
1

Scheduled-Asynchronous Distributed Algorithm
for Optimal Power Flow
Chin-Yao Chang Jorge Cortés Sonia Martı́nez

Abstract—Optimal power flow (OPF) problems are non-convex
and large-scale optimization problems with important applica-
tions in power networks. This paper proposes the scheduled-
asynchronous algorithm to solve a distributed semidefinite pro-
gramming (SDP) formulation of the OPF problem. In this
formulation, every agent seeks to solve a local optimization with
its own cost function, physical constraints on its nodal power
injection, voltage, and power flow of the lines it is connected to,
and decision constraints on variables shared with neighbors to
ensure consistency of the obtained solution. In the scheduled-
asynchronous algorithm, every pair of connected nodes in the
electrical network update their local variables in an alternating
fashion. This strategy is asynchronous, in the sense that no clock
synchronization is required, and relies on an orientation of the
electrical network that prescribes the precise ordering of node up-
dates. We establish the asymptotic convergence properties to the
primal-dual optimizer when the orientation is acyclic. Given the
dependence of the convergence rate on the network orientation,
we also develop a distributed graph coloring algorithm that finds
an orientation with diameter at most five for electrical networks
with geometric degree distribution. Simulations illustrate our
results on various IEEE bus test cases.

I. INTRODUCTION

The optimal power flow (OPF) problem seeks to minimize
the cost of electricity generation subject to voltage and power
flow constraints. Finding a solution to the OPF problem
is challenging due to its large-scale and non-convex nature
and, therefore, it is typically solved off-line for centralized
planning of power networks. However, recent technological
advances involving the integration of renewable distributed
energy resources introduce higher operational uncertainty in
managing the electrical grid, motivating the need for real-time
methods to solve OPF problems. Ideally, such methods should
enjoy robustness against disturbances and tolerance against
intermittent engagement of energy resources. An additional
consideration further justifying the need for such methods
is the increase of plug-and-play devices in distribution net-
works and the ensuing uncertain overall system configuration.
Motivated by these considerations, this paper introduces a
provably-correct distributed algorithm to solve a convexified
OPF problem over a power network.

Literature review: Finding a global optimum of the OPF
problem is challenging due to its non-convexity, so most
existing algorithms only guarantee a local optimum, see

C.-Y. Chang, Jorge Cortés, and Sonia Martı́nez are with the Department of
Mechanical and Aerospace Engineering, University of California, San Diego,
CA, USA. Email: {chc433,cortes,soniamd}@ucsd.edu

A preliminary version of this work appeared as [1] at the 2017 American
Control Conference.

e.g., [2]–[4]. A commonly used approach in the literature [5],
[6] to convexify the problem is the use of DC power flow
equations. An alternative route for the convexification of the
OPF problem is employing semi-definite programming (SDP).
The work [7] shows that the SDP convex relaxation on the OPF
problem is exact for many networks, a fact that allows to find a
global solution. Conditions on the exact convex relaxation have
been further established in [8], [9]. Several recent works [10],
[11] further develop SDP-based algorithms for a near-global
optimal solution for OPF problems where the SDP convex
relaxation does not provide a feasible solution. Relatively few
works consider solving the OPF problem in a distributed way.
The paper [12] proposes a distributed approach to the DC-
OPF problem, where the electrical network is decomposed
into several regions and each region solves its regional DC-
OPF problem while iteratively matching its tie-line powers
with the connected regions. The work [13] considers an SDP-
based convexification of the OPF problem and then proposes
gradient-based primal-dual algorithm which displays fast con-
vergence to the optimum in simulation studies. The algorithm
design is limited to voltage magnitude constraints and linear
objective functions and does not incorporate constraints on the
active/reactive power. The work [14] also considers a SDP-
based relaxation of the OPF problem, partitions a so-called
weakly-meshed network into several areas so that the “macro”
graph describing the interconnected areas has a tree topology,
and applies the alternating direction method of multipliers
(ADMM) to solve the distributed optimization associated
with the macro graph. In general, gradient-based methods are
amenable to asynchronous implementations, but have a rate
of convergence O(log(n)/n) or slower [15]. In comparison,
ADMM is faster with a O(1/n) convergence rate [16], while
requiring a synchronous implementation. Drawing connections
with the increasing body of work on gossiping in network
systems [17]–[19], our algorithm design prescribes pairwise
updates between neighboring agents to avoid the requirement
of clock synchronization while enjoying similar convergence
properties as ADMM.

Statement of contributions: Our starting point for the al-
gorithm design is the formulation of a distributed version of
the OPF problem, where each bus (node) plays the role of an
agent with computation and communication capabilities. Every
node creates local copies of the voltage of the neighboring
nodes which are physically connected to it. Each node poses
an optimization with its local cost function, constraints of its
nodal power injection and voltage, and constraints associated
with the power flow of the connected lines. On top of

2

those local physical constraints, every node also has equality
constraints sharing to its neighbors to ensure that every copy
of the variables coincides. We then consider the convexifica-
tion of this distributed OPF formulation using semi-definite
programming (SDP). Our first contribution is the synthesis
of the scheduled-asynchronous algorithm to solve the dis-
tributed OPF formulation in a distributed way. In our design,
every pair of connected buses solves their local optimization
problem in an ADMM-like, alternating fashion. To establish
the order of such alternating iterations across the network,
every bus only updates its variables when all the neighboring
buses have finished an update later than its last update. This
logic does not require any clock synchronization between the
agents, in contrast to ADMM. Our second contribution is the
convergence analysis of the proposed scheduled-asynchronous
algorithm. Under reasonable assumptions on the data defining
the optimization problem and the requirement than the graph
orientation is acyclic (to avoid “locked” situations where every
bus is waiting for an update from at least one of its neighbors),
we employ the LaSalle Invariance Principle to establish the
convergence to the primal-dual solution. Given the dependence
of the algorithm convergence on the orientation of the network
graph, our third contribution concerns the optimal selection
of this orientation. In fact, the time need for all agents to
finish at least one update is directly related to the diameter
of the oriented network graph, and hence it is desirable to
minimize it. In general, finding an orientation that minimizes
the diameter is equivalent to finding the chromatic number of
the graph, which is NP-hard. We design a distributed graph
coloring algorithm that finds an orientation with diameter
at most five for electrical networks with geometric degree
distribution. The distributed nature of this strategy makes it
naturally robust to changes in the network topology. Simula-
tions on various IEEE bus test cases of the combined graph
coloring and scheduled-asynchronous algorithms illustrate the
performance and robustness of the proposed design.

Organization: Section II presents basic concepts and nota-
tion. Section III introduces the OPF problem and its distributed
formulation. Section IV presents the scheduled-asynchronous
algorithm and analyzes its convergence properties. Section V
introduces a distributed graph coloring algorithm to obtain an
acyclic orientation of small diameter. Section VI illustrates the
effectiveness of the proposed algorithm in benchmark IEEE
test cases. Finally, we gather our conclusions in Section VII.

II. PRELIMINARIES

This section introduces basic notation and concepts from
graph theory and optimization.

A. Notation

We denote by N, R and C the sets of positive integers,
reals and complex numbers, respectively. We denote by | N |
the cardinality of the set N . For a complex number a ∈ C, we
let |a| and ∠a be the complex modulus and angle of a. The
2-norm of a complex vector v ∈ Cn is written as ‖v‖. Let

S+ ⊂ Cn×n and Hn ⊂ S+ be the set of positive semidefinite
and n-dimensional Hermitian matrices, respectively. For A ∈
Cn×n, we let A∗ be its conjugate transpose and Tr{A} be
its trace. For A,B ∈ Hn, we denote their inner product by
〈A,B〉 = Tr{AB}. We use 5F to denote the gradient of the
scalar function F .

B. Graph Theory

We review basic notions of graph theory following [20].
A graph is a pair G = (N , E), where N ⊆ N is its set of
vertices or nodes and E ⊆ N ×N is its set of edges. A loop
is an edge that connects a vertex to itself. Two nodes i, k ∈
N are connected if {i, k} ∈ E . The graph is undirected if
{i, k} = {k, i} ∈ E . The local neighborhood of a node k in
an undirected graph is N k := {l ∈ N | {l, k} ∈ E}∪{k}. The
degree of a node k is | N k |−1. In a directed graph, each pair
of vertices in E is ordered such that the corresponding edge
{i, k} has a direction, with i and k distinguished as the tail and
head nodes, respectively. Node i is a source (resp. sink) if it is
the tail (resp. head) node of all the edges it belongs to. Node
k is an out-neighbor of node i if {i, k} ∈ E . The out-degree
of node i is defined as |{k ∈ N |{i, k} ∈ E}|. A path in a
(directed or undirected) graph is a sequence of vertices such
that any two consecutive nodes correspond to an edge of the
graph. The length of a path is the number of its corresponding
edges. The diameter of a graph is the maximum length of the
shortest path connecting any two graph vertices in the graph.
A cycle is a path whose first and last vertices are the same. A
graph is acyclic if it contains no cycles. An orientation of an
undirected graph is an assignment of exactly one direction to
each of its edges. A graph orientation is acyclic if the resulting
directed graph is acyclic. A graph is bipartite if the set of its
vertices can be decomposed into two disjoint subsets such that,
within each one, no two vertices are connected.

