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Abstract—This paper studies an electricity market consisting of an
independent system operator (ISO) and a group of generators. The
goal is to solve the DC optimal power flow (DC-OPF) problem: have
the generators collectively meet the power demand while minimizing the
aggregate generation cost and respecting line flow limits in the network.
The ISO by itself cannot solve the DC-OPF problem as generators are
strategic and do not share their cost functions. Instead, each generator
submits to the ISO a bid, consisting of the price per unit of electricity
at which it is willing to provide power. Based on the bids, the ISO
decides how much production to allocate to each generator to minimize
the total payment while meeting the load and satisfying the line limits.
We provide a provably correct, decentralized iterative scheme, termed
BID ADJUSTMENT ALGORITHM, for the resulting Bertrand competition
game. Regarding convergence, we show that the algorithm takes the
generators’ bids to any desired neighborhood of the efficient Nash
equilibrium at a linear convergence rate. As a consequence, the optimal
production of the generators converges to the optimizer of the DC-OPF
problem. Regarding robustness, we show that the algorithm is robust to
affine perturbations in the bid adjustment scheme and that there is no
incentive for any individual generator to deviate from the algorithm by
using an alternative bid update scheme. We also establish the algorithm
robustness to collusion, i.e., as long as each bus with generation has a
generator following the strategy, there is no incentive for any group of
generators to share information with the intent of tricking the system to
obtain a higher payoff.

1 INTRODUCTION

As part of the plan to integrate distributed energy
resources (DERs) into the electricity grid, regulating
authorities envision a hierarchical architecture where,
at the lower layer, different sets of DERs coordinate
their response under an aggregator and, at the upper
layer, the independent system operator (ISO) interacts
with the aggregators to solve the optimal power flow
(OPF) problem. In this scenario, aggregators function as
(virtual, large-capacity) generators, and the aggregation
would allow DERs to participate into markets in which,
individually, they do not have the capacity to do so.
While the DERs under one aggregator can cooperate
among themselves, the aggregators compete with each
other in the electricity market. In this paper, we focus on
the competition aspect of this vision: we study policies
that individual generators, in conjunction with the ISO,
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can implement to solve the OPF problem while acting in
a selfish and rational fashion.

Literature review: The study of competition in electricity
markets is a classical topic [3], [4]. Extensively stud-
ied models are supply function, Bertrand (price) and
Cournot (capacity) bidding, see [5], [6], [7], respectively,
and references therein. These studies analyze the prop-
erties of the game resulting from each bidding model
by determining the existence of Nash equilibrium (NE)
and estimating its efficiency. Some works [8], [9], [10],
[11], on the other hand, propose iterative algorithms for
the players that compute the NE of the game. However,
these algorithms either require generators to have some
information about other generators (cost functions or
bids) or assume that the demand of each generator is a
continuous function of the bids. Our work does not make
any such assumptions, which also rules out the pos-
sibility of using various other NE learning algorithms,
such as best-response [12], fictitious play [13], and ex-
tremum seeking [14], [15]. In a related set of works [16],
[17], decentralized generation planning is achieved by
assuming the generators to be price-takers and designing
iterative schemes based on dual-decomposition [18]. The
work [19] has extensively surveyed the requirements
on information exchange, computational complexity, and
physical implementability of various practical pricing
mechanisms (both iterative and non-iterative) assuming
DERs are price-takers. In our work, however, we con-
sider a strategic scenario where generators bid into the
market and are hence price-setters. The work [20] pro-
poses an iterative auction algorithm for a market where
both generators and consumers are strategic but does
not provide convergence guarantees for the generated
bid sequences. The paper [21], closer in spirit to our
work, proposes an iterative method for the generators to
find the NE assuming they do not have any information
about each other. At each iteration, the generators send
to the ISO the gradient of their cost functions at a
certain generation value and the ISO then adjusts these
generation values so that social welfare is maximized.
An important difference between this setup and ours
is that we do not need generators to share gradient
information with the ISO.

Our electricity market game belongs to the broader
class of multi-leader-single-follower games [22], [23]. The



Nash equilibria of such games can be thought of as
optimizers of mathematical programs with equilibrium
constraints (MPEC) [24], that are traditionally solved in
a centralized manner [25]. The work [26] provides a
distributed method to find the equilibria of an MPEC
problem but requires the follower’s (the ISO in our case)
optimization to have a unique solution for each action
of the leaders (the generators). This is in general not the
case for electricity markets. Our work broadly relates
to the recent developments in the area of “learning in
games”, see e.g., [27], [28], and references therein. Learn-
ing mechanisms proposed in there do not apply directly
to the electricity market setting as they do not consider
network constraints for allocation of goods. Finally, our
work has close connections with the growing interest in
the design of provably correct distributed algorithms for
the cooperative solution of economic dispatch, see [29],
[30], and references therein.

Statement of contributions: This work aims to explore
the feasibility of introducing iterative bidding, where
social welfare can be maximized while agents are being
selfish, as a new market-clearing mechanism for electric-
ity markets. Given the novelty of this task, we make a
number of assumptions on the proposed model which
simplify the exposition while still allowing us to obtain
meaningful results. We believe that the framework pre-
sented here is generalizable and will pave way for a
more thorough analysis of iterative bidding in electricity
markets.

Our setup considers the inelastic electricity market
game where the ISO seeks the production levels that
solve the DC optimal power flow (DC-OPF) problem for
a group of strategic generators which do not share their
cost functions. Each generator submits a bid to the ISO
specifying the price per unit of electricity at which the
generator is willing to provide power. Given these bids,
the ISO decides the production of each generator so that
the cost is minimized, loads are met, and line constraints
are satisfied. The resulting Bertrand competition model
defines the game among the generators, where the ac-
tions are the bids and the payoffs are the profits. We
define the concept of the efficient Nash equilibrium, that
is, the NE at which the generators are willing to produce
the amount that corresponds to the optimizer of the DC-
OPF problem.

Our first contribution gives two set of conditions that
ensure existence and uniqueness, respectively, of an ef-
ficient NE for the inelastic electricity market game.

Our second contribution is the design of the BID AD-
JUSTMENT ALGORITHM along with its correctness anal-
ysis. This algorithm can be understood as “learning
via repeated play”, where generators are “myopically
selfish”, changing their bid at each iteration with the aim
of maximizing their own payoff. Along the execution,
the only information available to the generators is their
bid and the amount of generation that the ISO request
from them. In particular, generators are not aware of the
number of other generators, their costs, bids, or payoffs.
We show that this decentralized iterative scheme is guar-

anteed to take the generators’ bids to any neighborhood
of the unique efficient NE at a linear rate provided
stepsizes are chosen appropriately. We also provide the
DETERMINE GENERATION procedure to allow the ISO to
find an approximate optimizer to the DC-OPF problem
once bids have converged to a neighborhood of the
efficient NE.

Our third contribution analyzes the robustness proper-
ties of the BID ADJUSTMENT ALGORITHM. Specifically,
we establish that the convergence is not affected by affine
disturbances, thus showing that deviations in stepsizes
by the generators can be handled gracefully. Addition-
ally, we show that there is no incentive for any individual
generator to deviate from the algorithm. Finally, we also
show that, if at each generator bus there is at least one
generator running the BID ADJUSTMENT ALGORITHM,
then there is no incentive for other generators connected
to the network to not follow the algorithm. These prop-
erties provide a sound justification for why generators
would adopt this iterative bid adjustment scheme!.

2 PROBLEM STATEMENT

Consider an electrical power network with N, € Z>;
buses operating under the DC power flow model. The
physical interconnection between the buses is given by
a digraph G = (V, £), where nodes correspond to buses
and edges to physical power lines. The direction for each
edge represents the convention of positive power flow.
The power flow on the line (7, j) € £ is z;; € R. Each line
(i,7) € € has a limit on the power flowing through it
(in either direction), represented by Z;; > 0. The voltage
phase angle at bus i € [N;] is §; € R. Assume that
each bus i € [Ny] is connected to n; € Z>( strategic
generators. We let N = Zf\i’l n; be the total number of
generators and assign them a unique identity in [N]. Let
the set of generators at node ¢ be G; C [N] (this set is
empty if there are no generators connected to bus ).
The power demand at bus i is denoted by y; > 0 and
is assumed to be fixed and known to the Independent
System Operator (ISO) that acts as the central regulating
authority. The total demand is yiota1 = Zf\f:bl y;. The cost
fn(zy) of generating x,, € R>o amount of power by the
n-th generator is given by

fu(@) = an2® + cpa, 1

where a,, > 0, ¢, > 0. Given z = (z1,...,2y) € ]Rgo, the

aggregate cost is S._, f,.(x,). The dc optimal power flow

1. We use the following notation. Let R, R>¢, Z>¢, Z>1 be the set
of real, nonnegative real, nonnegative integer, and positive integer
numbers, resp. We use [n] to denote {1,...,n}. We let || - || be the
2-norm on R" and denote Bs(z) = {y € R™ | ||y — z| < é}. Given
x,y € R", x; is the i-th component of x, and = < y denotes z; < y;
for i € [n]. We use Oy = (0,...,0) € RV, We let [u]T = max{0,u}
for u € R. A directed graph or digraph is a pair G = (V,&), where
V is the vertex set and £ C V x V is the edge set. For a digraph,
Nt ={v; €V | (v5,v;) € E}Y and Ny, = {vj € V| (vj,v;) € E} are
the out- and in-neighbors of v;, resp.



problem (DC-OPF) [31] consists of

N

mi(nirréi)ze Z fr(xn), (2a)
Fr%s n=1

subject to Z Zij — Z Zij = Z Tn — Yi, Vi, (2b)

JENT JENT neG;

—Zij < zij < Zij, Y(4,7), (20)
zij = Y5 (0 — 05), V(i,7), (2d)
x > Op, (2e)

This problem finds the generation profile that meets
the load at each bus (ensured by (2b)), respects the
line constraints (due to (2c)) where flows are related to
voltage phase angles by (2d), and minimizes the total
cost (given by the objective function (2a)). All constraints
are treated as hard throughout the paper. Here, for each
line (,7), v:; represents the line susceptance. In (2b) we
make the convention that if G; = (J, then the first term on
the right-hand side is zero. We assume that (2) is feasible.
Since the individual costs are quadratic, the optimizers of
the problem have a unique generation profile [32], which
we denote as z*. Thus, we denote the set of optimizers
as {z*} x Z* x ©*, where 2* C RI¥l and ©* ¢ RM
are the set of flow vectors and voltage phase angles that
satisfy (2) given generation z*.

