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Abstract— This paper considers the problem of optimally
dispatching a set of generators in a power system; these
generators are interconnected to some loads via a network
of buses. We consider scenarios when the power network is
operating at a steady state, and a small change in the load
occurs at some of the load buses. Upon occurrence of this event,
the network seeks to find the change in generator injections
and voltage phase angles that makes the new steady state
meet the modified load with minimum total generation cost
(corresponding to the summation of the individual convex cost
functions of the generating units). The resulting optimization
problem is nonconvex due to the nonconvex power balance
constraints at the buses. We consider a convex approximation of
the problem where the power balance constraints are linearized
around the initial steady-state operating point. Assuming that
each bus can communicate with buses connected to it in the
physical power network, we provide two provably correct
continuous-time distributed strategies that allow the generators
to find the optimal power set points. Both designs build on the
saddle-point dynamics of the Lagrangian of the optimization
problem. Various simulations illustrate our results.

I. INTRODUCTION

In light of the increased penetration of distributed energy
resources (DERs) in power systems, distributed algorithms
will play a pivotal role. Distributed methods enjoy many
properties, e.g., they are efficient in handling uncertain, time-
varying load/generation; providing plug-and-play capabili-
ties; guaranteeing robustness against failures; and preserving
adequately the privacy of the entities involved. Motivated
by this vision, in this paper we provide distributed solution
strategies for optimally dispatching a set of generators in a
power system. We assume that each bus is either connected
to a generator or a load, and initially the network is operating
at a steady state. At a certain time instant, the network expe-
riences a small change in load at some of the buses. At that
instant, buses in the network seek a new steady-state operat-
ing point that meets the new load while minimizing the total
cost of generation, satisfying the physical box constraints on
power generation and flow. Since this problem is nonconvex,
we consider a linearized version, termed linearized optimal
power flow problem, where the power balance constraints are
linearized around the initial steady-state operating point. Our
aim is then to design provably correct distributed solution
strategies for the linearized problem.

Literature review: The design of distributed algorithms
for optimizing power dispatch has garnered much recent
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attention. Some of these methods find a power allocation that
meets the load and minimizes the cost but is oblivious to line
flow limits, see [1], [2], and references therein for a survey
of these methods. Alternatively, finding the power allocation
that minimizes the cost while satisfying line flow limits is a
nonconvex problem, termed as the optimal power flow (OPF)
problem. Given its nonconvex nature, there are broadly three
kinds of approaches to solve the OPF problem (exactly or
approximately) in a distributed manner. In the first approach,
the OPF problem is relaxed to yield a semidefinite program
(SDP) and then, distributed strategies are designed to solve
this SDP [3], [4]. These strategies involve (i) partitioning the
grid into subareas; (ii) decomposing the large-scale SDP into
several small-scale ones, each corresponding to a subarea;
and (iii) designing iterative primal-dual coordination between
these subareas. Due to these steps, this method is not easily
amenable to handle networks that constantly change structure
due to intermittent generation of renewables. In the second
approach, the OPF problem is written in rectangular coordi-
nates and distributed continuous-time primal-dual dynamics
are employed to solve it [5]. However, this method requires
quadratic cost functions and the convergence guarantee is
only local. In the third approach, the OPF problem is ap-
proximated by a convex optimization problem that has affine
constraints. The key step is to find a linear approximation of
the nonconvex power flow constraints such that the resulting
convex optimization problem is amenable to the design of
distributed methods. This is the approach that we adapt in
our work. While the solution of the SDP relaxation maps
to the solution of the OPF problem in many cases, the
linearization-based approach always yields an approximate
solution. However, the structure of the linear approximation
is more amenable to the design of distributed algorithms that
can handle changing network structures.