A simple graph is a graph with no loops nor multiple edges
connecting any pair of two vertices. A planar graph is a graph
that can be drawn on the plane in a way that its edges intersect
only at their endpoints. A vertex-induced subgraph of G =
(N , E), written as Gs[N s], is a subgraph of G with the set
of nodes N s ⊆ N and set of edges Es = E ∩(N s×N s).
A chordal graph is a graph that does not contain an induced
cycle of length greater than four. Graph coloring consists of
assigning a color to every node in the graph in such a way
that any pair of connected nodes have different colors. The
smallest number of colors needed to color a graph G is called
its chromatic number.

C. Strong Duality of Convex Optimization

Here, we review some fundamental concepts in convex
optimization following [21]. Consider a convex optimization
problem of the form

min
x
f0(x), s.t. Ax = b, fi(x) ≤ 0, i = 1, . . . ,m, (1)

3

where f0, . . . , fm : Rn → R are convex functions, A ∈ Rn×r,
b ∈ Rr, and Ax = b defines affine equality constraints. The
dual problem of optimization (1) is given as

max
λ≥0,µ

(
min
x
f0(x) +

m∑
i=1

λifi(x) + µ>(Ax− b)
)
, (2)

where λ ∈ Rm and µ ∈ Rr are known as Lagrange multipliers.
Let p? and d? be the optimal value of the primal and dual
problems, respectively. Strong duality holds if p? = d?. Under
strong duality, the Karush-Kuhn-Tucker (KKT) conditions are
a necessary and sufficient characterization of the optimality of
the primal-dual solution (x?, λ?, µ?),

0 ∈ 5f0(x?) +
∑m
i=1 λ

?
i5 fi(x

?) + (µ?)>Ax?,

λ?i fi(x
?) = 0, ∀i = 1, . . . ,m,

(µ?)>(Ax? − b) = 0,

Ax? = b, fi(x
?) ≤ 0, ∀i = 1, . . . ,m,

λ?i ≥ 0, ∀i = 1, . . . ,m.

These conditions correspond to stationarity, complementary
slackness, and primal and dual feasibility, respectively. The
(refined) Slater’s condition holds if there exists x ∈ Rn with

Ax = b and fi(x) < 0, ∀i = 1, . . . ,m.

Slater’s condition implies that strong duality holds.

III. PROBLEM FORMULATION

This section introduces the problem of interest. We begin
with a general formulation of the optimal power flow (OPF)
problem over an electrical network. We then consider its
convex relaxation and rewrite it as the combination of several
smaller-scale interconnected convex subproblems. The result-
ing semidefinite programming (SDP) problem is the starting
point for our distributed algorithm design.

Consider an electrical network graph with generation buses
NG, load buses NL, and electrical interconnections described
by an undirected edge set E . Let N = NG ∪NL and denote
its cardinality by N . We denote the phasor voltage at bus i by
Vi = Eie

jθi , where Ei ∈ R and θi ∈ [−π, π) are the voltage
magnitude and phase angle, respectively. When convenient, we
let V = {Vi | i ∈ N} denote the collection of voltages at all
buses. The active and reactive power injections at bus i are
given by the power flow equations [22]

Pi = Tr{YiV V ∗}+ PDi ,

Qi = Tr{Y iV V ∗}+QDi ,

where PDi , QDi ∈ R are the active and reactive power
demands1 at bus i, and Yi, Y i ∈ HN are derived from the
admittance matrix Y∈ CN×N as follows

Yi =
(eie

>
i Y)∗ + eie

>
i Y

2
, (3a)

Y i =
(eie

>
i Y)∗ − eie>i Y

2j
. (3b)

1Some buses may have generation and load simultaneously. For buses with
only generators, PDi , QDi are both zero.

Here {ei}i=1,...,N denotes the canonical basis of RN . The OPF
problem also involves the following box constraints

V 2
i ≤ |Vi|2 ≤ V

2

i , ∀i ∈ N ,
P i ≤ Pi ≤ P i, Q

i
≤ Qi ≤ Qi, ∀i ∈ N , (4)

|Vi − Vk|2 ≤ V ik, ∀{i, k} ∈ E ,

where V ik is the upper bound of the voltage difference
between buses i, k, and V i and V i are the lower and upper
bounds of the voltage magnitude at bus i, respectively. The
quantities P i, Qi, P i, Qi, are defined similarly. The objective
function for the OPF problem is typically given as a quadratic
function of the active power injection,∑

k∈NG

ci2P
2
i + ci1Pi, (5)

where ci2 ≥ 0, and ci1 ∈ R. Using W = V V ∗ ∈ HN as the
decision variable, the OPF problem is formulated as follows

(P1) min
W

∑
i∈NG

ci2(Tr{YiW}+PDi)
2+ci1(Tr{YiW}+ PDi),

subject to

P i ≤ Tr{YiW}+ PDi ≤ P i, ∀i ∈ N , (6a)

Q
i
≤ Tr{Y iW}+QDi ≤ Qi, ∀i ∈ N , (6b)

V 2
i ≤ Tr{MiW} ≤ V

2

i , ∀i ∈ N , (6c)

Tr{MikW} ≤ V ik, ∀{i, k} ∈ E , (6d)
W � 0, rank(W) = 1, (6e)

where Mi,Mik ∈ HN are defined so that Tr{MiW} = |Vi|2
and Tr{MikW} = |Vi−Vk|2. Constraints (6a-6d) come from
Eq. (4). The combined constraints W � 0 and rank(W) = 1
in (6e) correspond to writing the voltage as a matrix variable.
The elimination of the rank constraint gives rise to the convex
relaxation of the OPF problem.

Following the exposition in [23], we next reformulate the
OPF problem in a distributed way as follows. We start from
the observation that every constraint except Eq. (6e) in (P1) is
either related to the power injection at one bus or the voltage
difference between connected buses. In addition, the power
injection at one bus is only related to the voltage of the buses
it is connected to. This property is embedded in the structure
of the non-zero entries of the admittance matrix in (3). As a
consequence, we can rewrite the constraints (6a-6d) in terms
of variables Wi ∈ HNi for all i ∈ N , where Wi is quadratic in
the voltage variables corresponding to the local neighborhood
N i in the electrical network graph, and Ni = | N i |. In this
way, we obtain

P i ≤ Tr{Yi,rWi}+ PDi ≤ P i, ∀i ∈ N , (7a)

Q
i
≤ Tr{Y i,rWi}+QDi ≤ Qi, ∀i ∈ N , (7b)

V 2
i ≤ Tr{Mi,rWi} ≤ V

2

i , ∀i ∈ N , (7c)

Tr{Mik,rWk} ≤ V ik, ∀{i, k} ∈ E . (7d)

Here, Yi,r is the principal submatrix of Yi obtained by
dropping the rows and columns associated with the buses in
N \N i. The matrices Y i,r, Mi,r, Mik,r are defined similarly.

4

Define WN as a shorthand notation for the set of variables,
Wi for i ∈ N , i.e., WN := {Wi, i ∈ N}. We next consider the
following distributed convex optimization problem associated
with WN ,

(P2) min
WN

∑
i∈NG

ci2(Tr{Yi,rWi}+ PDi)
2 (8a)

+ci1(Tr{Yi,rWi}+ PDi),

subject to

Eq. (7) holds, (8b)
Wi � 0, ∀i ∈ N , (8c)

Wi(̂i, î) = Wk (̂i, î), ∀{i, k} ∈ E , (8d)

Wi(̂i, k̂) = Wk (̂i, k̂), ∀{i, k} ∈ E , (8e)

where î refers the row (or column) of the matrix associated
with bus i (note that Wi and Wk might have different dimen-
sions). For chordal graphs, (P2) with the additional non-convex
rank constraints, rank(Wi) = 1, ∀i ∈ N is equivalent to (P1),
see [24]. For general graphs, (P2) with the rank constraints
does not necessarily give an optimal solution of (P1), but
simulations indicate [25] that (P2) has a low-rank solution
whose value is close to the optimal value of (P1). In the rest
of the paper, we assume that a unique optimal solution of (P2)
exists, and we denote it as (W ?

N , p
?).