The goal for the ISO is to solve (2). The ISO can
interact with the generators, whereas each generator can
only communicate with the ISO and is not aware of the
number of other generators participating in the market
and their respective cost functions, or the load at its
own bus. While the ISO knows the loads and the limits
on the power lines, it does not have any information
about the cost functions of the generators. Therefore,
power allocation is decided following a bidding pro-
cess, resulting into a game-theoretic formulation. Instead
of sharing their cost with the ISO, the generators bid
the price per unit of power that they are willing to
provide the power at. This price-based bidding is well
known in the economics literature as Bertrand competi-
tion [33, Chapter 12]. Specifically, generator n bids the
cost per unit power b, € R>¢ and, when convenient,
we denote the bids of all other generators except n
by b_, = (b1,...,bn-1,bn41,...,bn). Given the bids
b= (b,...,bx) € RY,, the ISO solves the following
strategic dc optimal power flow problem (S-DC-OPF)

N
miélizrr;i)ze Z bnxn, (3a)
- n=1

subject to Z Zij — Z Zij = Z Tn — Yi, Vi, (3b)
JENT FEN neqG;
—Zij < zij < Zig, (i, 7), (3e)
zij = % (0 — 05), V(1,7), (3d)
z 2> Oy. (3e)

The difference between (3) and (2) is the objective func-
tion which is linear in the former and nonlinear, convex

in the latter. The ISO solves (3) once all the bids are
gathered. Let (x°P(b), z°P'(b),0°P* (b)) be the optimizer
of (3) that the ISO selects (note that there might not
be a unique optimizer) given bids b. This determines
the power requested from each generator, given by the
vector z°P*(b). Knowing this process, the objective of
each generator n is to bid a quantity b, > 0 that
maximizes its payoff u,, : RZ, — R,

Un (b, 757 (0)) = b P (b) — fu (2P (D)), )

where 29P'(b) is the n-th component of the optimizer
x°Pt(b).

Definition 2.1. (Inelastic electricity market game): The
inelastic electricity market game is defined by the following

(i) Players: the set of generators [N],
(ii) Action: for each player n, the bid b, € R>o,
(iii) Payoff: for each player n, the payoff u, in (4).

Wherever convenient, for any n € [N], we use in-
terchangeably the notation b and (b,,b_,), as well as,
z°Pt(b) and z°P'(b,,b_,). Note that the payoff of the
players is not only defined by the bids of other players
but also by the optimizer of (3) that the ISO selects. For
this reason, the definition of the pure NE for the game
described below is slightly different from the standard
one, see e.g. [34].

Definition 2.2. (Nash equilibrium): The (pure) NE of
the inelastic electricity market is the bid profile of the
group b* € RY, for which there exists an optimizer
(z°PE(b*), 2°PH(b*), 0°PY(b*)) of (3) that satisfies

Un (b, 27 (b, 7)) < un (b, 2575(07)), ¥n € [N], (5)

all b, € Rso, and all optimizers (x°P*(by,b*,),

2P (by,, b_p,), 0°PY(by,, b_y,)) of (3) given bids (b, b*,,).

We are specifically interested in bid profiles for which
the optimizer of the DC-OPF problem is also a solution
to the S-DC-OPF problem. This is captured in the fol-
lowing definition.

Definition 2.3. (Efficient bid): An efficient bid of the
inelastic electricity market is a bid b* € RY, such that any
optimizer (x*,z*,0%) of (2) is an optimizer of (3) given bids
b* and

x, = argmax,sob,x — fu(z), foralln e [N].  (6)

The right-hand side of (6) is unique as costs are
quadratic. Condition (6) can be interpreted as a form of
incentive compatibility: at the efficient bid, the produc-
tion that the generators are willing to provide, maximiz-
ing their profit, coincides with the optimal generation
for the DC-OPF problem (2). Without (6), the resulting
operating points would not be meaningful as generators
would naturally seek to deviate from the optimizer in
order to maximize their profit.

Definition 2.4. (Efficient NE): A bid b* is an efficient NE
of the inelastic electricity market if it both efficient and a NE.



The efficient NE enjoys three properties, first, no
generator wants to deviate from this point unilaterally,
second, the ISO can select the optimizer of the DC-
OPF problem as the market clearing production at this
bid, and third, generators are willing to provide this
selected quantity due to (6). These properties justifies
the study of efficient NE points. Note that given the
efficient bid profile, there might be many solutions to (3)
because the problem is linear and the ISO might not be
able to find z*. However, once the ISO knows that an
efficient NE bid is submitted, it can ask the generators
to also submit the desirable generation levels at that
bid, which corresponds to the solution of the DC-OPF
problem. We come back to this point in Section 4, where
we provide the algorithm employed for iterative bidding
and for determining the generation levels once the bids
have converged. We assume that generators are strategic
and hence price-setters during iterative bidding, while
they are non-strategic and price-takers when generations
levels are decided.

3 EXISTENCE AND UNIQUENESS OF EFFICIENT
NE

We provide conditions for existence and uniqueness of
efficient NE of the inelastic electricity market game in
Section 2.

Proposition 3.1. (Existence of efficient NE): Assume at
each bus either there is more than one generator or there is
none, i.e., either n; = 0 or n; > 2 for each i € [Np]. Then,
there exists an efficient NE of the inelastic electricity market
game.

Proof: For convenience, we write (2b), (2¢), and (2d)
as

Jiz—Jox+y=0, J3z <Z., and J40 — z =0,

respectively. Here, J; € {0,1, -1}Vl defines the
interconnection of buses in the digraph G, specifically,
(n,i)-th element of J; is 1 if the head of some edge
(i,7) € & is n, this element is —1 if n is the tail of
the edge, and otherwise the element is 0. The matrix
Jo € {0,1}M2*N defines the connectivity of generators
to buses, that is, (4, j)-th element of J; is 1 if and only
if j-th generator at i-th bus. Further, J, € RIEIXNy i the
incidence matrix of (V, &), where the nonzero elements
in the row corresponding to edge (7,j) are v;; and —v;;
at i-th and j-th column, resp. Lastly, J5 = [Ij¢|, —1¢|]
and z, = [z,7%] . The Lagrangian of the optimization (2)
is

L(x,2,0,0,1,C,A) = Son_ fulwn) + v (J12 — Jaz +y)
+uT(Jsz —Z) — CT(J40 — 2) — X',

where v € R™, e Rl ¢ ¢ REl and A €
RY, are Lagrange multipliers corresponding to con-
straints (2b), (2¢), (2d) and (2e), resp. Since constraints
of the problem (2) are affine and the feasibility set is

nonempty, the refined Slater condition is satisfied and

hence, the duality gap is zero [32]. Under this condition,
a primal-dual optimizer (z*, z*, 0%, v*, u*, (*, \*) satisfies
the Karush-Kuhn-Tucker (KKT) conditions

Vi) —J ve = =0, (7a)

T+ It =0, Ji2t = Joxt +y=0, (7b)

Jsz* <Z., L0 =z, J¢=0, z*>0, (7
A>0, pt>0, (7d)

(z)TA* =0, and (p*) " (J32* —2.) =0, (7e)

where Vf(z*) = (Vfi(z}),Vfa(x3),....,Vin(zy) " In
the rest of the proof, we show that the following bid
profile, constructed from a primal-dual optimizer, is an
efficient NE of the inelastic electricity market game

b — V;((n)’

"V /(0),
where i(n) € [Ny] denotes the bus of the network to
which generator n is connected to. Given the form (1) of
the cost functions, we deduce b* > 0. Moreover, from the
definition of .J;, one can deduce that either all generators
n € G; have b}, = v; or all of them have z = 0. Next, to
show that the bid b* defined in (8) is efficient, we first
establish

if max{z;, | m € Gy} >0,
otherwise,

®)

T, = argmax,>ob,z — fu(z), Vn € [N]. )

For each n, consider max,>q b,z — f,.(x). Because zero
duality holds for this optimization, a point z, € R is
an optimizer if and only if it satisfies the KKT conditions

b; - an(xo) +po=0, o 20, ©, 20, poz, =0,

where p, is the dual optimizer. Since z}, satisfies the
above conditions with p, = Aj, the expression (9)
holds. To claim the efficiency of b*, we next show that
(x*,2*,0%) is one of the optimizers of (3) given bids b*.
Note that the KKT conditions for (3) are given by (7)
with the term Vf(z*) in (7a) replaced with b*. Also,
one can show using the KKT conditions (7) and the
definition of b* given in (8) that b* — J, v* > 0. Indeed,
for some bus i € [N], either b = v for all n € G;
or z; = 0 for all n € G;. For the latter, due to (7a),
b —vf =V fp(0) — v =Vf,(x}) — v > 0. Using these
facts, we deduce (z*, z*, 0%, v*, u*, C*, b* — JJ v*) satisfies
the KKT conditions for (3) and hence, (z*, z*,0*) is an
optimizer of (3).

Our final step is to show the NE condition (5) for the
bid profile b*. Note that for each n, the payoff at the bid
profile-optimizer pair (b*, z°P*(b*)) = (b*,z*) is nonneg-
ative. Specifically, if = = 0, then w,, (b}, z2P*(b*)) = 0. If
x}, > 0, using the fact that Vf,,(z) < b forall z € [0,z}],
we get
Un (b3, 2P (b7)) = by, — fal(2])

n? n

o o
n n

= V(bix — fu(x))dx = (by, — Vfn(z))dz > 0.

