iterative method for
the generators to find the Nash equilibrium assuming they
don’t have any information about each other. At each iteration,
the generators send to the ISO the gradient of their cost
functions at a certain generation value and the ISO then adjusts
these generation values so that social welfare is maximized.
An important difference between this setup and ours is that we
do not assume truthful bidding of gradient information by the
generators. Finally, our work has close connections with the
growing interest in the design of provably correct distributed
algorithms for the cooperative solution of the ED problem,



see [24], [25] and references therein.
Statement of contributions: We start with the formulation

of the inelastic electricity market game. In this setup, the ISO
aims to determine the production levels for the generators by
solving a DC version of the optimal power flow (DC-OPF)
problem. Since generators are strategic, they do not share
their cost functions and the ISO cannot solve the DC-OPF
problem by itself. Each generator, however, submits a bid to
the ISO, which specifies the price per unit of electricity at
which the generator is willing to provide power. Based on
the bids, the ISO decides how much production to allocate
to each generator so that cost of generation is minimized, the
loads are met, and the network flow constraints are satisfied.
The resulting Bertrand competition model defines the game
among the generators, where the actions are the bids and the
payoffs are the profits. Our first contribution gives two set of
conditions that ensure existence and uniqueness, respectively,
of an efficient Nash equilibrium for the inelastic electricity
market game. Our second and main contribution consists on
the design of the BID ADJUSTMENT ALGORITHM along with
its correctness analysis. This algorithm can be understood
as “learning via repeated play”, where at each iteration,
generators act rationally and selfishly, trying to maximize their
own profit. Along the execution, the only information available
to the generators is their bid and the amount of generation that
the ISO request from them. In particular, generators are not
aware of the number of other generators, their costs, bids, or
payoffs. We show that this decentralized iterative scheme is
guaranteed to take the bids of the generators to any neigh-
borhood of the unique efficient Nash equilibrium provided
the stepsizes are chosen appropriately. Further, we establish
that the convergence rate is linear. Simulations illustrate our
results. For reasons of space, proofs are omitted and will
appear elsewhere.

II. PRELIMINARIES

This section introduces the notation and basic concepts of
graph theory used throughout the paper.

Notation: Let R, R≥0, Z≥1 be the set of real, nonnegative
real, and positive integer numbers, respectively. We use the
shorthand notation [n] to denote the set {1, . . . , n}. The 2-
norm on Rn is represented by ‖ · ‖. Let Bδ(x) = {y ∈
Rn | ‖y − x‖ < δ} be the open ball centered at x ∈ Rn
with radius δ > 0. Given x, y ∈ Rn, xi is the i-th component
of x, and x ≤ y denotes xi ≤ yi for i ∈ [n]. We use
0N = (0, . . . , 0) ∈ RN . We let [u]+ = max{0, u} for u ∈ R.

Graph theory: We present notions from algebraic graph the-
ory following [26]. A directed graph, or simply digraph, is a
pair G = (V, E), where V is the vertex set and E ⊆ V×V is the
edge set. A path is an ordered sequence such that any ordered
pair of vertices appearing consecutively is an edge. A digraph
is strongly connected if there is a path between any pair of
distinct vertices. For a digraph, N+

vi = {vj ∈ V | (vi, vj) ∈ E}
and N−vi = {vj ∈ V | (vj , vi) ∈ E} are the sets of out- and
in-neighbors of vi, respectively.

III. PROBLEM STATEMENT

Consider an electrical power network with Nb ∈ Z≥1 buses.
The physical interconnection between the buses is represented
by a directed graph G = (V, E), where nodes correspond to
buses and edges to physical power lines. The direction for
each edge represents the convention of positive power flow.
The power flow on the line (i, j) ∈ E is zij ∈ R. Each power
line (i, j) ∈ E has a limit on the power flowing through it (in
either direction), represented by zij > 0. Assume that each
bus i ∈ [Nb] is connected to ni ∈ Z≥1 strategic generators
and one load. We let N =