Our objective in this paper is to design a distributed algo-
rithm to solve (P2). We view each bus of the electrical network
as a computing agent that can communicate with any other bus
which is physically connected to. By distributed, we mean that
each agent only requires information from neighboring buses
that share their local variables to implement the algorithm.
By solving the optimization problem, we mean that each bus
eventually finds its own optimal allocation (not the optimal
allocation for the whole electrical network). When considered
collectively, the local optimal allocation with agreement on the
shared variables yields the complete optimal solution.

IV. THE SCHEDULED-ASYNCHRONOUS ALGORITHM

In this section, we first provide a design rationale for
the scheduled-asynchronous distributed algorithm and then
introduce it formally. We next proceed to characterize the
algorithm convergence properties.

A. Rationale for Algorithm Design

For convenience of exposition, we start by rewriting the
optimization (P2). To this end, for each i ∈ N , define
fi : HNi → R as the objective function, and let Wi ⊂ HNi
be the constraint set defined by (7) and the constraint Wi � 0.
Note that Wi is compact for every i ∈ N , where the
boundedness of Wi is the result of the bounded diagonal
elements of Wi and the positive definiteness of Wi. The
objective function fi is given by (8a), for i ∈ NG, and fi = 0,
for i ∈ N \NG. To represent the equality constraints in (8d)
and (8e), we introduce the functions Gik : HNi×HNk → R4,

Gik(Wi,Wk) = Dik(Wi) +Dki(Wk), (9)

where

Dki(Wl) =

Tr{B1,kiWl}
Tr{B2,kiWl}
Tr{B3,kiWl}
Tr{B4,kiWl}

, Dik(Wl) = −

Tr{B2,ikWl}
Tr{B1,ikWl}
Tr{B3,kiWl}
Tr{B4,kiWl}

 .
B1,ki(l,m) =

{
1, if l = m = k̂,

0, otherwise,

B2,ki(l,m) =

{
1, if l = m = î,
0, otherwise,

B3,ki(l,m) =

{
1, if (l,m) = (k̂, î) or (l,m) = (̂i, k̂),
0, otherwise,

B4,ki(l,m) =

−j, if (l,m) = (k̂, î),
j, if (l,m) = (̂i, k̂),
0, otherwise.

Note that the linear equality constraints (8d)-(8e) can be equiv-
alently represented in compact form by Gik(Wi,Wk) = 0, for
all {i, k} ∈ Ê , where Ĝ = (N , Ê) is an arbitrarily selected
orientation of the original undirected graph G = (N , E). With
these elements in place, we rewrite the optimization (P2) in
the following form

min
Wi∈Wi,i∈N

∑
i∈N

fi(Wi) (10)

s.t. Gik(Wi,Wk) = 0, ∀{i, k} ∈ Ê .

To motivate our algorithm design, we start by considering
the optimization in (P2) for a two-bus network (N = 2).
In this case, from the formulation (10), the problem exactly
corresponds to the standard ADMM, see e.g., [26],

min
W1∈W1,W2∈W2

f1(W1) + f2(W2) s.t. G12(W1,W2) = 0.

The ADMM algorithm consists of the following steps

W t+

1 = argminW1∈W1
f1(W1) (11a)

+ pt12
>
G12(W1,W

t
2) +

ρ12

2
‖G12(W1,W

t
2)‖2,

W t+

2 = argminW2∈W2
f2(W2) (11b)

+ pt12
>
G12(W t+

1 ,W2) +
ρ12

2
‖G12(W t+

1 ,W2)‖2,

pt
+

12 = pt12 + ρ12G12(W t+

1 ,W t+

2), (11c)

where the superscript t is the time at which the update occurs,
t+ is the time for the next round of the optimization, ρ12 > 0
is a given constant scalar, and pt12 ∈ R4 are the Lagrange
multipliers associated with the constraint G12(·) = 0. Note
that there is a natural order in performing the updates in (11),
where node 1 goes first, and then node 2 uses the value
obtained by 1 to perform its update.

For a network with an arbitrary number of buses, one can
view the optimization as a combination of multiple two-bus
sub-problems. This viewpoint inspires the following algorithm
design. Once bus i receives the updated W t

k from all its neigh-
boring nodes k ∈ N i, it solves the following optimization

W t+

i = argminWi∈Wi
fi(Wi) (12a)

5

+
∑
{i,k}∈Ê

(
ptik
>
Gik(Wi,W

t
k) +

ρik
2
‖Gik(Wi,W

t
k)‖2

)
(12b)

+
∑
{k,i}∈Ê

(
ptik
>
Gki(W

t+

k ,Wi) +
ρik
2
‖Gki(W t+

k ,Wi)‖2
)
, (12c)

where ptik and ρik are non-directional, namely, ptik = ptki
and ρik = ρki. Note that, according to (12), for every edge
(i.e., for every two-bus sub-problem), the tail node performs
first the update, followed by the head node. In other words,
the orientation Ĝ = (N , Ê) encodes the natural ordering
of updating by the terminal nodes present in the ADMM
algorithm. Under the proposed design, the difference in the
number of iterations made between two connected nodes is at
most one due to the alternating execution. For each pair of
connected nodes i and k such that {i, k} ∈ Ê , each of them
updates the corresponding Lagrange multiplier according to

pt
+

ik = ptik + ρikGik(W t+

i ,W t+

k). (13)

Updating pt
+

ik locally at the terminal nodes can reduce the
communication burden and enhances robustness. We denote
pt = {ptik, {i, k} ∈ E} ∈ R4| E | and ρ ∈ R| E |×| E | be the
diagonal matrix such that each diagonal element corresponds
to ρik of one unique link in E . Algorithm 1 below presents
formally the proposed strategy.

Algorithm 1 Scheduled-Asynchronous Algorithm
1: Initialize:

W 0
N ∈

∏
i∈N Wi, p0 = 0,

γ0
l = 2ε > 0, ∀l ∈ N

2: Requires: acyclic orientation Ĝ of G
3: For every bus i,
4: while (received W t

k, γ
t
k from all k ∈ N i) and (∃l ∈ N i

s.t. γtl > ε) do
5: Update pt

+

ik by Eq. (13) for {i, k} ∈ Ê
6: Update W t+

i by solving optimization (12)
7: Update pt

+

ik by Eq. (13) for {k, i} ∈ Ê
8: Compute γt

+

i by Eq. (14)
9: Send W t+

i and γt
+

i to all k ∈ N i

10: end while

In Algorithm 1, each bus i only does its optimization after
it has received new updates from all its neighbors k ∈ N i

since the last iteration. The stopping criteria is given by the
scale of the violation of the equality constraints,

γt
+

i =
∑
{i,k}∈Ê

‖Gik(W t+

i ,W
t
k)‖2 +

∑
{k,i}∈Ê

‖Gki(W t+

k ,W
t+

i)‖2. (14)

This criteria is justified by the observation that if γt
+

i = 0,
∀i ∈ N , then W t+

N is the optimal solution for both (12) and
(10). Using the continuity of the cost function, fi, having γt

+

i

sufficiently small for all i ∈ N guarantees that the solution of
Algorithm 1 is reasonably close to the optimum. The imple-
mentation of Algorithm 1 does not require synchronous up-
dates between connected nodes, but involves a subtle ordering.
We therefore term this strategy as the scheduled-asynchronous
algorithm. Note that we use a global time index t to time-stamp
all the iterations in Algorithm 1 only for convenience. Every

agent tracks the number of iterations locally, but in general
does not know the global time index.

Remark IV.1. (The orientation of the network graph must
be acyclic). An important observation regarding the execution
of Algorithm 1 is that the orientation Ĝ given to the electrical
network graph must be free of cycles. Otherwise, given the
meaning encoded by the orientation of each edge, a deadlock
would occur: every node at the cycle would be waiting for
the update from a neighboring node in the cycle. There are
various ways in which the network can determine an acyclic
orientation in a distributed way. For instance, if every node
has a unique identity k ∈ N, then, for each edge in E , one can
designate the node with the smallest identity as the tail and the
other node as the head. The resulting graph Ĝ is acyclic [27].
We revisit this point in Section V below. �

Remark IV.2. (The scheduled-asynchronous algorithm as
a single-valued map). The scheduled-asynchronous algorithm
is, in general, a set-valued map due to the argmin operator
in (12). However, we argue here that it can be seen as a
single-valued map upon further examination of (12). Notice
that, except for the constraint Wi � 0, all the other constraints
and the objective function of (12) are only related to the
entries associated with the star network centered at node i.
We illustrate the meaning of entries associated with a star
network in an example with 5 nodes. For W1, its diagonal,
first column, and first row elements are the entries associated
with the star network centered at node one.

W1 =

W1(1, 1) W1(1, 2) · · · W1(1, 5)
W1(2, 1) W1(2, 2) W1(2, 5)

...
. . .