The simplest of these approximations is the dc power flow
model, where power losses are neglected [6]. Under this
model, the work [7] designs a distributed method to find the
optimizer of the relaxed convex problem. This optimizer is a
good approximation of the solution of the OPF problem if the
resistance of the power lines are negligible. A more general
formulation is when the power losses are not neglected and
instead are approximated by linearizing the power flow equa-
tions at an operating point. This is our approach in the current
work. The linearization of the power balance equations used
in our work is borrowed from [8], [9], [10], where such
a scheme is used for estimating the distribution and shift
factors in a power network. Our approach builds on the
growing body of work in the area of saddle-point dynamics



associated to the Lagrangian of the optimization problem,
see e.g. [11], [12], [13], [14] and references therein.

Statement of contributions: We start with the formulation
of the linearized optimal power flow (`OPF) problem: to
determine the optimal change in generation levels and in
voltage phase angles to meet the change in load encountered
by the network at a steady state. The setup takes also into
account generation and line flow limits. The `OPF problem is
closely related to but more general than the dc OPF problem
because `OPF problem also models, up to a linear approx-
imation, the power losses in the lines. The individual costs
of the generators are convex and all the constraints (equality
and inequality) are affine, giving rise to a constrained convex
optimization problem. Building on the saddle-point dynamics
of the associated Lagrangian, we provide two distributed
continuous-time dynamics that provably find the solution of
the `OPF problem asymptotically. We present the design
and analysis of the first dynamics for a general convex
optimization problem and then apply it to the `OPF problem.
We explain how both dynamics can be implemented in a
distributed manner by the buses in the network via local
information. A key property of these dynamics is that they
both converge to the optimum even when the objective
function is not strictly convex in the decision variables.
Simulations illustrate our results. For reasons of space, proofs
are omitted and will appear elsewhere.

II. PRELIMINARIES

This section introduces our notation and basic notions on
discontinuous dynamical systems and graph theory.

1) Notation: Let R and R≥0 denote the set of real and
nonnegative real numbers, respectively. We let ‖ · ‖ denote
the 2-norm on Rn. Given x, y ∈ Rn, xi denotes the i-
th component of x, and x ≤ y denotes xi ≤ yi for
i ∈ {1, . . . , n}. For vectors u ∈ Rn and w ∈ Rm, the vector
(u;w) ∈ Rn+m denotes their concatenation. For a matrix
A ∈ Rn×m, we let [A]i denote its i-th row. For a ∈ R, we
let [a]+ = max{0, a}. For a, b ∈ R, we let

[a]+b =

{
a, if b > 0,

max{0, a}, if b = 0.

For vectors a, b ∈ Rn, [a]+b denotes the vector the i-th
component of which is [ai]

+
bi

, i ∈ {1, . . . , n}. We denote
the cardinality of a set S by |S|. For F : Rn × Rm → R,
(x, y) 7→ F (x, y), we denote its partial derivative with
respect to the first argument by ∇xF and with respect to
the second argument by ∇yF . The higher-order derivatives
follow the convention ∇xyF = ∂2F

∂x∂y , ∇xxF = ∂2F
∂x2 , and so

on. A function L : X ×Y → R is convex-concave on X ×Y
if, given any point (x̃, ỹ) ∈ X × Y , x 7→ L(x, ỹ) is convex
and y 7→ L(x̃, y) is concave. When the context is clear, we
refer to this as L being convex-concave in (x, y). A point
(x∗, y∗) ∈ X ×Y is a saddle point of L on the set X ×Y if
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), for all x ∈ X and y ∈ Y .

Let f : Rn → Rn be Lebesgue measurable and locally
bounded and consider the differential equation ẋ = f(x). A
map γ : [0, T ) → Rn is a (Caratheodory) solution of this

dynamics on the interval [0, T ) if it is absolutely continuous
on [0, T ) and satisfies γ̇(t) = f(γ(t)) almost everywhere in
[0, T ). We use the words solution and trajectory interchange-
ably. For more details, we refer to [15].

Let K ⊂ Rn be a closed convex set. Given a point
y ∈ Rn, the (point) projection of y onto K is projK(y) =
argminz∈K ‖z − y‖. Given x ∈ K and v ∈ Rn, the (vector)
projection of v at x with respect to K is

ΠK(x, v) = lim
δ→0+

projK(x+ δv)− x
δ

.