0 0
Now pick any generator n € [N]. For bid b, # b}, we
have two cases, first, b, > b and second, b, < b}.



For the first case, either (i) z;, = 0 which implies
that x°P*(b,,b*,) = 0 and so uy, (b, 2P (by,,b",)) =
un (b, zk) = 0; or (i) «f > 0, so all bids at bus
i(n) are equal, implying that n increasing its bid yields
29 (b, b* ) = 0. That is, wn (b, 22 (by,b*,)) = 0 <

un (b, x). For the second case,

n’ n

Up (b, 3P (0, 07)) = D@ (b, b7,) — fra (" (bn, D7)
< b (bn, 07) = fu(@3 (b, 07,))
< bpxy, — fal®y) = un(by, 27,),

n-n n? n

where in the first inequality we use b,, < b}, and in the
second we use (9). This shows (5), concluding the proof.
L
Note that the condition in Proposition 3.1 of having
zero or at least two generators at each bus is reasonable
in scenarios modeling power networks with hierarchi-
cal architectures of multiple actors or aggregations of
multiple energy resources. In such cases, each bus could
represent a control area (where there can certainly be
more than one generator) or a generator itself could
correspond to a subnetwork or collection of smaller
generators or flexible loads. If the condition does not
hold, i.e., there is a bus with a single generator, and
the line capacities are such that the load at that bus can
only be met by that generator, then there is possibility
of market manipulation. The generator at one of these
buses can set its bid arbitrarily high as no other generator
can meet that load and consequently, there would not
exist a NE. However, if the aggregate capacity of lines
connected to the bus having a single generator is greater
than the load connected to that bus, then the efficient
NE exists. Next we provide a sufficient condition that
ensures uniqueness of the efficient bid.

Proposition 3.2. (Uniqueness of the efficient bid): Assume
that the optimizer x* of (2) satisfies x, > 0 for all n €
[N]. Then, there exists a unique efficient bid b* € RY of the
inelastic electricity market game given by N

by, = Vi (z)) =2anx), +cn, forallme[N]. (10)

Proof: By definition, an efficient bid b € IRJEVO satisfies
T, = argmax, >obn,x — fn ()

for all n. Since z}, > 0, first-order optimality condition
of the above optimization yields b, = Vf,(z}). This
establishes (10) and hence, the uniqueness. O

The next result follows from Propositions 3.1 and 3.2.

Corollary 3.3. (Uniqueness of the efficient NE): Assume
that at each bus of the network either there is more than one
generator or there is none. Further assume that the optimizer
x* of (2) satisfies x} > 0 for all n € [N]. Then, there exists
a unique efficient NE of the inelastic electricity market game
given by (10) for all n.

In the rest of the paper, we assume that the sufficient
conditions in Corollary 3.3 hold unless otherwise stated.
Note that the definition (10) of the unique efficient NE
is consistent with (8) because if z} > 0 for all n, then

V fa(zk) = v} for each bus i € [Ny] and every generator
n € Gy

We believe that the convergence and robustness guar-
antees of the algorithm presented in the next section
will hold as long as the efficient NE exists. However,
we impose the conditions of Corollary 3.3 in order to
simplify the technical exposition.

4 THE BID ADJUSTMENT ALGORITHM

Here, we introduce a decentralized NE seeking algo-
rithm, termed BID ADJUSTMENT ALGORITHM. We show
that its executions lead the generators to the unique
efficient NE, and consequently, to the optimizer of the
DC-OPF problem (2). Following this, we present the
DETERMINE GENERATION scheme through which the
ISO determines the generation levels, i.e., dispatch, for
generators at the converged bid.

4.1 Algorithm description

We start with an informal description of the BID ADJUST-
MENT ALGORITHM. This iterative algorithm can be in-
terpreted as “learning via repeated play” of the inelastic
electricity market game by the generators. Both ISO and
generators are rational: each generator tries to maximize
its profit and the ISO tries to maximize the welfare of
the entities.

[Informal description]: At each iteration k, gen-
erators decide on a bid and send it to the ISO.
Once the ISO has obtained the bids, it computes
an optimizer of the S-DC-OPF problem (3), de-
noted (z°P'(k), z°P*(k), 0°P'(k)) for convenience,
and sends the corresponding production level
at the optimizer to each generator. At the (k+1)-
th iteration, generators adjust their bid based
on their previous bid, the amount of produced
power that maximizes their payoff for the pre-
vious bid, and the allocation of generation as-
signed by the ISO. The iterative process starts
with the generators arbitrarily selecting initial
bids that yield a positive profit.

In the BID ADJUSTMENT ALGORITHM, cf. Algorithm 1,
the role of the ISO is to compute an optimizer of the
S-DC-OPF problem after the bids are submitted. Gener-
ators adjust their bids at each iteration in a “myopically
selfish” and rational fashion, with the aim of maximizing
their payoff. Intuitively,

if n gets 22P*(k) = 0, two things can happen: (i) n was
willing to produce a positive quantity ¢, (k) > 0 at bid
b, (k) but the demand from the ISO is z9P'(k) = 0. The
rational choice for n is to decrease the bid in the next
iteration and increase its chances of getting a positive
payoff; (ii) n was willing to produce nothing ¢, (k) = 0
at b, (k) and got 2°P* (k) = 0. At this point, reducing the
bid will not increase the payoff as it will not be willing
to produce more at a lower bid. Alternatively, increasing
the bid will not make the amount that the ISO wants the
generator to produce positive. Hence, the bid stays put;



if n gets z5P* (k) > 0, then it would want to move the
bid in the direction that makes its payoff higher in the
next iteration, assuming that n gets a positive generation
signal from the ISO in the next round. If ¢, (k) < 2°P*(k),
then the demand from the ISO is more than what the
generator is willing to produce, so n increases its cost,
ie., the bid. If ¢,(k) > 22°%(k), then the demand is
less than what the generator is willing to supply so n
decreases its bid.

Algorithm 1: BID ADJUSTMENT ALGORITHM

Executed by: generators n € [N] and ISO
Data : cost f, and stepsizes {Sj}rez., for each
generator n, and load y for ISO
Initialize : Each generator n selects arbitrarily
bn(1) > cp, sets k =1, and jumps to
step 4; ISO sets k = 1 and waits for step 6

1 while £ > 0 do

/+ For each generator n: */
Receive z2P*(k — 1) from ISO

Set by, (k) = [bn (k—1)+Bk (2P (k—1) — gn (k—1))]*
Set g (k) = argmax b, (k)g — fn(q)

Send b, (k) to the ISO; set k =k + 1

/* For ISO: *x/
6 Receive b, (k) from each n € [N]

7 | Find a solution (z°P*(k), z2°P*(k), 8°P*(k)) to (3)
given b(k)

8 | Send z°P'(k) to each n € [N]; set k =k +1

9 end
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Remark 4.1. (Information structure and other learning
approaches): In the BID ADJUSTMENT ALGORITHM, the
ISO is assumed to know beforehand the network struc-
ture, line limits, and the demand at each bus. In addition,
at each round, ISO obtains the bids of all generators. On
the other hand, generators have no knowledge of the
number of other players, their actions, or their payoffs.
The only information they have at each iteration is their
own bid and the generation that the ISO requests from
them. This information structure rules out the applica-
bility of a number of NE learning methods, including
best-response dynamics [12], fictitious play [13], or other
gradient-based adjustments [10], all requiring some kind
of information about other players. Methods that relax
this requirement, such as extremum seeking used in [14],
[15], rely on the payoff functions being continuous in
the actions of the players, which is not the case for
the inelastic electricity market game. If the generators
were to obtain additional information at each round,
even if indirectly about the bids submitted by others
or their market clearing production, then they might
employ more complex learning strategies to construct
beliefs about the policies employed by others. We leave
the design and convergence analysis of such learning
mechanisms to future work. .

Remark 4.2. (Stopping criteria and justification of “my-

opically selfish” strategies): Algorithm 1 consists of an
infinite number of iterations. To make it implementable,
later we identify stopping criteria, see Remark 4.9, based
on a parameter that the ISO selects. Since this is not
known to the generators, they cannot predict when
the algorithm will terminate and, hence, they do not
have an incentive to play strategically to maximize their
payoff in the long term. Given this, they should focus
on maximizing the payoff in the next iteration, which
justifies the myopically selfish perspective adopted here.
o

4.2 Convergence analysis

We show that the generator bids along any execution
of the BID ADJUSTMENT ALGORITHM converge to a
neighborhood of the unique efficient NE. The size of the
neighborhood is a decreasing function of the stepsize
and can be made arbitrarily small. We first present a
series of lemmas highlighting geometric properties of the
bid update in Step 3 of Algorithm 1. For the reader’s
convenience, the proofs of these results are given in the
appendix.

Lemma 4.3. (Generator bids are lower bounded): In
Algorithm 1, let 0 < ), < 2ay, for all n € [N] and k € Z>1.
Then, b, (k) > ¢y, and for all n € [N] and k € Z>1,

qn(k) = bn(k) — Cn'

2ap

Our next result gives a different expression for the bid
update (cf. Step 3) presenting a geometric perspective
of the direction along which the bids are moving. We
write the k + 1-th bid as the addition of two vectors. The
first one is a convex combination of the k-th bid and
the efficient NE b*. Hence, the first vector is closer to b*
as compared to the k-th bid. The second one depends
on the difference between what the ISO requests from
generators and the optimizer of (2). If the second term
is small enough, then the bids move towards b*.

(11

Lemma 4.4. (Geometric characterization of the bid up-
date): In Algorithm 1, let 0 < ), < 2a,, for all n € [N] and
k € Z>1. Then, we have

bk +1) =b°°(k + 1) + B (z°P"(k) — z¥),
for all k € Z>1, where for each n € [N],
B

Qn

B
btk +1) = (1 )ou (k) + b,
coe (kb + 1) (8)+ b,
The next result gives a lower bound on the inner
product between the direction in which the bids move

and the direction towards the efficient NE.