...
W1(5, 1) W1(5, 2) · · · W1(5, 5)

 1

23

4 5

We refer to the entries of Wi that are not associated with
the star network centered at node i as “irrelevant”, because
those entries can take any value without affecting the optimal
value of (12) as long as Wi � 0 remains satisfied. Without
loss of generality, Algorithm 1 can always assign zeros to
the irrelevant entries. Such assignment makes Wi a Hermitian
matrix associated with a star network, and [23, Proposition
3] ensures that Wi � 0. The manipulation above makes the
objective function of (12) strongly convex on the decision
variables (irrelevant entries are considered as constants) due
to the quadratic terms in (12b) and (12c). This observation
justifies the interpretation of the scheduled-asynchronous al-
gorithm as a single-valued map F : W×R4|Ê| → W×R4|Ê|

with W :=W1×W2× · · · ×WN . �

B. Convergence Analysis

The analysis of the convergence properties of the scheduled-
asynchronous algorithm requires a careful consideration of the
asynchronous updates of the nodes. In what follows and for
convenience, we view the time index of the decision variables
as an iteration index. For each bus i ∈ N , let ti(n) be the
time index at which i has exactly performed n number of
the minimizations described in (12). By definition, for each

6

n, we have W t
i = W

ti(n)
i , for ti(n) ≤ t < ti(n + 1). With a

slight abuse of notation, in the following we use the shorthand
notation Wn

i , pni and rni instead of the corresponding W ti(n)
i ,

p
ti(n)
i and rti(n)

i , where rt = {rtik , {i, k} ∈ Ê} ∈ R4|Ê| and
rtik = Gik(W t

i ,W
t
k). With all the elements in place, we next

establish the convergence properties of Algorithm 1.

Theorem IV.3. (Convergence of Algorithm 1). Assume the
following conditions hold

1) the cost functions fi, i ∈ N , are convex,

2) (P2) is feasible and Slater’s condition holds,

3) the optimal Lagrange multipliers are bounded, p? <∞,

4) the orientation Ĝ is acyclic.

Then, the sequence (Wn
N , p

n) generated by Algorithm 1 con-
verges to the optimal primal-dual pair (W ?

N , p
?) as n→∞.

Proof. Our proof strategy consists of employing the LaSalle’s
Invariance Principle for discrete-time systems, [Theorem 1.19]
in [20]. To this goal, we will justify that all the assumptions of
the LaSalle’s theorem hold. First, according to Remark IV.2,
we can view F as a single-valued mapping without loss of
generality. Furthermore, F is continuous due to maximum
theorem and condition 1). We next consider the candidate
LaSalle function

V (WN , p) :=
∑
{i,k}∈Ê

(
‖pik − p?ik‖2

ρik
+ρik‖Dki(Wk −W ?

k)‖2
)
.

(15)

For notational convenience, we write V n = V (Wn
N , p

n).
Recall that we assume p? is bounded in condition 3) and
W ?
N is also bounded because W is compact. It follows that

V 0 <∞ for any bounded initial (W 0
N , p

0).

Monotonicity of LaSalle function. We next show that V is
monotonically non-increasing along the solutions of (12)-(13),
specifically,

V n+1− V n ≤ −
∑
{i,k}∈Ê

ρik‖rn+1
ik −Dki(W

n+1
k −Wn

k)‖2. (16)

To show this inequality, we first sum the inequalities in
Lemma A.2 to obtain∑
{i,k}∈Ê

ρikD
>
ki(W

n+1
k −W

n
k)Dik(Wn+1

i −W
?
i) ≥ (pn+1− p?)>rn+1.

Using rn+1 = ρ−1(pn+1 − pn) and r? = 0, we rewrite the
inequality above as

2
∑
{i,k}∈Ê

ρikD
>
ki(W

n
k −Wn+1

k)
(
Dki(W

n+1
k −W

?
k)− rn+1

ik

)
≥ 2(pn+1 − p?)>ρ−1(pn+1 − pn).

Using the fact that

2(pn+1 − p?)>ρ−1(pn+1 − pn) = ‖√ρ−1
(pn+1 − p?)‖2

+ ‖√ρ−1
(pn+1 − pn)‖2 − ‖√ρ−1

(pn − p?)‖2,
2D>ki(W

n
k −Wn+1

k)Dki(W
n+1
k −W

?
k) = ‖Dki(W

n
k −W ?

k)‖2

− ‖Dki(W
n+1
k −W

n
k)‖2 − ‖Dki(W

n+1
k −W

?
k)‖2,

where
√
ρ denotes the element-wise square root of the diagonal

matrix ρ, then

−
∑
{i,k}∈Ê

ρik

(
‖Dki(W

n+1
k −W

?
k)‖2− ‖Dki(W

n
k −W ?

k)‖2

+ ‖Dki(W
n+1
k −W

n
k)‖2+ 2D>ki(W

n
k −Wn+1

k)rn+1
ik

+‖rn+1
ik ‖

2

)
≥ ‖√ρ−1

(pn+1 − p?)‖2 − ‖√ρ−1
(pn − p?)‖2.

Using the definition (15) of V , we can identify the terms V n

and V n+1 in the inequality above to obtain

−
∑
{i,k}∈Ê

ρik

(
‖Dki(W

n+1
k −Wn

k)‖2 + 2rn+1
ik

>
(17)

·Dki(W
n
k −Wn+1

k) + ‖rn+1
ik ‖

2

)
≥ V n+1− V n

Rearranging the left-hand side leads to (16).

Bounded Trajectories. We next justify that the trajectories
of Algorithm 1 are bounded. According to (A.39), the primal
variable Wn

N always evolves in a compact setW and therefore
is bounded. To show that the evolution of pn is also bounded,
we can reason by contradiction. If it were not, then the
sequence V (Wn, pn) would go to infinity, and this would
contradict the fact that the sublevel sets of V are invariant
(which is as a consequence of (16)).

Application of LaSalle Invariance Principle. Given our
discussion above, all assumptions of the LaSalle Invariance
Principle [20] hold and we conclude that as n→∞, (Wn

N , p
n)

converges to the largest invariant set II contained in I0, where

I0 := {(WN , p) |V (F (WN , p))− V (WN , p) = 0}. (18)

Our final step to establish the result is to show that II =
{(WN , p)|V (WN , p) = 0}. To this end, let (W 0

N , p
0) be an

arbitrary point in II . Consider the algorithm trajectory starting
from (W 0

N , p
0), which by definition of the notion of invariance

must remain in I0. The next equalities must hold because of
the definition of I0,

rn+1
ik = Dki(W

n+1
k −Wn

k), (19a)

⇐⇒ Dik(Wn+1
i) = −Dki(W

n
k), (19b)

⇐⇒ rn+1
ik = Dik(Wn+1

i −Wn+2
i), (19c)

for all {i, k} ∈ Ê and n ≥ 0 because the right-hand side
of (16) should be zero. Let K0 be the set of sink nodes in Ĝ.
The primal variable update for i ∈ K0 is given as

Wn+1
i = argminWi∈Wi

fi(Wi) (20a)

+
∑
{k,i}∈Ê

(
pnik
>Gki(W

n+1
k ,Wi) +

ρik
2
‖Gki(Wn+1

k ,Wi)‖2
)

= argminWi∈Wi
fi(Wi) (20b)

+
∑
{k,i}∈Ê

(ρik
2
‖Gki(Wn+1

k ,Wi) +
pnik
ρik
‖2
)
.

Eq. (20b) follows by completing the squares inside the sum
over Ê in (20a) (we also drop the term pnik

2/2ρik because this

7

does not affect the argmin operation). Now we analyze how
the last quadratic term in (20b) evolves as n increases
ρik
2
‖Gki(Wn+1

k ,Wi) +
pnik
ρik
‖2 (21)

=
ρik
2
‖Dki(W

n+1
k) +Dik(Wi) +

pnik
ρik
‖2

=
ρik
2
‖(Dki(W

n
k)− rnki) +Dik(Wi) +

pn−1
ik + ρikr

n
ki

ρik
‖2

=
ρik
2
‖Gki(Wn

k ,Wi) +
pn−1
ik

ρik
‖2.

We use (19c) and (13) in the second equality in (21), with
node k being the tail node as {k, i} ∈ Ê 2. Note that (21)
holds only for n ≥ 1 because (19c) holds only for n ≥ 0. Due
to (21), optimization (20) for node i ∈ K0 does not change
with respect to the iteration number as long as n ≥ 1. Hence,

Dik(Wn+1
i −Wn

i) = 0 and rn+1
ki = 0, (22)

as a result of Eq. (19c), for all i ∈ K0 and ∀n ≥ 1. Notice
that we have (22) only for i ∈ K0 because if i 6∈ K0, (20)
includes additional terms for {i, k} ∈ Ê , for which results
similar to (21) are not available.

