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Abstract— Optimal power flow (OPF) problems are non-
convex and large-scale optimization problems. Finding an op-
timal solution for the OPF problem in real time is challenging
and important in various applications. Recent studies show
that a wide class of OPF problems have an exact semidefinite
programming (SDP) convex relaxation. However, only few
works have considered distributed algorithms to solve these.
In this paper, we propose a scheduled-asynchronous algorithm
with this objective. The proposed algorithm follows an ADMM-
like iteration for every edge in the electrical network and is
asynchronous in the sense that the agents do not simultaneously
update their local variables, but only do so when they have
received fresh information from all of their neighbors. In
addition, if the electrical network topology is bipartite, the
proposed algorithm has a convergence rate of O(1/n), where
n is the iteration per agent. The asynchronous property and
fast convergence rate make the proposed algorithm suitable
for the OPF problem. Simulation studies demonstrate that the
proposed algorithm is scalable with the number of buses and
robust to network effects including delays and packet drops.

I. INTRODUCTION

The OPF problem is known to be a non-convex opti-
mization problem that minimizes electricity generation cost
subject to voltage and power flow constraints. Due to its
large scale and non-convex nature, it is challenging to solve
this problem in general, and, therefore, solutions are typi-
cally found off-line for centralized planning. However, the
integration of renewable energy resources into distribution
networks results into a larger operational uncertainty. In
such cases, networks with better robustness and tolerance
to intermittency are needed, for which the real-time solution
to the OPF problems would be beneficial. Motivated by the
increasing need of real time OPF solvers, in this paper we
develop a distributed algorithm to solve OPF problems.

Literature review: Finding a global optimum for the OPF
problem is challenging, so most existing algorithms only
guarantee a local optimum, see e.g. [1]–[3]. The recent
work [4] shows that the SDP convex relaxation on the
OPF problems is exact for many OPF examples and a
global optimal solution can be obtained. Conditions on
the exact convex relaxation have been further established
in [5], [6]. For cases such that SDP does not provide a
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feasible solution, a near global optimal solution can still
be obtained [7], [8]. Though centralized SDP algorithms
have been well studied, only few works have considered
distributed algorithms to solve the SDP problem associated
with the OPF problem, which may lead to the near real-
time global optima. The work [9] proposes gradient-based
primal and dual algorithm method for this purpose. The
algorithm exhibits fast convergence in the presented sim-
ulation studies and its complexity only grows linearly with
respect to the problem size. The drawback of the algorithm
is that only simple voltage magnitude constraints and linear
objective functions are considered. How the constraints on
the active/reactive power or nonlinear objective functions
affect the algorithm is unclear. In [10], the network is first
divided into several regions and the alternating direction
method of multipliers (ADMM) is used, thereby relying on
synchronization between the agents of the regions.

The OPF problem can be seen as a separable optimization
problem because every constraint and objective function
only relates to the voltage at one bus and its neighbor-
ing buses [9], [11]. Plenty of distributed algorithms are
available for separable optimization, but they may not be
a good fit for distributed OPF. ADMM has a convergence
rate O(1/n) with no assumption on strong convexity of
the cost function [12], while the implementation requires
clock synchronization between the agents. Gradient-based
methods are amenable to asynchronous implementation [13],
but many of those have a rate of convergence O(log(n)/n)
or slower [14]. This highlights the need for a distributed al-
gorithm with combined fast convergence and asynchronous
properties.

Statement of contributions: We develop a scheduled-
asynchronous algorithm to solve the OPF problem in a
distributed way. The OPF problem is first formulated as
a distributed optimization problem with every bus (node)
being an agent in the network. Every agent has a cost func-
tion and local constraints with additional equality constraints
on neighbors’ variables to ensure that every copy of the
variables coincide. We apply the SDP convex relaxation on
the distributed OPF problem and assume that the conditions
for the exact convex relaxation hold. We propose that every
pair of connected buses do alternate minimizations in such
a way that any two buses sub-network follows an ADMM-
like iteration. In this way, every bus only performs a local



minimization when all neighboring buses have updated
their variables after the bus’s previous minimization. The
algorithm does not require clock synchronization between
agents, while it requires subtle ordering of iterations. Un-
der mild conditions, the proposed algorithm converges for
general SDP-relaxed OPF problems. Furthermore, if the
network is bipartite, the algorithm reduces to ADMM and
has a O(1/n) convergence rate. One important special case
of a bipartite graph is the tree-network topology. Consid-
ering that distribution networks typically have tree-network
topology, the proposed algorithm is especially suitable for
the OPF problem in distribution networks. For reasons of
space, proofs are omitted and will appear elsewhere.