Lemma 4.5. (Bids move in the direction of the efficient
NE): In Algorithm 1, let 0 < i, < 2a, for all n € [N] and
k € Z>1. Let amax = maxp,{an}. Then, for all k € Z>4,

(b(k 1) = b(k), b — b(K)) > 52— (k) — b

max

(12)



The next result states that the distance between con-
secutive bids decreases as bids get closer to b*. Together
with Lemma 4.5, one can intuitively see that the bids get
closer to b* and, as they do, the bid update behaves as
if the bids are reaching an equilibrium of the scheme,
leading to convergence.

Lemma 4.6. (Distance between consecutive bids is upper
bounded): In Algorithm 1, let 0 < ), < 2a,, for all n € [N]
and k € Z>1. Let apin = min,{a,}. Then, for all k € Z>1,

Bi
SEE (k) -

min

Ib(k +1) = b(k)|* < 0" ||* + 867 Yiogar (13)

We are ready to present the main convergence result.

Theorem 4.7. (Convergence of the BID ADJUSTMENT
ALGORITHM): In Algorithm 1, let 0 < By < 2a, for all
n € [N] and k € Z>1. Further, let 0 < r < ||b(1) — b*|| and
assume

1 ( 1 16y,
2 max \ 202 r2

min

a < By < B(r):=

)" ae

for all k € Z>y, for some a > 0 (where recall that amax =
maxy{an} and aymi, = min, {a,}). Then, the following holds

(i) there exists | € Z>1 such that ||b(l) — b*|| < r and for
all k € [l — 1], we have ||b(k) — b*|| > r with

k/2
)b v, (15)

(07

oGk +1) — b < (1 -

2 max

(i) for all k >1,
(k) — 7 < (14 2

max

(16)

Proof: Assume that ||b(k) —b*|| > r for some k € Z>.
Then, the upper bound on the stepsizes in the inequal-
ity (14) holds when r is replaced with |b(k) — b*||, that
is, B < B(||b(k) — b*||) for all k € Z>,. This is because
r +— B(r) is strictly increasing in the domain r > 0.
Proceeding with this replacement and reordering (14),
we obtain

|b(k) — b*||? 1 .
(P vy < 5o - o2
or equivalently,
B . .
5z I10(k) = b7[1% + 168k — o lIb(k) = I?
s—2 .
Now consider the following inequalities
Ib(k +1) = b*[1* = [[b(k + 1) = b(k) + b(k) — b"]*

— [k + 1) — (k)2 + (k) — 0|2
+20b(k + 1) — b(k), b(k) — b°)

o 2

< B -

<

— 2
2a’mln

b + 867 Yiogar + [ID(K) — b7

(k) —b*|1? (18a)

max

(b

< (1= 5o Yoy - v (18b)
where in (a) we have used the bounds (12) and (13) from
Lemmas 4.5 and 4.6, respectively, and the inequality (b)
is implied by that in (17). Note that the inequality (17) is
conservative in the sense that the term 1653,y2,, could
be replaced with 83,y2,., and the inequality (18b) would
still follow. However, we opt for this conservativeness
while defining the map r — B(r) in (14) because it
results into robustness guarantees for the algorithm as
discussed in the forthcoming section. Therefore, (18b)
holds whenever ||b(k) — b*|| > r. By assumption, we
have 0 < (1 - ﬁnlx) <1, |b(1) = b*|| > r, and B >
for all £ € Z>;. Using these facts and applying (18b)
recursively, we conclude part (i).

For part (ii), note that if ||b(k) —b*|| > r for some k > [,
then [|b(k +1) —b*| < ||b(k) —b*| by (18b). Therefore, to
find an upper bound on ||b(k) —b*|| for all £ > [, we only
need to consider the case when ||b(k) —b*|| < r. Plugging
this bound in (18a) and neglecting the negative term,

Bir

2 fnl!l
From (14), we have + 16[3,€yt0ta1 < 2’2 £ The result
now follows by uppernboundmg the rlght -hand side
of (19) with the left-hand side of the above expression
and then employing the bound on the stepsizes give
in (14). O

[b(k + 1) — b*||> < + 8By + 2. (19)

ﬂk""

Remark 4.8. (Convergence properties from Theorem 4.7):
Selecting stepsizes as per the requirements of Theo-
rem 4.7 would amount to choosing r > 0 small enough
so that r < ||b(1) — b*||, computing the right-hand side
of (14), and selecting S, < 2a,, satisfying the bound (14).
With this selection, the assertion (i) of Theorem 4.7
implies that bids reach the set 5,(b*) in a finite number
of steps and at a linear rate. Further, once bids reach the
set B,(b*), assertion (ii) ensures that they remain in a
neighborhood of b*, where the size of the neighborhood
is proportional to r (cf. (16)). In combination, the above
facts mean that bids converge to any neighborhood of
the efficient NE at a linear rate provided the stepsizes
are selected appropriately. Specifically, define

2log(r/|1b(1) — b°])
log(1 — a/2amax)

Then, from (15), we deduce that there exists k € [k,,]
such that ||b(k) — b*|| < r. Further, ||b(k) — b*|| < (1 +

km =1+

B(r)

2amax

1/2
) r for all & > k,,. Note that as r becomes

small, B(r) gets small and so does a. Consequently,
km becomes big, implying that the rate of convergence
diminishes. This presents a trade-off between the desired
precision and the rate of convergence. .

Remark 4.9. (Stopping criteria for the ISO): From the
proof of Theorem 4.7(i) note that, as long as ||b(k)—b*|| >
r, the distance to the efficient NE decreases. Therefore,



if ||b(k) — b*|| > r and k < [, then one can write
16(k +1) = b(k)[| = [lb(k + 1) = b" + 0% — b(k)]|
> [|b(k) = b%|| = [[b(k + 1) = 7|

(0%

(@)
> [lbk) = bl = (1 -

LCEG

max

(- () w1

where in (a) we have used (18b) and f£; > a. Given
this observation, if the ISO has an estimate of « and
amax, then it can design a stopping criteria based on
the distance between consecutive bids. In fact, if the
ISO selects ¢ > 0 and stops the iteration whenever
[Ib(k+1) —b(k)|| < ¢, then it has the guarantee that either
of the following is satisfied

(i) the condition ||b(k) — b*|| > r and k < I is met and
from (20) we get

b(k) — b*|| < 6(1— (1 -

(i) [lb(k) — b°]| < 15 or
(iii) & > [ in which case from (16) we get

b(k) — b7|| < (1 + fﬂ)mr.

max

(20)

“)" e

2 aIIlaX

The ISO does not know the value of r; its value depends
on the stepsizes that the generators select. Assuming that
stepsizes are small, the ISO can adjust ¢ depending on
the desired accuracy level to get the guarantee (21) for
the k-th bid. For small ¢, the stopping criteria might
never be met if stepsizes are too big. .

Remark 4.10. (Scalability of BID ADJUSTMENT ALGO-
RITHM): At each iteration of the BID ADJUSTMENT AL-
GORITHM, the computational burden for the generators
is minimal and does not depend on the size of the net-
work. The ISO on the other hand solves a linear program
at each round. This computation is not much taxing
as large-scale linear programs can be solved efficiently.
Further, the rate of convergence of BID ADJUSTMENT
ALGORITHM, restricted by the right-hand side of (14),
does not depend on the number of generators present in
the network. Finally, the communication burden for each
generator is independent of the size of the network and
the communication burden for the ISO scales linearly
with the number of generators in the network. Due
to these reasons, the BID ADJUSTMENT ALGORITHM is
implementable in large-scale power networks. J

4.3 Recovering the DC-OPF solution

Here we provide a procedure that allows the ISO to
uniquely determine a dispatch decision once the iterative
bidding process has stopped. The need for this arises
from the observation that given b(k) close to b*, in
general z°P'(b(k)) might not be close to z*, as (3) is a
linear program. The procedure proposed here ensures
that the generation profile of the dispatch decision is
close to the optimum of the DC-OPF problem (2).

DETERMINE GENERATION: The ISO initiates the
procedure after stopping the BID ADJUSTMENT
ALGORITHM at some iteration &k € Z>;. The
procedure has two steps. [Step 1:] The ISO
requests each generator n to provide the gener-
ation level g2 that the generator is willing to
produce at bid b, (k). [Step 2:] The ISO projects
the vector of obtained generation levels g°fer
onto the feasibility set of the DC-OPF prob-
lem (2) and this projected vector, denoted ¢%*P,
forms the dispatch decision.

Note that, unlike in BID ADJUSTMENT ALGORITHM,
generators are non-strategic and price-takers when DE-
TERMINE GENERATION is executed. This is justified by
the observation that generators know neither the ISO’s
stopping criteria nor the accuracy of the final bid profile
of the network, thus ruling out the possibility of agents’
anticipating the outcome of the game. We elaborate on
this point in Remark 4.12 below.
The next result bounds the difference ¢isP — z*.

Proposition 4.11. (Bound on the dispatch decision made
by DETERMINE GENERATION): Let k be the iteration at
which the BID ADJUSTMENT ALGORITHM stops with bids
b(k) € RY,. Under the assumption that in the DETERMINE
GENERATION procedure, each generator n finds ¢ by

maximizing its payoff given bid b, (k), that is, for all n,

offer

gy " = argmax,sobn (k)g = fn(q), (22)

the obtained dispatch decision satisfies
(k) ~ b))

disp *
g x| <
[ <

Proof: For each n € [N], we have

b (k) — ¢,
— argmae b (K)g — falg) = ) —Cn,

offer
n

q

The last equality follows from Lemma 4.3. Further note
that for each n € [N], b* = 2a,2% + ¢,. Therefore,

[1b(k) = b*|| = |[2diag(a)(¢°™" — 2*)|| > 2amin[l¢°™ — 2",

where diag(a) is the diagonal matrix with diagonal a.
From DETERMINE GENERATION, q%P is the projection of
¢°" to the feasibility set of the DC-OPF problem. Since
the projection to a convex set is Lipschitz with constant
1 and z* is feasible, ||¢4*? — z*|| < ||¢°fe" — 2*|| and the
result follows. O

This result implies that the accuracy of the dispatch
decision can be determined as a function of the final
bid’s accuracy.