Next consider the subgraph of Ĝ induced by the set of
vertices N \K0, denoted as Ĝ[N \K0]. The graph Ĝ[N \K0]
may be composed of several disconnected subgraphs in gen-
eral. Every subgraph of Ĝ[N \K0] has at least one sink node
because Ĝ[N \K0] remains acyclic. Let K1 be the set of sink
nodes of Ĝ[N \K0]. The optimization on the primal variables
of i ∈ K1 can be written as

Wn+1
i = argminWi∈Wi

fi(Wi) (23)

+
∑

{i,k}∈Ê,k∈K0

ρik
2
‖Gik(Wi,W

n
k) +

pnik
ρik
‖2

+
∑
{k,i}∈Ê

ρik
2
‖Gki(Wn+1

k ,Wi) +
pnik
ρik
‖2.

We can show that the quadratic-cost functional terms associ-
ated with {k, i} ∈ Ê do not change for n ≥ 1 because of
Eq. (21), which holds for any {k, i} ∈ Ê . The quadratic-cost
functional terms associated with links {i, k} ∈ Ê , for k ∈ K0,
do not change either for n ≥ 1 because Eq. (22) holds for
every k ∈ K0 for n ≥ 1. Therefore, we have Eq. (22) satisfied
for all i ∈ K1 for every n ≥ 2. With similar arguments for
the subgraph Ĝ[N \(K0 ∪K1)], we can conclude that Eq. (22)
holds for nodes in K2 within finite iterations, where K2 is
the set of sink nodes of Ĝ[N \(K0 ∪K1)]. Repeating the
induction, it follows that after a finite number of iterations,
Eq. (22) holds for all i ∈ N . The number of iterations required
for Eq. (22) to hold is the diameter of the directed graph
Ĝ(N , Ê).

In the reasoning above, we have shown that there exists
n0 <∞ such that

‖rn0+1
ik ‖ = ‖Dki(W

n0+1
k −Wn0

k)‖2 = 0, (24)

2Recall that pnik and ρik are non-directional, i.e., pnik = pnki and
ρnik = ρnki. However, rnik = Gik(W

n
i ,W

n
k) = Dik(W

n
i) + Dki(W

n
k)

are directional.

holds for all {i, k} ∈ Ê . Notice that rn0+1 = 0 indicates
the solution of (A.39) for iteration n0 + 1 is W ?

N . Thus,
Wn0+1
N = W ?

N , and pn0+1 = pn0 = p? because of strong
duality. Therefore, we have V n0+1 = V (Wn0+1

N , pn0+1) =
V (W ?

N , p
?) = 0. By definition of I0, V remains constant

throughout the trajectory starting from (W0
N , p

0). Therefore,
we can conclude that the largest invariant set is

{(WN , p) | V (WN , p) = 0}. (25)

By LaSalle theorem, we next conclude that as n→∞

Dki(W
n
k)→ Dki(W

?
k), pnik → p?ik, (26)

for all {i, k} ∈ Ê . Combining (26) and the optimization steps
in (12), we also have that for all {i, k} ∈ Ê

Dik(Wn
i)→ Dik(W ?

i), (27)

as n → ∞. The equalities (26) and (27) hold if and only if
(Wn
N , p

n)→ (W ?
N , p

?), completing the proof.

Remark IV.4. (Convergence rate of Algorithm 1). Charac-
terizing the convergence rate of the scheduled-asynchronous
algorithm is challenging. The main reason for this is the
fact that, given the particular characteristics of the design of
Algorithm 1, the proof of Theorem IV.3 identifies a LaSalle
function, and not a Lyapunov one. This is in contrast with the
convergence proof of ADMM, cf., [16], where the availability
of a Lyapunov function makes the convergence analysis and
the rate characterization easier. If the network topology is
bipartite, Algorithm 1 reduces to ADMM and hence shares
the O(1/n) convergence rate established in [16]. Based on
this and our simulation results, we conjecture that Algorithm 1
also has O(1/n) convergence rate with a smaller constant. �

Remark IV.5. (Heterogeneous selection of parameter ρ).
The convergence rate of Algorithm 1 depends on the pa-
rameter ρ which weighs how the errors in the constraint
satisfaction affect the evolution of the dual variables. Our
simulation studies show that selecting ρik heterogeneously
can improve the convergence rate dramatically. In particular,
we observe that choosing ρik proportionally to the norm of
the complex line admittance of edge {i, k}, ‖yik‖ improves
the convergence rate compared to selecting a uniform ρ, i.e.,
ρik = ρ0,∀{i, k} ∈ E . The intuition behind this fact is that
the network is more sensitive to the perturbation on the edges
with larger admittances. To justify this point, consider an edge
where Gik in (9) is not zero,

Gik(W t
i ,W

t
k) = δtik, ∀{i, k} ∈ Ê , (28)

with 0 6= δtik ∈ R4. Due to (28), W t
N is not a feasible

solution of (P2). Consider then the virtual network in Fig. 1,
where nodes i and k are not physically connected and only the
communication between them remains. Node i is connected to
a virtual node kv with admittance yik, and the same applies to
k and iv . The communication between i and k have Wi and
Wk satisfy Gik(W t

i ,W
t
k) = δtik. Let Vîi and Vik̂, respectively,

denote the copy of the voltages of bus i and k contained in
Wi. Assign to nodes kv and iv the voltages Vik̂ and Vkî,

8

i k

i k

kv iv

Fig. 1. Illustration of the virtual subnetwork with perturbation on the con-
straint Gik(Wi,Wk) = 0. The solid lines represent the physically connected
edge with communication. The dash line corresponds to a communication
link.

respectively. In this way, the virtual network has the power
flow from kv to i given by

Vik̂

(
yik(Vik̂ − Vîi)

)∗
. (29)

On the other hand, the power flow from k to iv is

Vkk̂

(
yik(Vkk̂ − Vkî)

)∗
. (30)

The copies of voltages of nodes i and k are related by

V t
ik̂

= V t
kk̂

+ δ̂tik,k, V t
îi

= V t
kî

+ δ̂tik,i, (31)

where δ̂tik,k =
√
|δtik(1)| exp(j∠(δtik(3) + jδtik(4))) and

δ̂tik,i =
√
|δtik(2)| (assume ∠Vi = 0 without loss of gen-

erality). If δtik = 0, then the values of (29) and (30) are
the same because Vik̂ = Vkk̂ and Vîi = Vkî. Therefore, the
virtual network is equivalent to the original one if δtik = 0.
On the other hand, if the first two elements of δtik are non-
zero, then V t

ik̂
6= V t

kk̂
and V t

ik̂
6= V t

kî
according to (31). In

such case, the virtual network is not equivalent to the original
one. Furthermore, we observe that for a given non-zero δtik,
the discrepancy between Eq. (29) and (30) is proportional to
yik. This discrepancy has the interpretation of a perturbation
on the apparent power flow for edge {i, k}. �

V. DIRECTED GRAPH DESIGN

Here, we first describe how the average time between
two consecutive iterations under the scheduled-asynchronous
algorithm for a node depends on the diameter of the orientation
of the network graph. Motivated by this observation, we set
out to find an acyclic orientation with minimal diameter in
a distributed fashion. In general, finding such an orientation
is equivalent to finding the chromatic number, which is NP-
hard. However, exploiting the planar property of many power
networks, we develop a distributed algorithm to determine an
orientation with small diameter.

A. Relationship Between Graph Coloring and Diameter

The updating sequence of the scheduled-asynchronous al-
gorithm depends on the orientation Ĝ = (N , Ê). To see this,
consider a path in Ĝ, with i being the initial node and k the
end node. The update of k requires that all other nodes in the
path finish at least an update before it, which are processed
in sequence starting from node i. The “waiting time” of node
k associated to this path corresponds therefore to its length.

Since the diameter of the orientation bounds the length of all
the paths, this justifies finding an acyclic orientation which the
smallest diameter. We formalize this problem next. Let Ω(G)
be the collection of all acyclic orientations of G. We denote
by Gω the directed graph corresponding to ω ∈ Ω(G). The
problem we aim to solve is

ω? = arg min
ω∈Ω(G)

(
max
h∈Pω

|h|
)
, (32)

where Pω is the set of paths in Gω , and |h| is the length of
the path h. The optimization (32) is directly related to the
classical problem of finding the chromatic number X (G) of
an undirected graph G [28]. In fact, one has

X (G) = 1 + min
ω∈Ω(G)

(
max
h∈Pω

|h|
)
. (33)

In general, computing X (G) is NP-hard, see e.g. [29]. There
are only approximate algorithms to find a solution, see for
example [30]. However, for planar graphs, the chromatic
number is upper bounded by four [31] and, furthermore, there
exists a quadratic-time algorithm to find a graph-coloring with
four colors, cf. [32]. Fortunately, the following assumption
holds for most electrical networks.