∑N
i=1 ni be the total number of

generators and assign them a unique identity in [N ]. Let the
set of generators at node i be Gi ⊂ [N ]. The power demand
at bus i is denoted by yi ≥ 0 and is assumed to be fixed
and known to the Independent System Operator (ISO) that
acts as the central regulating authority. The total demand is
denoted as y =

∑Nb

i=1 yi. The objective for the generators is to
collectively meet this inelastic demand through a competitive
bidding process in the electricity market. The cost fn(xn) of
generating xn ∈ R≥0 amount of power by the n-th generator
is given by a quadratic function

fn(x) = anx
2 + cnx, (1)

where an > 0 and cn ≥ 0. Given a power allocation x =
(x1, . . . , xN ) ∈ RN≥0 for the group of generators, the aggregate
cost is

∑N
n=1 fn(xn). The dc optimal power flow problem

(DC-OPF) consists of

minimize
(x,z)

N∑
n=1

fn(xn), (2a)

subject to
∑
j∈N+

i

zij −
∑
j∈N−

i

zij =
∑
n∈Gi

xn − yi, ∀i, (2b)

− zij ≤ zij ≤ zij , ∀(i, j), (2c)
x ≥ 0N . (2d)

This problem finds the generation profile that meets the load at
each bus (ensured by (2b)), respects the power line constraints
(due to (2c)), and minimizes the total cost (represented by the
objective function (2a)). We assume that (2) is feasible. Since
the individual cost functions are quadratic, the optimizer of
the problem, denoted (x∗, z∗), is unique [27].

The goal for the ISO is to solve (2). The ISO can interact
with the generators, whereas each generator can only commu-
nicate with the ISO and is not aware of the number of other
generators participating in the market and their respective cost
functions, or the load at its own bus. While the ISO knows
the loads and the limits on the power lines, it does not have
any information about the cost functions of the generators.
Thus, power allocation is decided following a bidding process,
resulting into a game-theoretic formulation. Instead of sharing
their cost with the ISO, the generators bid the price per
unit of power that they are willing to provide the power at.
This price-based bidding is well known in the economics
literature as Bertrand competition [28, Chapter 12]. Specifi-



cally, generator n bids the cost per unit power bn ∈ R≥0.
When convenient, we denote the bids of all other generators
except n by b−n= (b1, . . . , bn−1, bn+1, . . . , bN ). Given the
bids b = (b1, . . . , bN ) ∈ RN≥0, the ISO solves the following
strategic dc optimal power flow problem (S-DC-OPF)

minimize
(x,z)

N∑
n=1

bnxn, (3a)

subject to
∑
j∈N+

i

zij −
∑
j∈N−

i

zij =
∑
n∈Gi

xn − yi, ∀i, (3b)

− zij ≤ zij ≤ zij , ∀(i, j), (3c)
x ≥ 0N . (3d)

The difference between (3) and (2) is the objective function
which is linear in the former and nonlinear, convex in the
latter. The ISO solves (3) once all the bids are gathered.
Let (xopt(b), zopt(b)) be the optimizer of (3) that the ISO
selects (note that there might not be a unique optimizer)
given bids b. This determines the power requested from each
generator, given by the vector xopt(b). Knowing this process,
the objective of each generator n is to bid a quantity bn ≥ 0
that maximizes its payoff un : R2

≥0 → R,

un(bn, x
opt
n (b)) = bnx

opt
n (b)− fn(xoptn (b)), (4)

where xoptn (b) is the n-th component of the optimizer xopt(b).
Definition 3.1: (Inelastic electricity market game): The in-

elastic electricity market game is defined by the following

(i) Players: the set of generators [N ],
(ii) Action: for each player n, the bid bn ∈ R≥0,

(iii) Payoff: for each player n, the payoff un in (4).

Wherever convenient, for any n ∈ [N ], we use interchange-
ably the notation b and (bn, b−n), as well as, xopt(b) and
xopt(bn, b−n). Note that the payoff of the players is not only
defined by the bids of other players but also by the optimizer
of (3) that the ISO selects. For this reason, the definition of
the pure Nash equilibrium for the game described below is
slightly different from the standard one, see e.g. [29].