Remark 4.12. (Strategic interactions in DETERMINE GEN-
ERATION): One could possibly model the interaction be-
tween generators in DETERMINE GENERATION as a game
where players are generators, actions are what they offer
to generate in Step 1, and utility is their profit once ¢*P
is determined in Step 2. Such a game is parameterized by
the converged bid. However, generators do not know the
converged bid, the stopping criteria of the ISO, or even



the network structure or the total number of generators
involved, that would critically influence the projection
done in Step 2. This lack of access to critical information
about the game provides justification for generators
acting truthfully by revealing their utility-maximizing
generation level ¢ in Step 1. Note that unlike BID AD-
JUSTMENT ALGORITHM, the DETERMINE GENERATION is
not iterative. Allowing generators to change their offer
iteratively in DETERMINE GENERATION would be more
conducive to having generators behave strategically, but
we do not pursue this interesting direction here. .

5 ROBUSTNESS OF THE BID ADJUSTMENT
ALGORITHM

Here we study the robustness properties of the BID
ADJUSTMENT ALGORITHM in a variety of scenarios. We
first show that the introduction of disturbances in the bid
update mechanism does not destroy the algorithm con-
vergence properties. We then study robustness against
either an individual agent or colluding agents changing
their strategy to get a higher payoff.

5.1

Here we establish the robustness properties of the BID
ADJUSTMENT ALGORITHM in the presence of distur-
bances by characterizing its input-to-state stability (ISS)
properties [35]. Let d : Z>1 — RY model the distur-
bance to the bid update mechanism. Such disturbances
might arise from agents using different stepsizes than
the prescribed one or other disruption to the prescribed
bid update scheme. The resulting perturbed version of
the BID ADJUSTMENT ALGORITHM can be written as the
following discrete-time dynamical system

Robustness to disturbances

b(k +1) = [b(k) + Bi(x°P* (k) — q(k)) +d(k)]*, (23a)
2Pt (k + 1) € Solyepe (b(k + 1)), (23b)
q(k + 1) = Soleg (b(k + 1)), (23¢)

where Solsopt : RY; = RY, and Soleg : RY, — RY; map a
bid profile to the set of optimizers of problem (3) and (6),
resp. Note that Solpt is a set-valued map since (3) is a
linear program. If d = 0, then (23) represents the k-th
iteration of the BID ADJUSTMENT ALGORITHM. We next
show that the perturbed version (23) retains the algo-
rithm convergence properties provided the magnitude
of the disturbance satisfies an upper bound dependent
on the bid state.

Proposition 5.1. (The BID ADJUSTMENT ALGORITHM is
robust to perturbations in the bid update): For dynam-
ics (23), let the hypotheses of Theorem 4.7 hold and assume
that b,(k) > ¢, for all n € [N] and k € Z>;. Let
0<0<g(1—52—) and assume ||d(k)|| < 0[|b(k) — b*||

max

for all k € Z>1. Then, the following holds

(i) there exists | € Zx>y such that ||b(l) — b*|| < r and, for
all k € [l — 1], we have ||b(k) — b*|| > r with

[6(k +1) = b7

o\ /2 )
+20+49) 1b(1) — b, (24)

o
<(1-
<(1-3

aIIlaX
(ii) for all k >1,

B /2

1b(k) — b*|| < (1+ 5 B +20+492) r. (25)
Proof: Since by, (k) > ¢, we obtain for dynamics (23),
qn(k) = M for all n € [N] and k € Z>;. Moreover,
mimicking Lemma 4.4, we rewrite the bid update (23a)

as
b(k + 1) = b°(k + 1) + Br(zP (k) — z*) + d(k),

for all kK € Z>,. Using (26) and following the steps of
Lemma 4.5 for dynamics (23a) we get,

(b(k -+ 1) — kYD) — b°) < (d(R), b(k) — b°)
ey P,

2 max

(26)

27)

foralln € [N] and k € Z>. Similarly, from the reasoning
of Lemma 4.6 we obtain

Ib(k + 1) = b(k)|>

Bk * (12 opt * 2
< 5o lb(k) = 512 + 218 " (k) = 2*) + d(B)]))
ﬁ * o *
< 5o b0k) = 7|17 + 4BE (|27 (k) — 27| + 4lld() |
Bi )
< gz [Ib(R) = b7 + 1683y + 4l1d(R)| (28)
for all k¥ € Z>; for dynamics (23a). Employing (27)

and (28), assuming ||b(k) —b*|| > r, and writing the set of
inequalities (18) with o < (), we deduce the following

* a *
60k +1) =72 < (1= 2" ) [lo(k) — 5" + 4]d(k)
+2(d(k), b(k) — b*). (29)
Finally, using ||d(k)|| < 0||b(k) — b*|| we get
Ib0k+ D)= < (15>

max

+29+492)||b(k)—b*u2. (30)

Iteratively, we obtain (24). The bound (25) can be com-
puted similarly as done in the proof of Theorem 4.7. []

Similar to the convergence guarantees of Theorem 4.7,
the above result establishes that the perturbed version
of the algorithm (23) converges to a neighborhood of the
efficient NE provided the stepsizes and the disturbance
satisfy appropriate bounds, and that the size of this
neighborhood is tunable as a function of these. The next
result complements Proposition 5.1 by giving an alter-
native representation of robustness of (23). It establishes
two properties: first, when the disturbance is bounded
(not necessarily satisfying the bound of Proposition 5.1),
the bids remain bounded; second, when the disturbance
goes to zero, bids satisfy (16) asymptotically. Note that
both these results do not follow directly from Proposi-
tion 5.1, justifying the need for a formal proof.

Proposition 5.2. (Bounded disturbance implies bounded
bids for BID ADJUSTMENT ALGORITHM): For dynam-



ics (23), let the hypotheses of Theorem 4.7 hold and assume
that b, (k) > ¢y, for all n € [N] and k € Z>1. Let ||d(k)|| <

dmax for all k € Z>1 and let 0 € (O L (1 — )) Then,
the following holds for all k € Z>,,

o) = b)) < (1-

2armx

k/2

+20 + 492) 11b(1) — b*|
+ G(r,0, dia). 31)
where G(r, 0, dmax) = max{G1 (7, dmax), G2(0, dmax)} and

max

B 2 1/2
Gr(r ) 1= (2 4 @ +97)
1
G2(97dmax) = (2 + g)dmax-

As a consequence, as k — oo, if ||d(k)|| — 0, then

w01 (572"} = 1)

Proof: We first show that if for some k € Z>1, ||b(k)—
b || < G(r,0,dmax), then ||b(1) — b*|| < G(r,0,dmax) for
all [ > k. To this end, as a first case, assume that r <
Ib(k) — b*|| < G(r,0, dmax). Then, following the steps of
the proof of Proposition 5.1, we arrive at (29). If ||d(k)| <
0]|b(k)—b*||, then we get the inequality (30) which implies
that [|b(k + 1) — b*|| < ||b(k) — b*|| < G(7,6,dmax). On
the other hand, if ||d(k)| > 6]b(k) — b*||, then using this
bound in (29), we get

bk + 1) = %12 < 072((1 = == ) [d(k) 1> + 4]l (k)| 26?
+20|d(k)]?)

< 9—2(1 F40+ 492) (k)]

2 max

Thus, using [|d(k)]| < dmax, We get [[b(k + 1) — b*|| <
G2(0,dmax) < G(r,0,dmax). As a second case, assume
Ib(k)—b*|| < r. Note thatr < G(r, 0, dmax), and so ||b(k)—
b*|| < G(r,0, dmax). For this case, using ||b(k) — b*|| < r
and inequalities (27) and (28), we get as in (18a) that

Br®
b* 2
"= 242

min

+ 2r||d(k)]|.

Now applying bounds ||d(k)|| < dmax and S < B(r), we
obtain ||b(k + 1) — b*|| < G1(r, dmax). Hence, we arrive
at the conclusion that if ||b(k) — b*|| < G(r, 0, dmax), then
16(1) — b*|| < G(r,0, dmayx) for all I > k.

Consider now the case when for some k € Zxq,
Ib(k) — b*|| > G(r,0, dmax). By definition of G(r,0, dmax),
this implies that ||b(k) — b*[| > r and [|b(k) — b*| > “&2.
Therefore, from the proof of Proposition 5.1, we arrive
at (30). Finally, combining the reasoning of the two cases
when ||b(k) — b*|| is greater than or less than equal to
G(r, 0, dmax), we obtain the inequality (31). The final limit
for the case when ||d(k)|| — 0 follows from that fact that
as k — oo, the first term of (31) converges to zero and as

B(r) 1/2
dmax tends to zero, G(r, 0, dmax) tends to (1 + 2am ) r

1b(k +1) — + 1683 Yiora + 4lld(R)||* + 12
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One can observe from (31) that the limiting behavior
of the bids depend on the magnitude of r and dpay: if 7 is
designed to be small enough and if dp,ax is small enough,
or this bound becomes small as the algorithm iterates,
then the bids do converge to a small neighborhood of
b*. As an aside, in the theory of ISS for discrete-time
dynamical systems [35], one typically would conclude
Proposition 5.2 from Proposition 5.1. However, the tradi-
tional ISS results require asymptotic convergence of the
unperturbed dynamics, (i.e., dynamics (23) with d = 0) to
a point. This is not the case here and hence, we provide
a formal proof.