Assumption 1. (Planar network topology [33]). Electrical
networks have simple planar network topology.

If a centralized entity has information on the network topol-
ogy, then the algorithm in [32] can be run to assign a number
(or color) to every agent. This procedure might be problematic
in large-scale scenarios, specially in the presence of plug-and-
play devices that easily change the network topology. This
motivates our design of a distributed algorithm.

B. Distributed Orientation Computation with Small Diameter

The following distributed algorithm from [34] finds an
orientation of an arbitrary planar graph with diameter bounded
by five (or equivalently X (G) ≤ 6):

1) find an acyclic orientation in a distributed way such that
every node has out-degree at most five.

2) every node chooses a color that is different from all the
out-neighboring nodes defined in step 1).

Note that any ordering of the colors induces an orientation
of the graph, which is furthermore acyclic, cf. Remark IV.1.
The algorithm above is simple to implement but may be
conservative for electrical networks because, in general, the
degree of most nodes is far less than six. In fact, empirical
studies [35], [36] have shown that electrical networks have a
degree distribution that follows the exponential distribution.
Since the degree takes integer values, it is more appropriate to
characterize the degree distribution with the geometric distri-
bution – the discrete analogy of the exponential distribution.

Assumption 2. (Geometric degree distribution). In electrical
networks, the number of nodes with degree at least d0 ∈ N
satisfies

Prob(d = d0) = λ(1− λ)d0 , (34)

9

with parameter 0 ≤ λ ≤ 1.

Most nodes have small degree due to (34). According
to [35], [37], the average degree of empirical electrical net-
works is between 2 and 3. Many electrical networks, as
a result, have the chromatic number far less than six. For
example, IEEE 14, 30 and 57 bus test cases have X (G) = 3.
Therefore, it is conceivable that one can find an orientation
with diameter less than five. Motivated by this observation, we
modify the algorithm in [34] to exploit the geometric degree
distribution property.

We propose Algorithm 2 to find a preliminary orientation.
The idea is to first try to find an orientation with the out-
degree of all nodes no bigger than 2. If this is not possible,
then the strategy searches instead for an orientation with one
more out-degree. If necessary, this process is repeated until
Algorithm 2 eventually finds an orientation where the out-
degree of all nodes is at most five.

Algorithm 2
1: Initialize:

For all i ∈ N , set ηi s.t. ηi 6= ηk ∀{i, k} ∈ E
mi ← 0, hi ← h

0

2: For every i ∈ N :
3: Update N ηi := {k ∈ N i |ηk > ηi}
4: If | N ηi | ≥ hi
5: If hi = 6 or mi ≤ m
6: ηi = maxk∈Nηi ηk + 1
7: mi ← mi + 1
8: Send ηi to neighbors N i

9: else if mi > m and hi < 6
10: mi ← 0, hi ← hi + 1
11: end
12: end

We next explain the pseudocode of Algorithm 2. Every
node i starts with an initial number ηi such that ηi 6= ηk, for
all {i, k} ∈ E . These numbers induce an acyclic orientation
by declaring that node i is a tail of {i, k} if ηi < ηk, cf.
Remark IV.1. Under the algorithm, every node i recursively
updates ηi if its current out-degree is bigger than or equal to
a number hi, initially set to h

0
= 2, for all i. The update

of ηi follows a simple rule to choose a number bigger than
ηk, for all k ∈ N i. In this way, node i becomes a sink node
with out-degree zero in the new induced orientation. Node
i then sends ηi to all k ∈ N i for them to recompute their
out-degree. If all nodes do not require any further update in
their η, Algorithm 2 converges to an orientation in which all
nodes have an out-degree of at most two. If, instead, some
nodes require an update for more than m > 1 times, then
the strategy has these nodes increase its hi by one (since an
orientation with out-degree less than two might not exist). Any
node i that again updates its variable m times has hi increased
in a similar way. The procedure repeats until every node stops
updating.

The following result establishes the convergence properties
of Algorithm 2.

Proposition V.1. (Convergence of Algorithm 2). Algorithm 2
converges with hi ≤ 6 for all i ∈ N in a finite number of
iterations.

Proof. Because m < ∞, it is sufficient to show that every
node stops updating ηi in a finite number of steps if hi = 6,
∀i ∈ N . Since every simple planar graph has at least one node
with degree strictly less than six, this node stops updating ηi
as | N ηi | ≤ 5 < hi. We then consider the subgraph of G
induced from N \{i}. This subgraph is also planar so we can
find another node that will stop updating η after a finite number
of steps. The result follows by repeating this argument.

With the orientation induced by the ηi variables resulting
from the algorithm, one can find a coloring of the graph
with h := maxi∈N hi colors. Given the set of numbers
C := {1, 2, . . . , h}, Algorithm 3, from [34], assigns a number
in C to each i ∈ N . The resulting acyclic orientation has
diameter at most h− 1 due to (33).

Algorithm 3
1: Initialize:

For all k ∈ N , set ζk ∈ {1, 2, . . . , hk}
2: For every k ∈ N ,
3: Update N ζk := {i ∈ N k |ζi = ζk and ηi > ηk}
4: If N ζk 6= ∅
5: Choose ζk ∈ {1, 2, . . . , hk} \ {ζi|i ∈ N ζk}
6: end
7: Send ζk to i ∈ N k

In Algorithm 2, setting m too small can be conservative
because the strategy gives up too early in finding orientations
with small diameter by rapidly increasing hk toward six. On
the other hand, setting m too large slows down the conver-
gence. The challenge lies then in characterizing the value m
that strikes a balance between maximizing the convergence
rate and minimizing the average path length of the resulting
orientation. The optimal choice of m depends on the size
of the network and the constant λ in the geometric degree
distribution. Theorem V.2 illustrates how m is related to these
factors.

Theorem V.2. (On the degree of subgraphs and convergence
of Algorithm 2). If h

0

i = c0 < 6, for all i ∈ N and m =∞,
then Algorithm 2 converges if and only if every vertex-induced
subgraph of G has at least one node with degree less than c0.

Proof. We first show the implication from right to left. We
term every node k with degree less than c0 “stable”, because
it will not update its ηk regardless of the change of η of any
other node. Let S1 be the set of stable nodes of G. We then
consider the induced subgraph G[S2], where S2 = N \S1.
The graph G[S2] also has at least one node with degree less
than c0. Again, nodes in G[S2] with degree less than c0 are
called “stable” because they will not change their η in response
to the change of η of any other node in S2. Every stable
node i in G[S2] updates ηi at most once. The reason of the
single update is the following. First, a stable node i in S2 is

10

connected to at least one node in S1. Otherwise, node i is
in S1. Hence, once a stable node i ∈ S2 updates ηi, its out-
degree, | N ηi |, is at most hi− 1 and the node will not update
ηi again. We can reason with S3,S4, · · · ,Ss in a similar way
until ∪α=1,2,··· ,s Sα = N (note that s <∞ because N <∞)
and conclude that Algorithm 2 converges in finite time.

Next, we show the implication from left to right. If there
exists a vertex-induced subgraph with all nodes having degree
at least c0, then we can show that at least one node in the
subgraph updates η infinitely often. Recall that every acyclic
orientation has a source node. The source of the subgraph
updates its ηi because | N ηi | ≥ c0. After this update, the
orientation of the subgraph remains acyclic because it is
induced by the values of the variables ηi. As a consequence, at
least one node of the subgraph becomes a source and makes an
update. The sequence repeats for infinite times because there
always exists one node in the subgraph with | N ηi | ≥ c0.
Since the number of nodes is finite, there exists at least
one node that updates η infinitely often. As a consequence,
Algorithm 2 does not converge.

Theorem V.2 provides insight into the selection of m in
Algorithm 2. With the notation of the proof, if we set m =

∞ and Algorithm 2 converges with h
0

i = c0 < 6, for all
i ∈ N , the nodes in Sα update their variables at least the
number of times that nodes in Sβ do, for β < α, because Sα
becomes “stable” after Sβ does. If, instead, we choose a finite
m, then only a subset of nodes ofN keep their variable hi non-
increasing, while the remaining nodes are forced to increase
it, resulting in a more conservative upper bound of their out-
degrees. The number of updates required for the last node
being stable highly depends on the network topology. If λ is
large, then most nodes have degree one or two, and S1 contains
most nodes in N . In this case, we can expect ∪α=1,··· ,s Sα =
N with a small s, so selecting a small m still provides a
small h with fast convergence time. Our experience shows
that selecting m around 10 is sufficient to yield an optimal
coloring for electrical networks. The number may increase for
some large networks that involve thousands of nodes.