Definition 3.2: (Nash equilibrium): The (pure) Nash equi-
librium of the inelastic electricity market game is the bid
profile of the group b∗ ∈ RN≥0 for which there exists an
optimizer (xopt(b∗), zopt(b∗)) of the optimization (3) that
satisfies

un(bn, x
opt
n (bn, b

∗
−n)) ≤ un(b∗n, xoptn (b∗)), (5)

for all n ∈ [N ], all bids bn ∈ R≥0 with bn 6= b∗n, and all
optimizers (xopt(bn, b

∗
−n), z

opt(bn, b−n)) of (3) given the bid
profile (bn, b

∗
−n).

We are specifically interested in bid profiles for which the
optimizer of the DC-OPF problem is also a solution to the S-
DC-OPF problem. This is captured in the following definition.

Definition 3.3: (Efficient bid): An efficient bid of the in-
elastic electricity market is a bid b∗ ∈ RN≥0 for which the
optimizer (x∗, z∗) of (2) is also an optimizer of (3) given bids

b∗ and
x∗n = argmaxx≥0b

∗
nx− fn(x), (6)

for all n ∈ [N ].
Note that the right-hand side of (6) is unique as the functions

are quadratic.
Definition 3.4: (Efficient Nash equilibrium): A bid b∗ is an

efficient Nash equilibrium of the inelastic electricity market
game if it is an efficient bid and is a Nash equilibrium.

At the efficient Nash equilibrium, the production that the
generators are willing to provide, maximizing their profit,
coincides with the optimal generation for the DC-OPF prob-
lem (2). This property justifies the study of efficient Nash
equilibria. Note that given the efficient bid profile, there might
be many solutions to (3) because the problem is linear. As a
consequence, the ISO might not be able to find the allocation
x∗ given the efficient bid. However, once the ISO knows that
an efficient Nash equilibrium bid is submitted, it can ask the
generators to also submit the desirable generation levels at
that bid, which would exactly correspond to the solution of
the DC-OPF problem.

IV. EXISTENCE OF EFFICIENT NASH EQUILIBRIUM

Here, we establish the existence of an efficient Nash equi-
librium of the inelastic electricity market game described in
Section III and provide a condition for its uniqueness.

Proposition 4.1: (Existence of efficient Nash equilibrium):
If there is more than one generator at each bus of the network,
i.e., ni ≥ 2 for each i ∈ [Nb], then there exists an efficient
Nash equilibrium of the inelastic electricity market game

Next we provide a sufficient condition that ensures unique-
ness of the efficient bid the inelastic electricity market game.

Lemma 4.2: (Uniqueness of the efficient bid): Assume that
the optimizer x∗ of (2) satisfies x∗n > 0 for all n ∈ [N ]. Then,
there exists a unique efficient bid b∗ ∈ RN≥0 of the inelastic
electricity market game given by

b∗n = ∇fn(x∗n) = 2anx
∗
n + cn, for all n. (7)

From Proposition 4.1 and Lemma 4.2, we conclude the
following result.

Corollary 4.3: (Uniqueness of the efficient Nash equilib-
rium): Assume there is more than one generator at each bus
of the network and that the optimizer x∗ of (2) satisfies
x∗n > 0 for all n ∈ [N ]. Then, there exists a unique efficient
Nash equilibrium of the inelastic electricity market game given
by (7) for all n.

In the rest of the paper, we assume that the sufficient
conditions in Corollary 4.3 hold unless otherwise stated.

V. THE BID ADJUSTMENT ALGORITHM AND ITS
CONVERGENCE PROPERTIES

In this section, we introduce a decentralized Nash equilib-
rium seeking algorithm, termed BID ADJUSTMENT ALGO-
RITHM. We show that its executions lead the generators to



the unique efficient Nash equilibrium, and consequently, to
the optimizer of the DC-OPF problem (2).