Remark 5.3. (BID ADJUSTMENT ALGORITHM is robust to
variation in stepsizes): In practice, given that generators
are competing and do not share information with each
other, it is conceivable that they do not agree on a
common stepsize. Propositions 5.1 and 5.2 provide a
way to quantify the performance of the algorithm when
the stepsizes are different. Specifically, let 8y, k € Z>1,
denote a common set of stepsizes for all generators
that satisfies the hypotheses of Theorem 4.7 and hence,
guarantees the convergence properties outlined therein.
Assume that each generator selects a different stepsize at
each iteration, denoted as Sk, k € Z>1, for generator n.
Then, the bid iteration in Step 3 of the BID ADJUSTMENT
ALGORITHM can be written as (23) where now

dn(k) = (Br,n — Br) (@7P" (k) — gn(k))

for all n € [N] and k& € Z>;. Now if the variation in
stepsizes, i.e., the quantity S, — Sk, is bounded above
by a particular function of the distance of the bid-state
to the efficient NE, then the linear convergence and
the ultimate bound is guaranteed by Proposition 5.1.
On the other hand, if the variation in stepsizes do not
depend on the state but are bounded then, then the
bids still converge asymptotically to a neighborhood of
the efficient NE by Proposition 5.2. The assumption of
bn(k) > ¢, for all n and k holds whenever the stepsizes
are positive for all agents at all times (cf. Lemma 4.3). o

5.2 Robustness to deviation in bid update

We illustrate here another aspect of robustness of the
BID ADJUSTMENT ALGORITHM by establishing that, if
all generators follow the bid update scheme, then there
is no incentive for any generator to deviate from it. We
next formalize these notions. Assume that all generators,
except 7 € [N], follow the BID ADJUSTMENT ALGO-
RITHM, and that 7 follows an arbitrary strategy to update
its bids. Then, one can write the BID ADJUSTMENT
ALGORITHM under this deviation as

b (k+1) = [b-a(k) + Bu(a5 (k) — g (K))]*,  (32a)
bk + 1) = 1 ({0027 ) aa (O} ). (G20)
2P (k 4 1) € Solgops(b(k + 1)), (32¢)
q(k +1) € Soleg (b(k + 1)), (32d)



where the maps {H%k) : R3E — R50}22, represent the
update scheme of 7 at iterations 1,2,... Recall that the
subscript —7 denotes the vector without the component
corresponding to the generator 7. Note that (32b) implies
that at each iteration k, the generator 7 only knows the
bids it made and the quantities the ISO demanded from
it up until iteration k.

We next introduce the notion of “incentive to devi-
ate” from the BID ADJUSTMENT ALGORITHM for the
generator 7. A natural way to quantify incentives for
a generator is in terms of the payoff (4): a generator
has an incentive to deviate if this would bring in a
higher payoff, when the ISO stops the iteration, than not
deviating. This is formalized below.

Definition 5.4. (Incentive to deviate from BID ADJUST-
MENT ALGORITHM): Let r > 0 and assume that the stepsizes
for any execution of (32) satisfy the hypotheses of Theorem 4.7.
Then, the generator 7 € [N] has an incentive to deviate
from the BID ADJUSTMENT ALGORITHM if there exists an
execution of (32) and | € Z>y such that

s (b (k), 257 (k) > uf™, (33)

for all k > 1, where
U = max{uﬁ(bmx%pt(b))‘ﬂb—b*H < (1+ QB(T) )Er
and 2P (b) € solsopf(b)}. (34)

Here, an execution of (32) is a trajectory Z>1 > k —
(b(k),x°Pt(k)) starting at some b(1) satisfying b,(1) > ¢y,
for all n € [N] and following the update scheme of (32).

In the above definition, recall the short-hand notation
x°P(k) for z°P*(b(k)). Equation (33) implies that the
generator 7 has an incentive to deviate if, after a finite
number of iterations, it is guaranteed a higher payoff
than what it might eventually get if it follows the BID
ADJUSTMENT ALGORITHM. This captures the fact that
the generator does not know when the ISO might stop
the bid and hence it would deviate only when it is
guaranteed to get a higher payoff after a finite number
of steps. The next result shows that there is no incentive
to deviate from the BID ADJUSTMENT ALGORITHM.

Proposition 5.5. (Robustness to deviation from BID AD-
JUSTMENT ALGORITHM): For dynamics (32), let the hy-
potheses of Theorem 4.7 hold and assume that b, (k) > ¢, for
all n € [N] and k € Z>;. Also, assume that at each iteration
k € Z>1, the ISO selects a solution x°P*(k) € Solsopt(b(k))
that is a vertex of the feasibility set of the problem (3) given
bids b(k). Then, no generator has an incentive to deviate from
the BID ADJUSTMENT ALGORITHM.

Proof: We reason by contradiction. Assume that a
generator 7 has an incentive to deviate from the BID
ADJUSTMENT ALGORITHM. That is, there exists an exe-
cution of (32) and ! € Zx>; such that (33) holds for all
k > [. By definition,

up ™ = by — fa(2).

(35)
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Now consider the map
R>0 3 b+ ga(b) := max{bg — fa(q) | ¢ = O}.

From (6), we get ga(bi) = biz; — fa(z}). Further,
using (1), one can show that this map is continuous,
strictly increasing in the domain b > ¢;, and g¢;(b) — oo
as b — oo. These facts along with (35) imply that there
exists a unique b2** > bf such that g;(bF**) = ul®,
ga(b) > u2® for all b > b2, and g;(b) < w2 for all
ci < b < b2**. Then, (33) reads as

un (b (k), 237 (k) > ga (05™),

for all £ > I. From the above expression, we deduce that
br(k) > b3 for all k£ > [. Indeed otherwise, there exists
k > 1 such that b; (k) < bP**. This further implies that

(36)

i (ba (k), 237" (k) = bn (k)2 (k) — fa(a2P (k)

< 9a(ba(k)) < ga(bF™),

contradicting (36). In the above expression, the first
inequality follows from the definition of g and the
second follows from the fact that g is strictly increasing.

The above reasoning has helped us establish that
bi(k) > b2ax > bt for all k > 1. Note that z2°°(k) > 0
for all k¥ > [ because otherwise uﬁ(bﬁ(k),x%&(k)) =0
and (36) gets violated. By assumption, there exists at
least one more generator connected to the bus i(n) to
which 7 is connected to. For now assume that there is
only one other generator 7 € [N] connected to i(72). Since
for all k& > I, z°P*(k) is a solution of (3), from the fact
that 22 (k) > 0, we deduce by (k) > b; (k) > b2, for all
k > 1. Now let

max

g = nf argmax{bg — fa(q) [ ¢ = O}

Note that ¢2'** > 0 because of the facts: (i) b} = b <
bmax, (i) argmax{biq — frn(q) | ¢ > 0} = z% > 0; and (iii)
b — argmax{bq — fr(¢) | ¢ > 0} is nondecreasing. Since
b (k) > e for all k > [, we obtain ¢z (k) > ¢ for all
k > 1 (see Step 4 of the BID ADJUSTMENT ALGORITHM
for the definition of g5 (k)). Thus, if by (k) > bs(k) for
some k > [, then z2""(k) = 0 (because z°P'(k) is an
optimizer of (3) given bids b(k)) and bz (k) > b2**. As a
consequence,

ba(k +1) = bu(k) — Bran(k) < ba(k) — gy ™. (37)

Therefore, if by (k) > bs (k) for some &k > [, then from (37)
we deduce that there exists a finite k& > k such that,

either by (k) < bu(k) or ba(k) = bz(k). In the former

case, u;(ba(k), 22" (k)) = 0 as 2" (k) = 0. This contra-
dicts (33). In the latter case, two further cases arise based
on the vertex solution that the ISO selects at k. In the first

one, we get 22°°(k) = 0 implying uz (bs (k), 22**(k)) = 0
and contradicting (33). In the second one, we obtain
227" (k) = 0, implying by (k + 1) < bz (k + 1). This further
yields ug (b (k 4 1), 252 (k + 1)) = 0, thereby, contradict-
ing (33). Finally, if there are other generators connected
to i(n) that follow the BID ADJUSTMENT ALGORITHM,

then one can carry out the same reasoning as done above



and show that we contradict (33). This completes the
proof. |

Remark 5.6. (Generalization of Proposition 5.5): In the
proof of Proposition 5.5, we have not used at any point
that the generators connected at buses other than the one
that 7 is connected follow the BID ADJUSTMENT ALGO-
RITHM. In fact, independently of how such generators
update their bids, the BID ADJUSTMENT ALGORITHM
ensures that 77 does not have any incentive to deviate.
This is a useful property which we use later when
studying robustness to collusion. .

Remark 5.7. (Other notions of “incentive to deviate”): In
Definition 5.4, one can impose the condition of higher
payoff (33) to hold for all executions of (32). If this
condition holds, then the generator has an even stronger
incentive to deviate from the BID ADJUSTMENT ALGO-
RITHM. However, by Proposition 5.5, there does not exist
such strong incentive to deviate. This is because the re-
sult shows that there does not exist any execution of (32)
for which (33) holds. Alternatively, one can replace the
condition (33) in Definition 5.4 with the requirement that
there exists an execution of (32) along which
lim sup uz (by (k), 232" (k) > umax

k— o0

(38)

holds. This inequality means that there exists an execu-
tion of (32) in which the generator n gets a higher payoff
than «2'** infinitely often. Since the ISO can stop the
iterations at any time, the generator is not guaranteed
a higher payoff, but the possibility is still there. We
conjecture that the BID ADJUSTMENT ALGORITHM is
not robust to this notion of weak incentive to deviate.
However, the obfuscation of the stopping criteria by
the ISO makes such a weak incentive not enough for
a rational generator to deviate. o

5.3 Robustness to collusion

Here we study the robustness of the BID ADJUSTMENT
ALGORITHM against collusion. Collusion refers to the
action of a set of generators to share among themselves
information about their bids and generation demands by
the ISO, with the goal of getting a higher profit, possibly
by deviating from the bid update scheme. The following
makes this notion formal.