Given a vector field f : Rn → Rn and a closed convex set
K ⊂ Rn, the associated projected dynamical system is

ẋ = ΠK(x, f(x)), x(0) ∈ K. (1)

For any point x in the interior of K, we have ΠK(x, f(x)) =
f(x). At any boundary point of K, the projection restricts f
so that the solutions of (1) remain in K.

2) Graph theory: Following [16], a directed graph, or
simply digraph, is a pair G = (V, E), where V is the vertex
set and E ⊆ V × V is the edge set. A digraph is undirected
if (v, u) ∈ E if and only if (u, v) ∈ E . A path is an ordered
sequence such that any ordered pair of vertices appearing
consecutively is an edge. An undirected graph is connected
if there is a path between any pair of distinct vertices. For a
digraph, N+

vi and N−vi are the sets of out- and in-neighbors
of vi, respectively, i.e., N+

vi = {vj ∈ V | (vi, vj) ∈ E} and
N−vi = {vj ∈ V | (vj , vi) ∈ E}.

III. PROBLEM STATEMENT

We consider a power network with n ∈ Z≥1 generators
and l ∈ Z≥1 loads. Each bus in the network has either a
generator or a load connected to it. For convenience, we
index the buses as V = {1, 2, . . . , n, n+1, . . . , n+ l}, where
the first n buses correspond to generators, and the next l
correspond to loads. The physical interconnection between
the buses is given by a connected undirected graph G =
(V, E), where elements of E correspond to pairs of buses
interconnected by a transmission line. We arbitrarily assign
a direction to each edge in E and denote the resulting digraph
as Gd = (V, Ed). The real power f (i)

ij entering into the line
(i, j) ∈ Ed at bus i and the real power f (j)

ij flowing out of
the line (i, j) at bus j are positive when the corresponding
flow is in the direction assigned to the edge (i, j). Note that
f

(i)
ij and f (j)

ij are not necessarily equal due to power losses in
the line. The power that generator i ∈ {1, . . . , n} produces
and injects into the bus i is ui ∈ R≥0 and the power drawn
by the load i ∈ {1, . . . , l} at bus n + i is `i ∈ R≥0. The
voltage magnitude and phase angle at bus i ∈ {1, . . . , n+ l}
are vi ∈ R>0 and θi ∈ R, respectively. Each generator i ∈
{1, . . . , n} has a cost function Ci : R≥0 → R≥0, which we
assume to be convex and twice continuously differentiable.
The cost incurred by i in generating power ui is Ci(ui). Each
generator i has lower and upper bounds on the power it can
generate, denoted by ui, ui ∈ R>0, respectively, with ui <
ui. Further, the maximum allowed power flow on each line
(i, j) ∈ Ed, in either direction, is f ij ∈ R>0. The network is



at a steady-state operating point (u, `, θ, v) ∈ Rn≥0×Rl≥0×
Rn+l × Rn+l

>0 , if the following constraints are met:
(i) Power balance: for each bus i ∈ {1, . . . , n},∑

j∈N+
i
f

(i)
ij −

∑
j∈N−

i
f

(i)
ji = ui, (2)

and for each bus i ∈ {n+ 1, . . . , n+ l},∑
j∈N+

i
f

(i)
ij −

∑
j∈N−

i
f

(i)
ji = −`i−n, (3)

where N+
i and N−i are out- and in-neighbors of bus i in the

digraph Gd and flows on line (i, j) ∈ Ed in terms of voltage
magnitudes and phase angles are given by [17],

f
(i)
ij = gijv

2
i − vivj(gij cos(θij) + bij sin(θij)), (4a)

f
(j)
ij = −gijv2

j + vivj(gij cos(θij)− bij sin(θij)), (4b)

where gij and bij is the conductance and susceptance (i, j);
(vi, θi) and (vj , θj) are voltage magnitude and phase angle
for bus i and j; and θij = θi − θj .
(ii) Box constraints: for each generator i ∈ {1, . . . , n}, ui ≤
ui ≤ ui and, for each power line (i, j) ∈ Ed, −f ij ≤ f

(i)
ij ≤

f ij , and −f ij ≤ f
(j)
ij ≤ f ij .