Organization: Section II introduces the notations used in
this paper. In Section III, a standard OPF problem and its
distributed formulation are introduced. In Section IV, the
scheduled-asynchronous algorithm is developed. We then
demonstrate the effectiveness and the robustness of the
proposed algorithm through the simulations in Section V.
Some concluding remarks are made in Section VI.

II. PRELIMINARIES

This section introduces some notations and graph-
theoretic concepts that will be used in the paper.

A. Notation

We denote the sets of real and complex numbers by
R and C, respectively. Let S+ and Hn be the set of
positive semidefinite matrices and n-dimensional Hermitian
matrices, respectively. The cardinality of a set N is denoted
as | N |. For a complex number a ∈ C, we let |a| and ∠a
denote the complex modulus and angle of a. The 2-norm of
a complex vector v ∈ Cn is denoted as ‖v‖. For a complex
matrix A ∈ Cn×n, let A∗ be the conjugate transpose. Denote
Tr{A} as the trace of A.

B. Graph Theory

We review basic concepts from graph theory follow-
ing [15]. We denote a graph as G = (N , E), where N ⊆ N
is the set of the vertices and E ⊆ N ×N is the set of edges.
In undirected graphs, a pair of nodes is undirected, that is,
{i, k} = {k, i} ∈ E . The local neighborhood of a node k in
an undirected graph is N k := {l ∈ N | {l, k} ∈ E} ∪ {k}.
In directed graphs, a pair of vertices {i, k} in E is ordered,
in such a way that, given {i, k} (or i→ k,) i is distinguished
as a tail and k distinguished as the head node, respectively.
A path in an undirected graph is a sequence of edges
which connects a sequence of vertices. A directed path is a
sequence of edges connecting a sequence of vertices with
an additional restriction that the edges are all oriented in the
same direction. A directed cycle is a directed path (with at
least one edge) whose first and last vertices are the same.

An orientation of an undirected graph is an assignment of
exactly one direction to each of the edges. The orientation is
acyclic if the assignment does not form any directed cycle.

III. PROBLEM FORMULATION

This section introduces our problem of interest. We begin
with a general matrix formulation of the optimal power
flow (OPF) problem over an electrical network. We then
follow the exposition in [11] to rewrite the OPF problem
as a combination of several smaller-scale interconnected
subproblems, which are further convexified by dropping the
rank constraints. The resulting SDP problem establishes the
foundation for our distributed algorithm design.

Consider an electrical network with generation NG buses,
and edge set E . Let N = NG∪NL and denote its cardinality
by N . We denote the phasor voltage at bus i by Vi =
Eie

jθi , where Ei ∈ R and θi ∈ [−π, π) are the voltage
magnitude and phase angle, respectively. The active and
reactive power injections at bus k are given by the power
flow equations [16]

Pk = Tr{YkV V ∗}+ PDk
,

Qk = Tr{Y kV V ∗}+QDk
,

where V ∈ CN is the collection of voltage of all buses,
Yk, Y k ∈ HN are derived from the admittance matrix of
the electrical network, and PDk

, QDk
∈ R are the active

and reactive power demands at bus k.