Definition 5.8. (Collusion between generators): A group
of generators J C [N] form a collusion if at each iteration
k € Z>1 of the algorithm, each generator n € J,

(i) has the information
T, := {(b(t),zSP*(t)) | r € T, t € [K]}, and

(ii) determines its next bid b,(k + 1) based on the infor-
mation Ly, not necessarily following the update scheme
(Step 3) of the BID ADJUSTMENT ALGORITHM.

An iteration of the BID ADJUSTMENT ALGORITHM
under a collusion between a group of generators 7 C [N]

12

is given by the following dynamics

bu(k +1) = [bn(k) + Br(@P (k) — gu(K))] T, V0 & T,

(39a)

balk+1) = HP (Li{auO}y ) e T (39b)
2Pk + 1) € Soleopt (b(k + 1)), (39¢)
q(k +1) € Soleg (b(k + 1)), (39d)

where maps {H,(lk) R(f(‘)j‘ﬂ)k = Roolnegk=12,..

represent the update scheme of generators in collusion.
Notice that for each generator n, the quantity ¢, (k), for
all k € Z>4, is part of its private information, irrespective
of the fact that n belongs to J or not. Next, we define
what it means for the group of generators 7 to have an
incentive to collude.

Definition 5.9. (Incentive to collude): Let r > 0 and
assume that the stepsizes for any execution of (39) satisfy
the hypotheses of Theorem 4.7. Then, the group of generators
J has an incentive to collude under the BID ADJUSTMENT
ALGORITHM f{f there exists an execution of (39), a generator
neJ,and l € Z>y such that

s (b (), 237 (k) > ul™, (40)

for all k > 1, where uX** is defined in (34). An execution

n

of (39) is defined analogously as in Definition 5.4.

This notion essentially says that there is an incentive
to collude for the generators in J if there exists at least
one execution of (39) along which at least one generator
in J gets a higher payoff after finite number of steps.
The next result shows that no group of generators has
an incentive to collude provided there is at least one
generator at each bus with generation that follows the
BID ADJUSTMENT ALGORITHM.

Proposition 5.10. (Robustness to collusion under the BID
ADJUSTMENT ALGORITHM): For dynamics (39), let the hy-
potheses of Theorem 4.7 hold and assume that b, (k) > ¢,, for
all n € [N] and k € Z>1. Also, assume that at each iteration
k € Z>1, the 1SO selects a solution x°P*(k) € Solsopt(b(k))
that is a vertex of the feasibility set of (3) given bids b(k).
Assume that at each bus that has generators connected to
it, there exists at least one generator that follows the update
scheme of the BID ADJUSTMENT ALGORITHM. Denote these
generators by K C [N]. Then, there is no incentive to collude
for any group of generators contained in [N]\ K.

Proof: Let J C [N]\ K be a group of generators
that form a collusion. Assume first Scenario 1 where
each generator in J is connected to a different bus.
By hypotheses, there exists at least one other generator
following the BID ADJUSTMENT ALGORITHM at the bus
where a generator in J is connected to. Thus, mimicking
the proof of Proposition 5.5 (cf. Remark 5.6), at each
bus, no generator has an incentive to deviate from the
BID ADJUSTMENT ALGORITHM. By Definition 5.4, this
implies that there does not exist any execution of (39)
for which (40) holds for any generator in J. Hence,



generators in J do not have an incentive to collude.

Next, consider Scenario 2, where at least a bus, say i €
[Np], has more than one generator from 7, that is, J; :=
G; N J has cardinality larger than or equal to 2. Let 7 €
G; be the generator at 4 that follows BID ADJUSTMENT
ALGORITHM. For the sake of contradiction, assume the
existence of a generator 7 € J; for which (40) holds for
some execution of (39). Since the ISO selects a vertex
solution at each iteration k¥ € Z>;, we deduce that for
all £ >, all other generators in J; get zero production
signal from the ISO, ie., 22P%(k) = 0 for all n € J; \
{n} and k > [. Therefore, for the purpose of analysis,
one can neglect the generators in 7; \ {7} and assume
that only 7 and 7 are connected to i. Again, mimicking
the proof of Proposition 5.5, we deduce that 7 does not
have an incentive to deviate and so (40) does not hold,
a contradiction. Since ¢ is arbitrary, generators in J do
not have an incentive to collude either. O

An incentive to collude can be defined in other ways.
One possibility is to say there is incentive to collude if
every generator in the collusion gets a higher payoff after
a finite number of steps. Proposition 5.10 shows that,
under the assumed hypotheses, such a scenario does not
occur as there is not even a single generator that gets a
higher payoff after a finite number of iterations. Another
possible notion is that there is incentive to collude if the
aggregate payoff of the colluding generators is higher
after a finite number of steps, as formalized next.

Definition 5.11. (Incentive to collude —aggregate payoff):
Let v > 0 and assume that the stepsizes for any execution
of (39) satisfy the hypotheses of Theorem 4.7. Then, the
group of generators J has an incentive to collude under the
BID ADJUSTMENT ALGORITHM if there exists an execution
of (39) and | € Z>1 such that

> (bn(k), 2P () > w™,
neJ
for all k> 1, where

= max{ Z U (b
neJ
1/2
(1 + Qi(r) ) roand x°P'(b) € Solopr(b)}.  (42)

(41)

pt
ns l‘n

(0) [ b =07

In general, we do not know if BID ADJUSTMENT
ALGORITHM prevents collusion under this notion of
incentive under the hypotheses of Proposition 5.10. The
following result shows that if the bids of non-colluding
generators remain sufficiently close to their efficient bids,
then collusion, in the sense of Definition 5.11, can be
prevented. “How close” depends on the number of col-
luding generators, and in that sense the result is weaker
than the one established in Proposition 5.10.

Proposition 5.12. (Robustness to collusion under the BID
ADJUSTMENT ALGORITHM- cont’d): For dynamics (39),
let the hypotheses of Theorem 4.7 hold and assume that
bo(k) > ¢, for all n € [N] and k € Z>y. Assume that
at each bus that has generators connected to it, there exists
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at least one generator that follows the update scheme of the
BID ADJUSTMENT ALGORITHM. Denote these generators by
K C [N]. Then, a group of generators J C [N]\ K have no
incentive to collude, in the sense of Definition 5.11, if for all
| € Z>1, there exists an integer k; > | for which

B(r) )1/27’,

2amax

1
b\ (K < 1
I () = bl <~ (14
(43)

where by 7 (ki) is the bids of generators in the set [N]\ J
and biy,, ; is their corresponding efficient Nash equilibria.

Proof: Assume J C ([N]\K) be the set of generators
that form a collusion. Pick any generator 7 € J. By
assumption, there exists 7 € K such that 7 and 7n are
connected to the same bus. Consider any index [ € Z>,
and assume the integer k; > [ be such that (43) holds.
Then we have

by (ki) < b +

B(r) )1/27).

20 max

1
(1+
V1+|J|
If at iteration k; of the bidding process the generator 7
gets a positive utility, then it must hold that

1 B(r) \1/2
b (k) < ba () < b7 + (14 2)
V1+|J| 2amax
=b: + ! (1 + B(r) )1/27"
T VI+T] 20 max '

In the last equality we have used the fact b} = b? as they
are connected to the same bus and z* is composed of
strictly positive elements. The inequality obtained above
for the generator 7 € J can be obtained for every
generator in J. Thus, we get

B(r) )1/271.

2amax

by (ki) < b7+

1
1+
\/1+|J|(

Therefore, at k;, the maximum utility that the colluding
generators can obtain is

max{ 3 up (b (1), 2 (b(k)) |

neJ

1 B(r) \'/?
by (k) < b% + 1+ "
J( l)— J 1+|j|( 2amax)
1 B(r) \'/?2
o (k) = b7l < 1+ 7] (1+2amax) "

and 2P (b(k)) € Solsopf(b(kl))}. (44)

The above defined quantity is equivalent to the following

max{ > wn(ba (), 27 (b(k))) |

neJ
1 B(r) \/?
bo(k) — b ooé 1 r,
1b7 (k1) = 07| 1+|j|< 2amax>
1 B(r) \1/2
o (ke) = b7l < 1+|L7|(1+2amax) "



and 2P (b(k,)) € Solsopf(b(kl))}. (45)

The quantities (44) and (45) are same because if b7 (k;) #
B(r)

2amax

* 1
by V1+1T] (1 +
aggregate payoff of the colluding generators is less than
their payoff with bids

1/2
) r, then one can show that the

B(r) )1/2r}7

max{by(k;),b% — 5a

1
(1
V1+|J|
where the max is done component-wise. Focusing now
on the quantity in (45), note that

1/2
1+ B(T)> /r, and

2amax

167 (k) = b7l <

1
m<
) 1

1o\ (K1) = O 7| < \/lel( i

B(?”) ) 1/2
20 max

implies [|b(k;) —b*|| < (1+M

1/2
QQMX) r. Thus, the quantity
in (45) is less than or equal to u7;** defined in (42),
and (41) does not hold for iteration k;. Since for each [
there exists k; > [ for which this happens, generators in

J do not have an incentive to collude. O

Remark 5.13. (Limitations on robustness under generator
bounds): The robustness of the BID ADJUSTMENT ALGO-
RITHM against deviation and collusion relies heavily on
the fact that we have not considered upper bounds on
the generation capacities. In the presence of such bounds,
the generators might be able to push the bids and their
individual utilities to a higher value based on the load
at the respective bus and the capacity constraints on the
lines connected to the bus. To avoid such behavior of
market manipulation, either one can modify network ca-
pacities or investigate alternative allocation mechanisms
that disincentivizes such behavior. .