Consider the situation where the network is at a steady-
state operating point (u, `, θ, v), and the load changes by
a small quantity ∆`. With the voltage magnitudes held
constant, the network would seek a new steady-state op-
erating point, (ũ, ` + ∆`, θ̃, v), that minimizes the total
cost of generation

∑n
i=1 Ci(ũi). However, this optimization

problem is nonconvex because of the power flow constraints.
Instead, we solve a linearized version of the problem,
termed linearized optimal power flow (`OPF), which seeks
to optimize the change in the generator injections ∆u and
phase angles ∆θ with respect to the current steady state.
This approach is justified when ∆` is small enough as
the linear approximation provides a near optimal solution
for the nonconvex problem. Moreover, any violation of
the constraints of the nonconvex problem by the optimizer
of the linearized problem is handled by the primary and
secondary control schemes, which ensure satisfaction of the
constraints at a faster time scale as compared to the scale at
which dispatch decisions are made. To linearize the power
flow constraints (4) around (u, `, θ, v), we assume that the
voltage magnitudes are kept constant. This assumption is
valid for transmission networks, where changes in voltage
phase angles (resp. in voltage magnitudes) are strongly
coupled with changes in active power injections (resp. in
reactive power injections) and weakly coupled with changes
in reactive power injections (resp. in active power injections),
see e.g., [17]. For distribution networks, this is generally not
the case, unless one utilizes reactive-power capable DERs
to provide voltage control at a much faster time scale than
that associated with the changes in active-power injection,
see e.g., [18]. Formally, if {f (i)

ij , f
(j)
ij }(i,j)∈Ed denote the

flows at the steady state (u, `, θ, v), then the `OPF problem
is defined as

minimize
∆u,∆θ,∆f

n∑
i=1

Ci(ui + ∆ui), (5a)

subject to For all i ∈ {1, . . . , n}∑
j∈N+

i

∆f
(i)
ij −

∑
j∈N−

i

∆f
(i)
ji = ∆ui, (5b)

ui ≤ ui + ∆ui ≤ ui, (5c)
For all i ∈ {n+ 1, . . . , n+ l}∑
j∈N+

i

∆f
(i)
ij −

∑
j∈N−

i

∆f
(i)
ji = −∆`i−n, (5d)

For all (i, j) ∈ Ed
− f ij ≤ f

(i)
ij + ∆f

(i)
ij ≤ f ij , (5e)

− f ij ≤ f
(j)
ij + ∆f

(i)
ji ≤ f ij , (5f)

∆f
(i)
ij = αij(∆θi −∆θj), (5g)

∆f
(j)
ij = βij(∆θi −∆θj), (5h)

where for each (i, j) ∈ Ed, we have αij = gijvivj sin(θij)−
bijvivj cos(θij), and βij = −gijvivj sin(θij)−
bijvivj cos(θij). Constraints (5b) and (5d) represent
the power balance at generator and load buses, respectively.
Constraints (5c), (5e), and (5f) represent the min- and
max- constraints on the change in generation levels and the
change in power flow in the lines. Constraints (5g) and (5h)
represent the linearized relationship between the change in
flows and the change in voltage phase angles. Note that
one can write the above optimization in terms of (∆u,∆θ)
by substituting incremental flows using (5g) and (5h). We
avoid doing this substitution as the current formulation
helps us later in our distributed algorithm design. Denoting
c(∆u) =