The OPF problem involves the following box constraints

V 2
k ≤ |Vk|2 ≤ V

2

k, ∀k ∈ N
P k ≤ Pk ≤ P k, Q

k
≤ Qk ≤ Qk, (1)

|Vi − Vk|2 ≤ V ik, ∀{i, k} ∈ E ,

where V ik is the upper bound of the voltage difference be-
tween buses i, k, V k and V k are the lower and upper bounds
of the voltage magnitude respectively. All P k, Qk, P k, Qk
are defined similarly. The objective function for the OPF
problem is given as a quadratic function of the active power
injections as follows∑

k∈NG

ck2P
2
k + ck1Pk, (2)

where ck2 > 0, ck1 ∈ R. Define the decision variable as
W = V V ∗. The OPF problem is formulated in the following

(P1) min
a,W

∑
k∈NG

ak,



subject to[
ck1(Tr{YkW}+ PDk

)− ak ?√
ck2(Tr{YkW}+ PDk

) −1

]
� 0, ∀k ∈ NG,

(3a)

P k ≤ Tr{YkW}+ PDk
≤ P k, ∀k ∈ N , (3b)

Q
k
≤ Tr{Y kW}+QDk

≤ Qk, (3c)

V 2
k ≤ Tr{MkW} ≤ V

2

k, (3d)

Tr{MikW} ≤ V ik, ∀{i, k} ∈ E , (3e)

W � 0, rank(W ) = 1, (3f)

where ? denotes the complex conjugate of the off-diagonal
elements, a ∈ R| NG |, Mk,Mik ∈ HN are defined so that
Tr{MkW} = |Vk|2 and Tr{MikW} = |Vi − Vk|2. Note
that Eq. (3a) together with the introduction of the new
variable a allows us to write a linear objective function
and move the quadratic dependence to the constraints.
Constraints (3b-3e) come from Eq. (1). The combined
constraints W � 0 and rank(W ) = 1 in (3f) correspond
to writing the voltage as a matrix variable.

The OPF problem above can be reformulated in a dis-
tributed way as follows. We start from the observation that
every constraint except Eq. (3f) in (P1) is either related
to the power injection at one bus or the voltage difference
between connected buses. In addition, the power injection
at one bus is only related to the voltage of the buses it
is connected to. The property is embedded in the non-zero
entries of the admittance matrix. We can therefore rewrite
constraints (3a-3e) by defining new variables Wk ∈ H| Nk |

for all k ∈ N , where Wk := V̂kV̂
∗
k and V̂k ∈ C| Nk | is the

collection of voltages of bus i ∈ N k. In this way, we obtain

[
ck1(Tr{Yk,rWk}+ PDk

)− ak ?√
ck2(Tr{Yk,rWk}+ PDk

) −1

]
� 0, ∀k ∈ NG,

(4a)

P k ≤ Tr{Yk,rWk}+ PDk
≤ P k, ∀k ∈ N , (4b)

Q
k
≤ Tr{Y k,rWk}+QDk

≤ Qk, (4c)

V 2
k ≤ Tr{Mk,rWk} ≤ V

2

k, (4d)

Tr{Mik,rWk} ≤ V ik, ∀{i, k} ∈ E . (4e)

Here, Mk,r is the principal submatrix of Mk obtained by
dropping the rows and columns associated with the buses
in N \N k. The matrices Mik,r, Yk,r, Y k,r are defined
similarly.

Instead of solving (P1), we view Wi, i ∈ N , as a new
state variable and consider the following distributed convex
optimization problem

(P2) min
a,W1,W2,...,WN

∑
k∈NG

ak, (5)

subject to

Eq. (4) holds, Wk � 0, ∀k ∈ N ,
Wk(k̂, k̂) = Wi(k̂, k̂), ∀{i, k} ∈ E ,
Wk (̂i, k̂) = Wi(̂i, k̂),

where k̂ denotes the row (or column) of Wi associated
with bus k. Notice that if the additional non-convex rank
constraints, rank(W opt

i ) = 1, ∀i ∈ N , are imposed on
(P2), (P2) is equivalent to (P1) [9], [11]. Conditions for
(P2) to have a rank one optimum can be found in [11].
We will assume the conditions in the reference hold so that
a solution to (P2) is a solution (P1) as well. In the rest
of the paper, every bus is considered as an agent and the
bidirectional communication between connected buses are
assumed. We consider distributed algorithms such that every
agent interchanges information with its neighbors about its
local variables to solve (P2). The focus of this manuscript
is on developing the distributed algorithm.