VI. SIMULATIONS

Here, we validate the performance of the scheduled-
asynchronous algorithm over the six bus test cases in [38],
IEEE 14, 30, and 57 bus test cases. We first use Algorithms 2-
3 to find an acyclic orientation of each test case, cf. Table I.
This results in orientations with diameter two for all test cases

TABLE I
SIMULATION PARAMETERS AND RESULTS OF ALGORITHM 2.

m h
0

Final h Diam. of
acyc. ori.

6 bus 10 2 4 3
14 bus 10 2 3 2
30 bus 10 2 3 2
57 bus 10 2 3 2

except the six bus test cases, with diameter three.

Figure 2 shows the convergence of Algorithm 1 for the vari-
ous test cases. The stopping criteria is γi < 10−4 for all i ∈ N .
The horizontal axis in the plots is the global iteration number,
not the iteration per bus (the number of iterations per bus is
roughly the global iteration number divided by the diameter
of the acyclic orientation). Table II and Figure 2 show that the

TABLE II
NUMBER OF ITERATIONS NEEDED FOR γi < 10−4 , ∀i ∈ N .

Iter./bus Iter./bus
pack. drop.

Iter./bus
weighted ρ ρ0

6 bus 62 65 50 700
14 bus 110 127 57 700
30 bus 140 260 82 700
57 bus 1520 1810 660 1000

weighted selection of ρ, discussed in Remark IV.5, leads to a
much faster convergence than the uniform ρik = ρ0, for all
{i, k} ∈ E . We have also simulated the case with unreliable
communication, where every link has a 10% probability of
packet drop if the previous communication was successful.
Table II shows that the Algorithm 1 still converges, albeit
requiring more iterations than the case with no packet drops.
Figure 3 illustrates the transient behavior for the packet drop
case.

Finally, we evaluate the impact of the acyclic orientation
in the algorithm convergence in Figure 4. We simulate how
Algorithm 1 converges for the IEEE 14 and 30 bus test
cases with an arbitrarily chosen acyclic orientation instead
of the one obtained from the execution of Algorithms 2-
3. Compared with Figure 2(b)-(c), one can observe that the
algorithm requires many more iterations to converge and that
‖r‖ increases dramatically at several iterations. These abrupt
changes can also be explained as the result of several long
paths in the digraph. In fact, recall that every node in a
path makes one iteration before transferring its update to the
following node. Starting with one of the terminal nodes in a
long path, the update propagates through many nodes before
reaching the other terminal node for its next update, at which
point it may introduce a big change on its decision variables
resulting in a dramatic change on ‖r‖. Therefore, the selection
of an acyclic orientation with small diameter has the added
benefit, beyond reducing the average waiting time per iteration,
of resulting in less abrupt changes in the algorithm execution.

VII. CONCLUSIONS

We have designed the scheduled-asynchronous algorithm to
solve SDP convexified OPF problems in a distributed way.
Under the proposed strategy, every pair of nodes connected
in the electrical network update their local variables in an
alternating fashion and the ordering of node updates is encoded
by an orientation of the network. We have established the
algorithm convergence to the optimizer when the orientation
is acyclic and shown how, when the network is bipartite, the
strategy corresponds to the ADMM scheme and has therefore
O(1/n) convergence rate. The convergence result does not
require strong convexity of the cost function, which makes

11

0 20 40 60 80 100 120 140 160 180

Global Iteration Number

0

0.02

0.04

0.06

0.08

0.1

||
r|

|

Uniform ρ

Weighted ρ

(a) Six bus test case

0 50 100 150 200 250

Global Iteration Number

0

0.05

0.1

0.15

0.2

0.25

||
r|

|

Uniform ρ

Weighted ρ

60 80 100

2

4

6

8

10
×10

-3

(b) IEEE 14 bus test case

0 50 100 150 200 250 300 350

Global Iteration Number

0

0.02

0.04

0.06

||
r|

|

Uniform ρ

Weighted ρ

50 100 150

2

4

×10
-3

(c) IEEE 30 bus test case

0 500 1000 1500 2000 2500 3000 3500 4000

Global Iteration Number

0

0.1

0.2

0.3

||
r|

|

Uniform ρ

Weighted ρ

500 1000 1500

1

2

3

4

5
×10

-3

(d) IEEE 57 bus test case

Fig. 2. Convergence of the scheduled-asynchronous algorithm for various test cases: (a) six bus test case in [38], (b) IEEE 14, (c) IEEE 30, and (d) IEEE 57.

0 50 100 150 200 250 300

Global Iteration Number

0

0.05

0.1

0.15

0.2

0.25

||
r|

|

(a) IEEE 14 bus test case

0 100 200 300 400 500 600

Global Iteration Number

0

0.01

0.02

0.03

0.04

||
r|

|

(b) IEEE 30 bus test case

Fig. 3. Convergence of the scheduled-asynchronous algorithm under packet drops.

0 100 200 300 400 500

Global Iteration Number

0

0.1

0.2

0.3

0.4

0.5

||
r|

|

Uniform ρ

Weighted ρ

(a) IEEE 14 bus test case

0 500 1000 1500 2000

Global Iteration Number

0.05

0.1

0.15

||
r|

|

Uniform ρ

Weighted ρ

(b) IEEE 30 bus test case

Fig. 4. Convergence of the scheduled-asynchronous algorithm with arbitrary acyclic orientations of the network graph.

12

it especially suitable in OPF applications. To improve the
algorithm convergence rate, we have introduced a distributed
graph coloring algorithm that finds an acyclic orientation with
small diameter for networks with geometric degree distri-
bution. Future work will explore the characterization of the
convergence rate for general network topologies, the optimal
selection of the algorithm parameters, and the formal analysis
of the algorithm robustness properties observed in simulation.

ACKNOWLEDGMENTS

This research was supported by the ARPA-e Network
Optimized Distributed Energy Systems (NODES) program,
Cooperative Agreement DE-AR0000695.

REFERENCES

[1] C.-Y. Chang, J. Cortés, and S. Martı́nez, “A scheduled-asynchronous
distributed optimization algorithm for the optimal power flow problem,”
Seattle, WA, May 2017, pp. 3968–3973.

[2] J. Momoh, M. El-Hawary, and R. Adapa, “A review of selected optimal
power flow literature to 1993. Part I: Nonlinear and quadratic program-
ming approaches,” vol. 14, no. 1, pp. 96–104, 1999.

[3] V. Ajjarapu and C. Christy, “The continuation power flow: a tool for
steady state voltage stability analysis,” vol. 7, no. 1, pp. 416–423, 1992.

[4] M. Abido, “Optimal power flow using particle swarm optimization,”
International Journal of Electrical Power & Energy Systems, vol. 24,
no. 7, pp. 563–571, 2002.

[5] A. J. Conejo and J. A. Aguado, “Multi-area coordinated decentralized
DC optimal power flow,” vol. 13, no. 4, pp. 1272–1278, 1998.

[6] P. N. Biskas, A. G. Bakirtzis, N. I. Macheras, and N. K. Pasialis, “A
decentralized implementation of DC optimal power flow on a network
of computers,” vol. 20, no. 1, pp. 25–33, 2005.

[7] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” vol. 27, no. 1, pp. 92–107, 2012.

[8] B. Zhang, “Control and optimization of power systems with renewables:
Voltage regulation and generator dispatch,” Ph.D. dissertation, University
of California, Berkeley, 2013.

[9] D. K. Molzahn, “Application of semidefinite optimization techniques to
problems in electric power systems,” Ph.D. dissertation, University of
Wisconsin-Madison, 2013.

[10] D. K. Molzahn, C. Josz, I. A. Hiskens, and P. Panciatici, “A Laplacian-
based approach for finding near globally optimal solutions to OPF
problems,” vol. 32, no. 1, pp. 305–315, 2017.

[11] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation
for contingency-constrained optimal power flow problem,” 2014, pp.
1064–1071.

[12] P. Biskas, A. Bakirtzis, N. Macheras, and N. Pasialis, “A decentralized
implementation of DC optimal power flow on a network of computers,”
vol. 20, no. 1, pp. 25–33, 2005.

[13] A. Lam, B. Zhang, and N. T. David, “Distributed algorithms for optimal
power flow problem,” 2012, pp. 430–437.

[14] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” vol. 4, no. 3, pp. 1464–1475, 2013.

[15] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” vol. 59, no. 5, pp. 1131–1146, 2014.

[16] B. He and X. Yuan, “On non-ergodic convergence rate of Douglas–
Rachford alternating direction method of multipliers,” Numerische Math-
ematik, vol. 130, no. 3, pp. 567–577, 2015.