∑n
i=1 ci(∆ui) =

∑n
i=1 C(ui + ∆ui), one can

rewrite the `OPF problem in a compact form as

minimize
∆u,∆θ,∆f

c(∆u), (6a)

subject to A1∆x ≤ b1, (6b)
A2∆x = b2, (6c)

where A1 ∈ R2n+4|Ed|×2n+l+2|Ed|, A2 ∈
Rn+l+2|Ed|×2n+l+2|Ed|, b1 ∈ R2n+4|Ed|, b2 ∈ Rn+l+2|Ed|,
and as a shorthand notation, we use ∆x = (∆u; ∆θ; ∆f)
throughout this paper. In (6b), we have stacked the
inequalities (5c), (5e), and (5f), in this order and in (6c), we
have stacked the equalities (5b), (5d), (5g), and (5h), in this
order. We assume that the optimization (6) admits a feasible
solution and has finite primal and dual optimal values.
Since the constraints are affine, the optimization problem
satisfies the refined Slater condition and hence, the duality
gap is zero [19]. We denote the set of feasible solutions
of (6) by Fp and the set of primal-dual solutions of (6) by
F∗p × F∗d where F∗p (resp. F∗d ) denotes primal (resp. dual)
solutions. Note that optimization (5) is more general than
the dc power flow problem [6] as we do not neglect power
losses, but rather approximate them using linearization.

Our objective is to design distributed algorithms that solve
the `OPF problem (6). By distributed we mean that each bus
can determine the decision variables pertaining to its bus at
the optimum, without having a centralized decision making
unit solving the `OPF problem. To this end, we assume that



the buses are decision makers and can exchange information
with the buses adjacent to them in the physical network.

Remark 3.1: (Information and decision variables): Given
the network’s steady state (u, `, θ, v), we assume each bus
i ∈ {1, . . . , n + l} knows the voltage magnitude and phase
angle corresponding to it and its neighboring buses in G. Bus
i also knows the conductance and reactance of the power
lines connecting i to its neighboring buses. Further, bus
i ∈ {1, . . . , n} knows ui and bus i ∈ {n+1, . . . , n+l} knows
`i−n. With this information, each bus i computes αij , βij for
all (i, j) ∈ E . The decision variables for each generator bus
i ∈ {1, . . . , n} are (∆ui,∆θi, {∆f (i)

ij }j∈N out
i
, {∆f (i)

ji }j∈N in
i

)
and for each load bus i ∈ {n + 1, . . . , n + l} are
((∆θ)i, {∆f (i)

ij }j∈N out
i
, {∆f (i)

ji }j∈N in
i

). •

IV. DISTRIBUTED ALGORITHMIC SOLUTIONS

In this section, we present two distributed solution strate-
gies for the `OPF problem. Both strategies build on the
continuous-time saddle-point information of the Lagrangian
of the optimization problem. As we illustrate below, they
have an inherent quality of being amenable to distributed
implementation. The Lagrangian of (6) is given by

L(∆x, λ, µ) = c(∆u) + λ>(A1∆x− b1)

+ µ>(A2∆x− b2), (7)

where λ ∈ R2n+4|Ed|
≥0 and µ ∈ Rn+l+2|Ed| are the Lagrange

multipliers associated to constraints (6b) and (6c), respec-
tively. Since the duality gap is zero, a primal-dual solution
(∆u∗,∆θ∗,∆f∗, λ∗, µ∗) of (6) is also a saddle point of L on
the set (Rn×Rn+l×R2|Ed|)×(R2n+4|Ed|

≥0 ×Rn+l+2|Ed|) [19,
Section 5.4.2]. One way of designing a convergent strategy is
to employ a projected version of the saddle-point dynamics
for the Lagrangian, see e.g., [20], [11], [21]. However, such
strategy requires the objective function to be strictly convex
in the primal variables for convergence, which need not be
the case for (6). This motivates our forthcoming discussion.

A. Saddle-point dynamics for augmented Lagrangian

We provide in the Appendix the details of the design
and analysis of this dynamics for a general (not necessarily
strictly) convex optimization. Here, we apply that treatment
for the `OPF problem. Let the augmented Lagrangian Laug :