IV. SCHEDULED-ASYNCHRONOUS DISTRIBUTED

ALGORITHM

In this section, we propose a scheduled-asynchronous
block-wise distributed optimization algorithm to tackle
problem (P2). For convenience of exposition, we rewrite
this optimization problem in the following form

min
Xi∈X i,i=1,...,N

∑
i∈N

fi(Xi) (6)

s.t. Gik(Xi, Xk) = 0, ∀{i, k} ∈ E ,

where Xi = {ai,Wi}, X i is the constraint set of Xi

including (4) and the constraint Wi � 0, and Gik is a
compact-form, functional representation of the linear con-
straints Wk(k̂, k̂) = Wi(k̂, k̂), Wk (̂i, k̂) = Wi(̂i, k̂), given
as

Gik(Xi, Xk) =


Tr{B1,kiWk −B2,ikWi}
Tr{B2,kiWk −B1,ikWi}
Tr{B3,kiWk −B4,kiWi}
Tr{B4,kiWk −B3,kiWi}

 , where

B1,ki(l,m) =

{
1, if l = m = k̂,

0, otherwise,

B2,ik(l,m) =

{
1, if l = m = k̂,
0, otherwise

B3,ki(l,m) =

{
1, if (l,m) = (k̂, î) or (l,m) = (̂i, k̂),
0, otherwise

B4,ki(l,m) =


−j, if (l,m) = (k̂, î),
j, if (l,m) = (̂i, k̂),
0, otherwise



A. Design Rationale

To motivate our algorithm design, we start by considering
the optimization in (P2) on a two-bus network, N = 2. In
this case, the problem exactly corresponds to the standard
form for the ADMM algorithm [17],

min
Xi∈X i

f1(X1) + f2(X2)

s.t. G12(X1, X2) = 0.

An iteration of ADMM is given as

Xt+

1 = argminX1∈X 1
f1(X1) (7a)

+ (pt12)>(G12(X1, X
t
2)) +

ρ

2
‖G12(X1, X

t
2)‖2,

Xt+

2 = argminX2∈X 2
f2(X2) (7b)

+ (pt12)>(G12(Xt+

1 , X2)) +
ρ

2
‖G12(Xt+

1 , X2)‖2,

pt
+

12 = pt12 + ρG12(Xt+

1 , Xt+

2 ), (7c)

where the superscript t is the time at which the update
occurs, t+ is the time for the next round of the optimization,
ρ is a given constant, and pt12 ∈ R4 is the collection of
Lagrange multipliers associated with edge (line) {1, 2}.

For general networks, N > 2, the optimization can
be understood as a combination of a number of two-bus
sub-problems. This viewpoint inspires us to propose the
following design: whenever bus i receives the updated Xt

k

from all its neighboring nodes k ∈ N i, it solves the
following optimization

Xt+

i = argminXi∈X i
fi(Xi) (8)

+
∑
{i,k}∈Ê

(
(ptik)>Gik(Xi, X

t
k) +

ρik
2
‖Gik(Xi, X

t
k)‖2

)
+
∑
{k,i}∈Ê

(
(ptik)>Gik(Xt+

k , Xi) +
ρik
2
‖Gik(Xt+

k , Xi)‖2
)
,

where Ê is an orientation of E that defines the ordering
of optimization of terminal nodes for every edge. The
terminal nodes of each edge take turns in performing the
optimization in (8). Notice that, under the proposed design,
the difference in the number of iterations made between
two connected nodes is at most one due to the alternating
execution (the node that does (7a) goes first and hence may
have executed one more iteration than the other node at
any given time). Such ordering is encoded by the orientated
graph Ĝ = (N , Ê). The tail node of each edge does the first
step (7a) and the head node does the second step (7b). Each
node i updates the Lagrange multiplier according to

Head node: pt
+

ik = ptik + ρikGik(Xt+

k , Xt+

i ), (9a)

Tail node: pt
+

ik = ptik + ρikGik(Xt+

i , Xt+

k ). (9b)

Notice that Eq. (9) generates the same pt
+

ik for any connected
nodes i and k. Updating pt

+

ik locally at the terminal nodes

can reduce the communication burden and enhances robust-
ness. Let pt = {ptik, {i, k} ∈ E} ∈ R4| E | for convenience.
Algorithm 1 presents formally the proposed strategy.