We start with an informal description of the BID ADJUST-
MENT ALGORITHM. The algorithm is iterative and can be
interpreted as “learning via repeated play” of the inelastic
electricity market game by the generators. Both ISO and
generators have bounded rationality, with each generator trying
to maximize its own profit and the ISO trying to maximize the
welfare of the entities.

[Informal description]: At each iteration k, gen-
erators decide on a bid and send it to the ISO.
Once the ISO has obtained the bids, it computes an
optimizer of the S-DC-OPF problem (3) and sends
the corresponding production level at the optimizer
to each generator. At the (k + 1)-th iteration, gen-
erators adjust their bid based on their previous bid,
the amount of produced power that maximizes their
payoff for the previous bid, and the allocation of
generation assigned by the ISO. The iterative process
starts with the generators arbitrarily selecting initial
bids that yield a positive profit.

The BID ADJUSTMENT ALGORITHM is formally presented
in Algorithm 1.

Algorithm 1: BID ADJUSTMENT ALGORITHM

Executed by: generators n ∈ [N ] and ISO
Data : cost fn and stepsizes {βk}k∈Z≥1

for each
generator n, and load y for ISO

Initialize : Each generator n selects arbitrarily
bn(1) ≥ cn, sets k = 1, and jumps to step 4;
ISO sets k = 1 and waits for step 6

1 while k > 0 do
/* For each generator n: */

2 Receive x∗n(k − 1) from ISO
3 Set bn(k)=[bn(k− 1)+βk(x

∗
n(k− 1)− qn(k− 1))]+

4 Set qn(k) = argmaxq≥0bn(k)q − fn(q)
5 Send bn(k) to the ISO; set k = k + 1

/* For ISO: */
6 Receive bn(k) from each n ∈ [N ]
7 Find a solution (x∗(k), z∗(k)) to (3) given bids b(k)
8 Send x∗n(k) to each n ∈ [N ]; set k = k + 1
9 end

In the BID ADJUSTMENT ALGORITHM, the role of the ISO
is to compute an optimizer of the S-DC-OPF problem after
the bids are submitted. The bid adjustment at each iteration is
done by the generators in a “myopically selfish” and rational
fashion, with the sole aim of maximizing their payoff. Roughly
speaking, the algorithm prescribes that

if n gets x∗n(k) = 0, two things can happen: (i) n was willing
to produce a positive quantity qn(k) > 0 at bid bn(k) but
the demand from ISO is x∗n(k) = 0. Thus, the rational
choice for n would be to decrease the bid in the next

iteration to increase its chances of getting positive payoff;
(ii) n was willing to produce nothing qn(k) = 0 at bid
bn(k) and got x∗n(k) = 0. At this point, reducing the
bid will not increase the payoff as it will not be willing
to produce more at a lower bid. On the other hand,
increasing the bid will not make the amount that the ISO
wants the generator to produce positive. Therefore, the
bid stays put.

if n gets x∗n(k) > 0, then it would want to move the bid in
the direction that makes its payoff higher in the next
iteration, assuming that n gets a positive generation signal
from the ISO in the next round of play. If qn(k) < x∗n(k),
then the amount demanded by the ISO is more than what
the generator is willing to produce, so n increases its
cost, i.e., the bid. If qn(k) > x∗n(k), then the demand
is less than what the generator is willing to supply so n
decreases its bid.

Remark 5.1: (Information structure and alternative learning
approaches): The generators have no knowledge of the number
of other players, their actions, or their payoffs. The only
information available to them at each iteration is their own
bid and the amount that the ISO requests from them. This
information structure rules out the applicability of a number
of Nash equilibrium learning methods, including best-response
dynamics [10], fictitious play [11], or other gradient-based
adjustments [8], all requiring some kind of information about
other players. Methods that relax this requirement, such as the
extremum seeking techniques used in [12], rely on the payoff
functions being continuous in the actions of the players, which
is not the case for the inelastic electricity market game. •

Our convergence result states that the generator bids along
any execution of the BID ADJUSTMENT ALGORITHM con-
verge to a neighborhood of the unique efficient Nash equilib-
rium. The size of the neighborhood is a decreasing function
of the stepsize and can be made arbitrarily small.