Rn × Rn+l × R2|Ed| × R2n+4|Ed|
≥0 × Rn+l+2|Ed| → R be

Laug(∆x, λ, µ) = L(∆x, λ, µ) + ‖φ([A1∆x− b1]+)‖2

+ ‖A2∆x− b2‖2,

where φ : R → R is t 7→ φ(t) = et − 1, and with a slight
abuse of notation, we use φ(v) = (φ(v1), φ(v2), . . . , φ(vm))
for v ∈ Rm. The augmented Lagrangian is convex-concave
in (∆x, (λ, µ)) and continuously differentiable. The saddle-
point dynamics for augmented Lagrangian is

d∆x

dt
= −∇∆xLaug(∆x, λ, µ), (8a)

dλ

dt
= [∇λLaug(∆x, λ, µ)]+λ = [A1∆x− b1]+λ , (8b)

dµ

dt
= ∇µLaug(∆x, λ, µ) = A2∆x− b2. (8c)

The following result states the convergence properties of the
above dynamics. The result follows from Theorem A.2.

Theorem 4.1: (Asymptotic convergence of saddle-point
dynamics for augmented Lagrangian to F∗p × F∗d ): Suppose
there exists a primal-dual solution (∆x∗, λ∗, µ∗) of (6) that
satisfies the strict complementary slackness condition, that
is, for all i ∈ {1, . . . , 2n + 4 |Ed|}, either (λ∗)i 6= 0 or
[A1]i∆x∗ − (b1)i 6= 0. Then, any solution of (8) starting
in Rn ×Rn+l ×R2|Ed| ×R2n+4|Ed|

≥0 ×Rn+l+2|Ed| converges
asymptotically to a point in F∗p ×F∗d .

According to Theorem 4.1, the saddle-point dynamics for
augmented Lagrangian can be used to find the solution of
the `OPF problem (5). Note that the strict complementary
slackness condition is not restrictive because it is generic.
That is, if there does not exist a primal-dual optimizer that
satisfy this condition, a slight perturbation of the constraints
gives a problem that possesses such a solution.

Remark 4.2: (Distributed implementation of saddle-point
dynamics for augmented Lagrangian): Under the saddle-point
dynamics for augmented Lagrangian, the primal variables of
bus i correspond to its own decision variables, as discussed
in Remark 3.1. Regarding the dual variables, we create a
partition in the following way. Each bus i ∈ {1, . . . , n + l}
executes the dynamics for dual variables (µi, {µij , λ(m)

ij ,

λ
(M)
ij }j∈N+

i
, {µ(m)

ji , λ
(m)
ji , λ

(M)
ji }j∈N−

i
), where µi corre-

sponds to power balance constraint at i; µij for j ∈ N+
i and

µji for j ∈ N−i corresponds to the equality constraint repre-
senting linearized relationship with phase angles for ∆f

(i)
ij ,

j ∈ N+
i and ∆f

(i)
ji j ∈ N−i , respectively; (λ

(m)
ij , λ

(M)
ij ),

j ∈ N+
i correspond to the min- and max- flow constraint

on the variable ∆f
(i)
ij j ∈ N+

i ; similarly, (λ
(m)
ji , λ

(M)
ji ),

j ∈ N−i correspond to the min- and max- flow constraint
on the variable ∆f

(i)
ji j ∈ N−i . Along with these variables,

each generator bus i ∈ {1, . . . , n} executes the dynamics for
dual variables (λ

(m)
i , λ

(M)
i ) corresponding to the min-, max-

constraint on generation of i. Given this partition, one can
write the dynamics of variables that each bus computes in
terms of the information available to that bus, that is, its own
state and the state of its neighbors in G, see Remark 3.1. •

B. Saddle-point dynamics for modified Lagrangian

The solution presented here follows the exposition in [14].
First, define the modified Lagrangian Lmod : Rn × Rn+l ×
R2|Ed| × Rn+l+2|Ed| → R as

Lmod(∆x, µ) = c(∆u) +
1

2
‖A2∆x− b2‖2

+ µ>(A2∆x− b2).