Algorithm 1
1: Initialize:

X0 ∈
∏
i∈N X i, p0 = 0, γ0

l = 2ε,∀l ∈ N
2: Requires: an acyclic orientation of G: Ĝ
3: For local variable Xi at bus i,
4: while (received Xt

k, γ
t
k from bus k ∈ N i) and (∃l ∈ N i

s.t. γtl > ε) do
5: If i is the tail node of {i, k} ∈ Ê ,
6: compute ptik and then solve opt. (8)
7: else if i is the head node of {i, k} ∈ Ê ,
8: solve opt. (8) and then update pt

+

ik

9: end
10: For all k ∈ N i, compute
11: γt

+

i =
∑
{i,k}∈E‖Gik(Xt+

i , Xt+

k )‖2

12: Send Xt+

i and γt
+

i to all k ∈ N i

13: end while

In Algorithm 1, each bus i only does optimization when it
received updates k ∈ N i which comes after its last iteration.
The implementation of Algorithm 1 does not require syn-
chronization between nodes while involves subtle ordering.
We therefore refer Algorithm 1 as scheduled-asynchronous
distributed algorithm. Note that we use the global time index
t to time-stamp all the iterations in Algorithm 1 only for
convenience. Every agent tracks the number of iterations
locally, but in general does not know the global time.

The following result establishes that Algorithm 1 con-
verges under mild conditions.

Theorem IV.1. (Convergence of Algorithm 1). If the
following conditions hold

1) Cost functions fi, i ∈ N , are convex,

2) (P2) is feasible and the Slater conditions holds,

3) The optimum of (P2) has rank(W ?
i ) = 1, ∀i ∈ N ,

4) The orientation Ĝ is acyclic,

then the sequence (Xt, pt) generated by Algorithm 1 con-
verges to the optimal primal-dual pair (X?, p?) as t→∞.

We want to remark that condition 1) in Theorem IV.1
holds for most OPF problems. Conditions 2)-3) are the
assumptions for exact SDP convex relaxation of the OPF
problem. Condition 4) prevents the “locked” situation from
happening, which we discuss in the following section.

B. Directed Graph Design and Convergence Rate

The orientation Ĝ given to the electrical network graph
must be free of cycles. Otherwise, given the meaning



encoded by the orientation of each edge, if a cycle was
present, then the algorithm would get stuck: every node at
a cycle would be waiting for the update from a neighboring
node in the cycle. The network can determine an acyclic
orientation in a distributed way as follows. Assign every
node with a number k ∈ N so that any connected two
nodes in G have a different number. Then, for each edge
in E , designate the node with the smallest number to be
the tail node and the other node to be the head node. It
can be proven that the resulting graph Ĝ is acyclic, see [18]
for details. Other than the acyclic requirement, it is desired
to minimize the diameter of the acyclic orientation because
the averaging time for two consecutive iterations for every
node heavily depends on the diameter. Therefore, though
finding an optimal orientation is NP-hard, we are motivated
to develop a way to find such orientation.

We formally define the optimization problem that mini-
mizes the diameter of the orientation as follows. Let ω be an
acyclic orientation of G, and Ω collect all possible acyclic
orientations. The directed graph derived from G and ω ∈ Ω
is written as Gω . We write the optimization of interest in
the following

ω? = arg min
ω∈Ω

(
max
h∈Pω

|h|
)
, (10)

where Pω is the set of path in Gω , and |h| is the number of
arc in the path h. The optimization (10) is directly related
to a classical problem of finding the chromatic number of
an undirected graph [19],

C(G) = 1 + min
ω∈Ω

max
h∈Pω

|h|. (11)

We explain how Eq. (11) holds as follows. If C(G) =
m, then N is partitioned into m subsets given as N =
C1 ∪ · · · ∪ Cm. We can assign numbers {1, 2, ...,m} to all
the nodes according to C(G). The smallest number is first
assigned to C1. We then choose the second smallest number
to C2 and repeat the procedure. Then, for each edge in E ,
designate the node with the smallest number to be the tail
node and the other node to be the head node. The resulting
graph Ĝ is acyclic because there exists at least one arc in
a reverse direction with the rest of arcs in every cycle of
G. Furthermore, the diameter is bounded by m− 1 because
there exists no path between nodes with the same color (ζ)
and the distance between same color nodes is at most m.