Theorem 5.2: (Convergence of the BID ADJUSTMENT AL-
GORITHM): In Algorithm 1, let 0 < βk < 2an for all n ∈ [N ]
and k ∈ Z≥1. Further, let 0 < r < ‖b(1) − b∗‖ and for all
k ∈ Z≥1 assume

α ≤ βk ≤ B(r) :=
1

2amax

( 1

2a2min

+
16y2

r2

)−1
, (8)

for some α > 0. Then, the following holds

(i) there exists l ∈ Z≥1 such that ‖b(l) − b∗‖ < r and for
all k ∈ [l − 1], we have ‖b(k)− b∗‖ ≥ r with

‖b(k + 1)− b∗‖ ≤
(
1− α

2amax

)k/2
‖b(1)− b∗‖, (9)

(ii) for all k ≥ l,

‖b(k)− b∗‖ ≤
(
1 +

B(r)

2amax

)1/2
r. (10)

Remark 5.3: (Convergence properties from Theorem 5.2):
The assertion (i) of Theorem 5.2 implies that for any choice
of r > 0, one can select stepsizes according to (8) so that



bids reach the set Br(b∗) in finite number of steps and at a
linear rate. Further, once bids reach the set Br(b∗), we are
assured from assertion (ii) that they remain in a neighborhood
of b∗ where the size of the neighborhood is proportional to r
(cf. (10)). In combination, the above facts mean that bids con-
verge to any neighborhood of the efficient Nash equilibrium at
a linear rate provided the stepsizes are selected appropriately.
Note that as r becomes small, B(r) gets small and so does α.
Thus, from (9), the rate of convergence decreases as r becomes
small. This presents a trade-off between the desired precision
and the rate of convergence. •

Remark 5.4: (Stopping criteria for the ISO): Algorithm 1,
as defined, is a routine with an infinite number of iterations. To
make it implementable in practice, we identify here stopping
criteria for the ISO. Since this is not known to the generators,
they cannot predict when the algorithm will terminate and,
hence do not have an incentive to play strategically to maxi-
mize their payoff in the long term. From Theorem 5.2(i) note
that, as long as ‖b(k)− b∗‖ > r and k < l, the distance to the
efficient Nash equilibrium decreases. Hence, if ‖b(k)−b∗‖ > r
and k < l, then one can write

‖b(k + 1)− b(k)‖ = ‖b(k + 1)− b∗ + b∗ − b(k)‖
≥ ‖b(k)− b∗‖ − ‖b(k + 1)− b∗‖
(a)

≥ ‖b(k)− b∗‖ −
(
1− α

2amax

)1/2
‖b(k)− b∗‖

=
(
1−

(
1− α

2amax

)1/2)
‖b(k)− b∗‖, (11)

where in (a) we have used the inequality

‖b(k + 1)− b∗‖ ≤
(
1− α

2amax

)1/2
‖b(k)− b∗‖

which is a property of the bid update scheme that was used
to prove (9). Using the observation in (11), if the ISO has an
estimate of α and amax, then it can design a stopping criteria
based on the distance between consecutive bids. In fact, if the
ISO selects ε > 0 and stops the iteration whenever ‖b(k +
1) − b(k)‖ ≤ ε, then it has the guarantee that either of the
following is satisfied

(i) the condition ‖b(k) − b∗‖ > r and k < l is met and
from (11) we get

‖b(k)− b∗‖ ≤ ε
(
1−

(
1− α

2amax

)1/2)−1
; (12)

(ii) ‖b(k)− b∗‖ ≤ r; or
(iii) k > l in which case from (10) we get

‖b(k)− b∗‖ ≤
(
1 +

B(r)

2amax

)1/2
r.