[17] S. Lee and A. Nedić, “Asynchronous gossip-based random projection
algorithms over networks,” vol. 61, no. 4, pp. 953–968, 2016.

[18] L. Mazzarella, A. Sarlette, and F. Ticozzi, “A new perspective on gossip
iterations: from symmetrization to quantum consensus,” Florence, Italy,
2013.

[19] D. Shah, “Gossip algorithms,” Foundations and Trends in Networking,
vol. 3, no. 1, pp. 1–125, 2009.

[20] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University Press,
2009, electronically available at http://coordinationbook.info.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[22] S. Bose, D. F. Gayme, S. H. Low, and K. M. Chandy, “Optimal power
flow over tree networks,” 2011, pp. 1342–1348.

[23] C.-Y. Chang and W. Zhang, “On near and exact optimal power flow
solutions for microgrid applications,” Las Vegas, NV, 2016.

[24] S. Bose, S. H. Low, T. Teeraratkul, and B. Hassibi, “Equivalent relax-
ations of optimal power flow,” vol. 60, no. 3, pp. 729–742, 2015.

[25] C.-Y. Chang and W. Zhang, “General opf problems with reactive power
costs: A distributed sdp approach,” arXiv preprint arXiv:1612.04508,
2016.

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, 2011.

[27] R. Deming, “Acyclic orientations of a graph and chromatic and inde-
pendence numbers,” Journal of Combinatorial Theory, Series B, vol. 26,
no. 1, pp. 101–110, 1979.

[28] R. Figueiredo, V. Barbosa, N. Maculan, and C. D. Souza, “Acyclic
orientations with path constraints,” RAIRO-Operations Research, vol. 42,
no. 4, pp. 455–467, 2008.

[29] A. Sánchez-Arroyo, “Determining the total colouring number is NP-
hard,” Discrete Mathematics, vol. 78, no. 3, pp. 315–319, 1989.

[30] D. Corneil and B. Graham, “An algorithm for determining the chromatic
number of a graph,” vol. 2, no. 4, pp. 311–318, 1973.

[31] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, “The four-colour
theorem,” Journal of Combinatorial Theory, Series B, vol. 70, no. 1, pp.
2–44, 1997.

[32] ——, “Efficiently four-coloring planar graphs,” in Proceedings of the
twenty-eighth annual ACM symposium on theory of computing, 1996,
pp. 571–575.

[33] K. C. Sou, “A branch-decomposition approach to power network de-
sign,” 2016, pp. 6483–6488.

[34] S. Ghosh and M. H. Karaata, “A self-stabilizing algorithm for coloring
planar graphs,” Distributed Computing, vol. 7, no. 1, pp. 55–59, 1993.

[35] P. Hines, S. Blumsack, E. C. Sanchez, and C. Barrows, “The topological
and electrical structure of power grids,” in 43rd Hawaii International
Conference on System Sciences (HICSS), 2010, pp. 1–10.

[36] R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of
the north american power grid,” Physical review E, vol. 69, no. 2, p.
025103, 2004.

[37] W. Deng, W. Li, X. Cai, and Q. A. Wang, “The exponential degree
distribution in complex networks: Non-equilibrium network theory, nu-
merical simulation and empirical data,” Physica A: Statistical Mechanics
and its Applications, vol. 390, no. 8, pp. 1481–1485, 2011.

[38] A. J. Wood and B. Wollenberg, Power generation operation and control-
2nd edition. New York, USA: John Wiley and Sons, 1996, vol. 3.

APPENDIX

A. Auxiliary Results for the Proof of Theorem IV.3

We gather here various auxiliary results used in the proof
of Theorem IV.3. Our first result shows that two classes of
convex optimization problems with separable cost functions
have the same optimal solution.

Lemma A.1. Let φ, ϕ : Hn → R be convex and differentiable,
and let X be a convex set. Then

X? ∈ argminX∈X φ(X) + ϕ(X), (A.35a)
⇔ X? ∈ argminX∈X φ(X) + 〈5ϕ(X?), X〉. (A.35b)

Proof. The necessary and sufficient condition for X? being
the optimal solution of optimization (A.35a) is that〈

5
(
φ(X?) + ϕ(X?)

)
, X −X?

〉
≥ 0,

for all X ∈ X . We can rewrite the condition above as〈
5 φ(X?), X −X?

〉
+
〈
5 ϕ(X?), X −X?

〉
≥ 0, (A.36)

for all X ∈ X . Eq. (A.36) is also the optimality condition of
optimization Eq. (A.35b), which completes the proof.

13

We use Lemma A.1 to establish two inequalities that will
be employed to show that the function (15) is non-increasing
along the algorithm executions. The notation we employ next
is carried over from the proof of Theorem IV.3.

Lemma A.2. Under the assumptions of Theorem IV.3, the
following inequalities hold

N∑
i=1

(
fi(W

?
i)− fi(Wn+1

i)
)
≤ p?>rn+1, (A.37a)

N∑
i=1

(
fi(W

n+1
i)− fi(W ?

i)
)
≤ −pn+1>rn+1 (A.37b)

+
∑
{i,k}∈Ê

ρikD
>
ki(W

n
k −Wn+1

k)Dik(W ?
i −Wn+1

i).

Proof. Eq. (A.37a). Since (P2) is convex and Slater’s con-
dition holds, strong duality follows and the KKT conditions
are necessary and sufficient for the optimal solution of (10).
Strong duality together with the KKT conditions imply

W ?
N = argmin

Wi∈Wi

∑
i∈N

fi(Wi) +
∑
{l,k}∈Ê

p?lk
>Glk(Wl,Wk). (A.38)

Since W ?
N is the optimizer, using this inequality we deduce

N∑
i=1

fi(W
?
i) +

∑
{l,k}∈Ê

p?lk
>r?lk

≤
N∑
i=1

fi(W
n+1
i) +

∑
{l,k}∈Ê

p?lk
>rn+1

lk .

Inequality (A.37a) follows by noting that r?lk = 0, for all
{l, k} ∈ Ê .

Eq. (A.37b). We start by rewriting (12) with the number of
iterations instead of the time index,

Wn+1
i = argminWi∈Wi

fi(Wi) (A.39)

+
∑
{i,k}∈Ê

(
pnik
>Gik(Wi,W

n
k) +

ρik
2
‖Gik(Wi,W

n
k)‖2

)
+
∑
{k,i}∈Ê

(
pnik
>Gki(W

n+1
k ,Wi) +

ρik
2
‖Gki(Wn+1

k ,Wi)‖2
)
.

The superscript of every variable in (A.39) represents the
number of updates of the associated variable. We resort to
Lemma A.1 to rewrite (A.39), viewing fi as φ and grouping
all the other objective functions as ϕ. In addition, Wn+1

i and
Wi play the role of X? and X in (A.35), respectively. We
then have

Wn+1
i = argminWi∈Wi

fi(Wi)

+
∑
{i,k}∈Ê

(
pnik
>+ ρikG

>
ik(Wn+1

i ,Wn
k)
)
Dik(Wi)

+
∑
{k,i}∈Ê

(
pnik
>+ ρikG

>
ki(W

n+1
k ,Wn+1

i)
)
Dik(Wi).

With a slight abuse of notation, we denote by G>ki(·, ·) ≡
Gki(·, ·)>, the transpose of Gki(·, ·) (similarly for the variables

D>ki). According to this equation, evaluating the objective
function at W ?

i gives rise to a larger value than at Wn+1
i ,

and therefore,
N∑
i=1

fi(W
n+1
i)− fi(W ?

i) ≤
N∑
i=1

(
(A.40)∑

{i,k}∈Ê

(
pnik
>+ ρikG

>
ik(Wn+1

i ,Wn
k)
)
Dik(W ?

i −Wn+1
i)

+
∑
{k,i}∈Ê

pn+1
ik

>
Dik(W ?

i −Wn+1
i)

)
.

Note that we used (13) to substitute pnik+ρikGki(W
n+1
k ,Wn+1

i)
by pn+1

ik . The term pnik
>+ ρikG

>
ik(Wn+1

i ,Wn
k) in (A.40) can

be written as

pnik
>+ ρikG

>
ik(Wn+1

i ,Wn
k)

=pnik
>+ ρik

(
D>ik(Wn+1

i) +D>ki(W
n
k)
)

=pnik
>+ ρik

(
D>ik(Wn+1

i)+D>ki(W
n+1
k) +D>ki(W

n
k −Wn+1

k)
)

=pnik
>+ ρik

(
G>ik(Wn+1

i ,Wn+1
k) +D>ki(W

n
k −Wn+1

k)
)

=pn+1
ik

>
+ ρikD

>
ki(W

n
k −Wn+1

k).

Using this equation in (A.40) and the fact that
Gik(W ?

i ,W
?
k) = 0, we obtain (A.37b).