Finding C(G) is again NP-hard and challenging to solve.
There are only algorithms that approximate the solution,
see for example [20]. Fortunately, the following assumption
holds for most electrical networks [21], which makes finding
C(G) easier

Assumption 1. (Planar network topology). Electrical net-
works have simple planar network topology.

The chromatic number of planar graphs is upper bounded

TABLE I

NUMBER OF ITERATIONS NEEDED FOR γl < 10−4 , ∀l ∈ N

N. edges Iter./bus Iter./bus
5% drop

Iter./bus
10% drop

6 bus 11 50 62 84
14 bus 20 100 139 184
30 bus 41 158 376 398

by four [22]. Furthermore, there exists a quadratic time
algorithm to find the four coloring of the planar graph [23].
We can assume that every agent (or bus) registers to a cen-
tralized entity. The centralized entity then use the algorithm
in [23] to assign a number (or color) to every agent. In many
cases, the number of unplugged agents are relatively small
compared to N . The acyclic graph defined by centralized
entity is then near optimal.

Both finding the chromatic number and the analysis of
the convergence rate of Algorithm 1 can be simplified
by considering certain graph topologies. If the electrical
network is bipartite, then the chromatic number is trivially
two. Furthermore, optimization (6) can be rewritten as

min
X∈X

∑
i∈Na

fi(Xi) +
∑
i∈N b

fi(Xi) (12)

s.t. Gab(Xa, Xb) = 0,

where N a ∪N b = N forms a partition of N , Xa =
{Xi, i ∈ N a}, Xb = {Xi, i ∈ N b}, and Gab is derived from
Gik. By assigning nodes in N a with smaller numbers com-
pared to those in N b, the schedule-asynchronous distributed
algorithm generates an alternating update sequence between
N a and N b that resembles ADMM. Without assuming
strong convexity of fi, ADMM has a convergence rate of
O(1/n) [12]. The proof of the convergence rate for opti-
mization (12) follows similar steps as in the literature [12].

Remark IV.2. (Bipartite graphs in distribution networks).
A graph is bipartite if and only if it does not has an odd
cycle. A tree network topology is a special case of bipartite
graph. In fact, many existing distribution networks have
a tree network topology or only with few cycles, which
may remain bipartite. Hence, the proposed algorithm gets
O(1/n) convergence rate and short idling time in many
applications. �

V. SIMULATIONS

We validate the scheduled-asynchronous algorithm over
the six bus testbed in [24], IEEE 14, and 30 bus testbeds.
The cost functions are selected such that the OPF problems
have rank-one optima. We also choose an acyclic orientation
for every test case. The stopping criteria is that γl ≤ 10−4

for all l ∈ N . The algorithm parameter ρ is chosen to be
700. The simulation results are showed in Table I.



We observe that the number of iteration per node grows
only linearly with respected to the number of edges in the
electrical network. The property shows a sub-linear rate of
convergence. To test the algorithm robustness, we simulate
the operation scenario in which, if one node waits for more
than a certain threshold time to hear from its neighbors,
it precedes with its optimization by using the state of
the previous step of neighboring nodes. The 5% and 10%
of unsuccessful line communications are simulated. The
algorithm remains convergent at the expense of an increase
in the number of iterations per node. This increase in the
number of iterations can be considered the price to pay to
bring the variables back to optimality under this type of
disturbance.

VI. CONCLUSIONS

In this paper, we have proposed a scheduled-asynchronous
distributed algorithm for OPF applications. The OPF prob-
lem is first rewritten as a combination of non-convex
subproblems. With the fact that SDP convex relaxation
can provide a global or near global optimal solution in
most existing electrical networks, we convexify those sub-
problems by dropping the rank constraints. The proposed
algorithm is shown to be suitable for the SDP convexified
OPF problem, especially for distributed networks with tree
network topology. The novel distributed algorithm includes
an ADMM-like iteration between connected lines without
the need of clock synchronization between buses. Simulation
studies show that the complexity at one node only grows
linearly with the size of the network. Future work will seek
to improve the guarantee on the convergence rate for general
network topologies and develop a rigorous analysis on the
robustness properties over various network effects such as
delays and packet dropouts.
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