6 SIMULATIONS

We illustrate the convergence and robustness properties
of the BID ADJUSTMENT ALGORITHM using a modified
IEEE 9-bus test case [36]. The traditional IEEE 9-bus
system has 3 generators, at buses vy, v2, and v3 and three
loads at buses vs, v7, and vg. In our modified test case,
we have added one generator each at buses v, v2 and
v3. The interconnection topology is given in Figure 1(a).
The line flow limit between any two buses (v;,v;) is 2.5
except for three lines, (vs,vs), (vs,vs), and (vg,v7), for
which the limits are 1.5, 3.0, and 1.5, respectively. The
loads are y5; = 2, y; = 3, and y9 = 1, where y; denotes
the load at bus v;. The cost function for each generator
iis fi(z;) = a;x? + c;z;, where the coefficients for all the
generators are given by the vectors

a = (0.1100, 0.0950, 0.0850, 0.1000, 0.1225, 0.0750),

c=(35,3.8,1.2,0.8,1.0,1.3). (46)

For the given costs and loads, the generation profile at
the optimizer of the DC-OPF problem (2) is

x* = (1.4268,0.0732,0.2703, 2.2297,1.8987,1.1013),
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and the unique efficient NE is
b* = (3.8139, 3.8139, 1.2459, 1.2459, 1.4652, 1.4652). (47)

Figure 1 depicts the evolution of the bids and their
distance to the efficient NE along an execution of the
BID ADJUSTMENT ALGORITHM. The initial bids b(1) are
selected satisfying b,(1) > ¢, for all the generators
n € [6]. The stepsizes are constant, 8, = 0.01 for all k, and
satisfy 8, < 2a,. As predicted by Theorem 4.7, Figure 1
shows that the bids converge towards the efficient NE
b* at a linear rate and, after a finite number of steps,
remain in a neighborhood of b*. If one selects r = 1.35,
then B(r) = 0.0101 and condition (14) holds for the
stepsizes. Computing the right hand side of (16) using
these values, we conclude that bids eventually remain
in the neighborhood centered at * with radius 1.3775.
Figure 1(b) validates this claim and shows that the bound
is conservative, since bids remain in a neighborhood of
radius 0.05.

We next illustrate the robustness properties of the
BID ADJUSTMENT ALGORITHM against disturbances (cf.
Section 5.1). Figure 2 considers the same setup as above
but now with generators choosing a different stepsize
at each iteration. These differences in stepsizes can be
interpreted as a disturbance to the BID ADJUSTMENT
ALGORITHM, as discussed in Remark 5.3. In Figure 2(a)-
(b), the interval from which stepsizes are selected is con-
stant, whereas in Figure 2(c)-(d) the size of this interval
decays with time. In both cases, the bids converge to
a neighborhood of b* (in the latter case of decaying in-
terval, the bids converge to a smaller neighborhood), as
established in Proposition 5.2. Observe that the conver-
gence rate in Figure 2(a)-(b) is higher than in Figure 1(a)-
(b). This is because stepsizes are allowed to be large
in the former. However, this higher convergence rate
comes with the pitfall of loss in accuracy, cf. Remark 4.8.
Hence, to retain both properties, stepsizes should be
large initially and decay as iterations proceed. This is
seen in Figure 2(c)-(d), where stepsizes decay over time
(in expectation), yielding both high convergence rate and
accuracy. Finally, Figure 3 demonstrates the robustness
against collusion of the BID ADJUSTMENT ALGORITHM
(cf. Section 5.3), where generators 1, 3, and 5 form a
collusion. These generators may select their bids in any
fashion they want: for this example, we assume a partic-
ular strategy of bid selection, explained in Figure 3. The
plot shows that the utility of the colluding generators
eventually becomes lower than u** (defined in (34)).
Hence, there is no incentive for collusion, as ensured by
Proposition 5.10.

7 CONCLUSIONS

We have formulated an inelastic electricity market game
capturing the strategic interaction between generators
in a bid-based energy dispatch setting. For this game,
we have established the existence and uniqueness of
the efficient Nash equilibria. We have also designed
the BID ADJUSTMENT ALGORITHM, which is an iterative
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Fig. 1: Execution of the BID ADJUSTMENT ALGORITHM for the modified IEEE 9-bus test case. Plot (a) shows the network layout.
The cost function for each generator i is f;(x;) = a;x? + c;xi, with coefficients given in (46). The load is ys = 2, y7 = 3, and
yo = 1. The efficient NE b* is given in (47). Plots (b) and (c) show, respectively, the evolution of the bids and their distance to b*.
The stepsizes are 8, = 0.01 for all k£ and the initial bids are b(1) = (7.6096,9.9313, 7.6087, 8.4827,6.6175, 7.5254). Bids converge
to and then remain in a neighborhood of the efficient NE.
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Fig. 2: Execution of the BID ADJUSTMENT ALGORITHM under different stepsize selection for the example of Figure 1. All data
is the same except for the stepsizes. In plots (a) and (b), each generator at each iteration randomly selects the stepsize from the
set [0.001, 0.1] with uniform probability distribution. The bids still converge to a neighborhood of the efficient NE, but the size
of the neighborhood is bigger than that achieved in Figure 1. In plots (c) and (d), the interval of stepsize selection decays with
time to a single point 0.01. The bids now converge to the efficient NE with greater accuracy. These observations validate the

robustness guarantees of Proposition 5.2.

Edgeworth competition. We would also like to consider
scenarios where generators seek to maximize their profit
by anticipating the end of the game, and the effect that
this might have on the algorithm’s evolution. Finally,
we wish to incorporate stochastic load demands and
changing sets of generators.

strategy amenable to decentralized implementation that
provably converges to a neighborhood of the efficient NE
at a linear rate. We have characterized the robustness
properties of the algorithm against disturbances, devi-
ation in bid updates, and collusion among generators.
Future work will analyze the dynamic behavior of the
market under other bidding schemes, such as Cournot

bidding, supply function bidding, and price-capacity APPENDIX

bidding and under different learning schemes. We plan
to generalize our setup to include generator bounds
and analyze the resulting network-constrained Bertrand-

This appendix presents the proofs of several auxiliary
results useful in establishing the convergence of the BID
ADJUSTMENT ALGORITHM in Section 4.2.
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Fig. 3: Execution of the BID ADJUSTMENT ALGORITHM for the
example considered in Figure 1 with generators 1, 3, and 5
forming a collusion. The initial condition is the same and the
stepsize is 0.01 at each iteration for generators 2, 4, and 6. For
each n € {1, 3,5}, at each iteration k, b, (k) = 0.99 * bp41(k)
if this value is bigger than or equal to b;,. Otherwise, b, (k) is
selected randomly from the interval [b},, by, + 1], with uniform
probability distribution. With this choice of bid, the colluding
generators aim to get a positive production signal and at the
same time bid high enough so as to obtain a high utility. The
plot shows the evolution of the difference between the utility
obtained at each iteration, u, (b, (k),z2P"(k)), and the utility
at the optimal bid and generation, u, (b}, z9P*(b*)) for each
n € {1,3,5}. This value becomes negative for all generators
after a ﬁmte number of iterations. Since uy;** > wu, (b}, x;,), the
example shows that (40) does not hold.

Proof of Lemma 4.3: Equation (11) follows directly
from b, (k) > ¢,, so we focus on proving the latter. We
proceed by induction. Note that b,(1) > ¢, for all n €
[N]. Assume that b, (k) > ¢, for some k € Z>; and let
us show b, (k + 1) > ¢,. We have

bn(k + 1) = [bn (k) + B2 (k) — 4 (k)]

(g) [bn(k)*Ban(k)]+(:) [bn(k) Bi (b”(k)i_cn)r

2a,
(1= 25 )out) + g

2a,
© (1 _ Br Cn_
- (1 2an>b"(k)+5’“2an’

where (a) is due to the fact that z5P*(k) > 0, (b) follows
from the definition of ¢, (k) given the fact that b,,(k) > ¢,
and (c) follows from the assumption that 8; < 2a,
for all n (which makes both terms in the expression
positive). By contradiction assume b,(k + 1) < c,.

Then, (1 — B—’“)b (k) which implies that
bn(k) < cp, a contradlctlon. O

Proof of Lemma 4.4: The proof of Lemma 4.3 shows
that for all n, k, the term inside the operator [-]* in Step 3
of Algorithm 1 is nonnegative. Thus, the projection can
be dropped and we write

bn(k + 1) = bn (k) + Br(@7P* (k) — an(k))

b (k) + Bl () - o (25 =)

= (1= 2 Yotk + e () + o)

2a, 2a,,

16

(1= 22 o) + Bl () —

D (1= 25 Youlk) + Lt + Bl ) — 7).

2a,

* * Cn
22) + 0 (27 + 5.-)

In the above expression, we have used (11) in the equal-
ity (a) and (10) in the equality (b). O
Proof of Lemma 4.5: Using Lemma 4.4, we write

(b(k +1) —b(k),b" — b(k))
=(b(k+1) =0k +1),b" —b(k))
+ (b°°(k 4+ 1) — b(k),b* — b(k))
N
= B ) — 2B D) 3 (5 bu(h))?
n=1 n
= Zn 1 E( by, — bn(k)) 2 2a€:dbe(k) - b*||2

For the inequality (a), we have used the fact that
(@t (k) — 2", b"=b(k)) = ((=z°P" (), b") — (2", b7))
+ ({27, b(k)) — (27" (k), b(k))) > 0.

The last inequality follows from the fact that z* and

z°P(k) are the optimizers of (3) given b* and b(k),

resp., making both expressions on the right-hand side

nonnegative. O
Proof of Lemma 4.6: Consider the following

[[6(k + 1) — b(k)|?

(a)z(Zan b —
<Z (2 *—bn<k>>)2+izﬁi<xzpt<k>—x;z>2

2
ba () + Be(@5 (k) - @7,

© ﬁ § X
< g2 [Ib(R) = b1 + 26| (k) — 2] (48)

In the above expression, (a) follows from the expression
of b,(k + 1) from Lemma 4.4, (b) follows from the
inequality (z + y)? < 2(z? + y?) for z,y € R, and (c)
follows from the definition of a.,;,. Note that

o T* N o *
|2oP (k) — a* || < S0 [aoPt (k) — a7
< SN ||+ k| = ST (a9 (k) + 27) = 2yotal-

The proof concludes by using the above bound in (48).
O
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