Note that Lmod is twice continuously differentiable and
convex-concave on (Rn × Rn+l × R2|Ed|) × (Rn+l+2|Ed|).
Let Fpp = {∆x ∈ Rn × Rn+l × R2|Ed| | ∆x satisfy (6b)},
that is, the set of points that satisfy the box constraints in (5).
Define the saddle-point dynamics for modified Lagrangian as



d∆x

dt
= ΠFpp

(
∆x,−∇∆xLmod(∆x, µ)

)
, (9a)

dµ

dt
= ∇µLmod(∆x, µ) = A2∆x− b2. (9b)

Recall that the vector field given (∆x, ξ) 7→ ΠFpp
(∆x, ξ)

restricts the flow ξ ∈ Rn×Rn+l×R2|Ed| to the set Fpp, cf.
Section II. The next result states the convergence properties
of (9) and is a direct consequence of [14, Theorem 5.6].

Theorem 4.3: (Asymptotic convergence of saddle-point
dynamics for modified Lagrangian to F∗p ): Any trajectory
of (9) starting in Fpp × Rn+l+2|Ed| is bounded and it
converges asymptotically to a point in F∗p × Rn+l+2|Ed|.

The above result implies that the saddle-point dynamics
for modified Lagrangian can be used as an algorithmic
solution for the `OPF problem (6). Also, since each term of
Lmod is also a term of Laug, the distributed implementation
of (9) follows from Remark 4.2 using the fact that for each
bus, the projection in (9a) for variables of a bus can be
computed by the bus using the information available to it.

V. SIMULATIONS

Here, we illustrate the application of saddle-point dynam-
ics for augmented Lagrangian (8) and saddle-point dynamics
for modified Lagrangian (9) to solve the `OPF problem (5)
for a 9-bus network with 3 generator buses and 9 power
lines. This example is a modification of the 9 bus case
study from MATPOWER [22], and for space reasons we
only document here the changes made to this example. We
assume that (1) shunt conductances and reactances at each
bus are zero; (2) line charging susceptance for each line
is zero; (3) the cost function for generator i is Ci(ui) =
aiu

2
i + biui [$/(100MW)], with coefficients for the three

generators given by a = (0.11; 0.085; 0.1225) and b =
(5; 1.2; 1). Figure 1 shows the evolution of the optimization
variables (∆u,∆θ,∆f) and the total cost c(∆u) for the
dynamics (8) and (9). As established in Theorem 4.1 and 4.3,
the trajectories converge to an optimizer. Moreover, in this
particular example, the converged solution is the same.

VI. CONCLUSIONS

We have formulated the `OPF problem for a power net-
work consisting of generator and load buses by linearizing
the nonconvex power balance constraints around an operating
point of the network. We have provided two continuous-time
distributed dynamics that allow the buses to asymptotically
find the optimizer of the `OPF problem. The design and
analysis of the first of these dynamics, termed saddle-point
dynamics for augmented Lagrangian, is novel and studied
for a general constrained convex optimization problem over
a network. Future work will explore the robustness of the
dynamics against asynchronicity in the network, communica-
tion link failures, and noisy updates. We also intend to study
the interplay of these dynamics with the network frequency
dynamics and the different layers of generator controllers.
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Fig. 1. Illustration of the execution of saddle-point dynamics for augmented Lagrangian (plots (a)-(d)) and for modified Lagrangian (plots (e)-(h)) for a 9
bus example from MATPOWER described in Section V. We assume that before t = 0, the network is at a steady-state operating point described by (1) the
real power injection at the generator buses (numbered 1− 3) u = (90.1, 134.44, 94.31) MW; (2) the real power load at the load buses (numbered 4− 9)
` = (0, 90, 0, 100, 0, 125) MW; (3) the voltage magnitude at buses v = (1.1, 1.1, 1.1, 1.0648, 1.0406, 1.08, 1.0575, 1.0744, 1.0276) p.u., with base
voltage 345 kV at each bus; and (4) the voltage phase angle at buses θ = (0, 0.0874, 0.0563, −0.0443, −0.0702, 0.0098, −0.0218, 0.0163, −0.0832)
radians. At time, t = 0, the load at each bus decreases by 10%. This defines the `OPF problem (5) that we wish to solve. The initial condition for both
set of plots and all variables is zero. Both dynamics converge to values ∆u∗ = (−0.8,−0.193, 0.681) MW, ∆θ∗ = (−0.0886, −0.0057, 0.0881,
−0.0493, −0.0082, 0.0545, 0.0292, 0.0045, −0.0245) radians and ∆f∗ = (−0.8011, −0.7999, −0.4822, −0.4766, −0.3861, −0.3997, 0.6818,
0.6824, 0.283, 0.2817, 0.3821, 0.3863, 0.1921, 0.1926, 0.1945, 0.1878, 0.3133, 0.3172) MW. The total generation cost converges to 0.3175.