The ISO does not know the value of r; its value depends on
the stepsizes that the generators select. Assuming that stepsizes
are small and r is small, the ISO can adjust ε depending on
the desired level of accuracy to get the guarantee (12) for the
k-th bid. Note that for a small ε, the stopping criteria might
never be met if the stepsizes are too big. •

VI. SIMULATIONS

We illustrate the application of the BID ADJUSTMENT
ALGORITHM to find the efficient Nash equilibrium for an
inelastic electricity market game with 10 generators. We
consider the network to have 5 buses with each bus connected
to 2 generators and a load, see Figure 1. The line flow limit

v1
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v3v4

v5
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10

1 2

3
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8

Buses

Loads

Generators

Fig. 1. Network layout with 5 buses, 10 generators, and 5 loads.

between any two buses (vi, vj) is 1. The loads are y1 = 3,
y2 = 10, y3 = 1, y4 = 4, and y5 = 2, where yi denotes
the load at bus vi. The cost function for each generator i
is fi(xi) = aix

2
i + cixi where the coefficients for all the

generators are given by the vectors

a = (0.070, 0.095, 0.090, 0.090, 0.080,

0.075, 0.100, 0.090, 0.072, 0.080), (13)
c = (7.0, 10.0, 8.5, 11.0, 10.5, 12.0, 10.0, 9.0, 11.0, 8.8).

For the given costs and loads, the generation profile at the
optimizer of the DC-OPF problem (2) is

x∗ = (1.5758, 6.4242, 6.5625, 3.4375, 3.5139

0.4861, 1.6316, 7.3684, 1.3158, 8.6842)

and the unique efficient Nash equilibrium is

b∗ = (7.2206, 7.2206, 9.6812, 9.6812, 11.0622

11.0622, 10.3263, 10.3263, 11.1895, 11.1895). (14)

Figure 2 depicts the evolution of the bids and their distance
to the efficient Nash equilibrium along an execution of the
BID ADJUSTMENT ALGORITHM. The initial bids b(1) are
selected so that they satisfy the constraint bn(1) ≥ cn for
all the generators n ∈ [10]. The stepsizes are chosen to
be constant, βk = 0.01 for all k, and satisfy the condition
βk ≤ 2an. As predicted by Theorem 5.2, Figure 2 shows that
the bids converge towards the efficient Nash equilibrium b∗

at a linear rate and, after a finite number of steps, remain
in a neighborhood of b∗. If one selects r = 4.1, then we
get B(r) = 0.0104 from (8) and condition (8) is met for the
chosen value of stepsizes, i.e., βk = 0.01 for all k. Computing
the right hand side of (10) using these values, we conclude that
bids eventually remain in the neighborhood centered at b∗ with



radius 4.2052. Observe that Figure 2(b) validates this claim. In
fact, this bound is quite conservative and bids actually remain
in the neighborhood of radius 0.2.
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Fig. 2. Illustration of the execution of the BID ADJUSTMENT ALGORITHM
for the network in Figure 1. The cost function for each generator i is
fi(xi) = aix

2
i + cixi, with coefficients given in (13). The load is given

as y = (3, 10, 1, 4, 2) where yi is the load at bus vi. The efficient Nash
equilibrium b∗ is given in (14). Plots (a) and (b) show, respectively, the
evolution of the bids and their distance to b∗. The stepsizes are βk = 0.01 for
all k and the initial bids are b(1) = (14.0051, 12.0204, 13.0238, 13.7963,
14.5636, 14.8372, 13.1889, 11.5545, 11.5972, 12.0300). Bids converge to
and then remain in a neighborhood of the efficient Nash equilibrium.

VII. CONCLUSIONS

We have formulated an inelastic electricity market game
encoding the strategic interaction between generators in a bid-
based energy dispatch setting. We have established the exis-
tence and uniqueness of efficient Nash equilibria of this game.
We have also designed the BID ADJUSTMENT ALGORITHM,
which a strategy amenable to decentralized implementation
and provably converges to a neighborhood of the efficient
Nash equilibrium at a linear rate. Future work will analyze
the convergence properties of the algorithm when a set of
generators deviate from the proposed update scheme and study
other bidding strategies, such as Cournot bidding, supply func-
tion bidding, and price-capacity bidding. Finally, we intend to
examine the convergence of other learning schemes such as
regret minimization in the context of electricity markets.
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