APPENDIX

Consider the convex optimization problem on Rn

minimize f(x), (A.10a)
subject to g(x) ≤ 0, (A.10b)

Ax = b, (A.10c)

where f : Rn → R and g : Rn → Rm are continuously
differentiable convex functions, A ∈ Rp×n, and b ∈ Rp.
We specifically consider the case when f is not necessarily
strictly convex, which is a common requirement to guarantee
the asymptotic convergence of the saddle-point dynamics to
the primal-dual optimizers, cf. [20], [11], [21]. We address
this obstacle by modifying the inequality constraints follow-
ing an idea proposed in [11, Section 4.1]. Let φ : R→ R be
convex with φ(0) = 0, ∇φ(t) > 0 and ∇2φ(t) > 0 for all
t ∈ R. Modify (A.10b) using φ and write

minimize f(x), (A.11a)
subject to φ(g(x)) ≤ 0, (A.11b)

Ax = b, (A.11c)

where for convenience we use φ(g(x)) =
(φ(g1(x)), φ(g2(x)), . . . , φ(gm(x))). Note that optimizers
of (A.10) and (A.11) are same. Assume that Slater’s
condition is satisfied for (A.10). This implies that the same
is true for (A.11) and hence, the duality gap is zero [19].
The Lagrangian of (A.11) is L : Rn × Rm≥0 × Rp → R,

L(x, λ, µ) = f(x) +
∑m
i=1 λiφ(gi(x)) + µ>(Ax− b),

where λ ∈ Rm≥0 and µ ∈ Rp are the Lagrange multipli-
ers associated with (A.11b) and (A.11c), respectively. The
Lagrangian is convex-concave in (x, (λ, µ)) [19]. A point
(x∗, λ∗, µ∗) is a primal-dual solution of (A.11) if and only
if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

∇xL(x∗, λ∗, µ∗) = 0,
∑m
i=1(λ∗)iφ(gi(x∗)) = 0,

φ(g(x∗)) ≤ 0, Ax∗ = b, λ∗ ≥ 0.

Let the augmented Lagrangian Laug be defined as

Laug(x, λ, µ) = L(x, λ, µ) + ‖Ax− b‖2 + ‖[φ(g(x))]+‖2.

Note that Laug is convex-concave in (x, (λ, µ)) as L is
convex-concave in (x, (λ, µ)) and the map x 7→ ‖Ax−b‖2 +
‖[φ(g(x))]+‖2 is convex. Also, Laug is continuously dif-
ferentiable. Next result states that the primal-dual solutions
of (A.11) are the saddle points of the augmented Lagrangian.

Lemma A.1: (Primal-dual solutions of (A.11) are saddle
points of Laug): A point (x∗, λ∗, µ∗) ∈ Rn × Rm≥0 × Rp
is a primal-dual optimizer of (A.11) if and only if it is a
saddle point of Laug on the set (Rn)× (Rm≥0 × Rp).

As a consequence of Lemma A.1, our strategy to
solve (A.11) is to find the saddle points of the augmented
Lagrangian on (Rn) × (Rm≥0 × Rp). To this end, we define
the (projected) saddle-point dynamics for Laug as

ẋ = −∇xLaug(x, λ, µ) = −∇f(x)− 2A>(Ax− b)−A>µ

−∇‖[φ(g(x))]+‖2 −
m∑
i=1

λi∇φ(gi(x))∇gi(x), (A.13a)

λ̇ = [∇λLaug(x, λ, µ)]+λ = [φ(g(x))]+λ , (A.13b)
µ̇ = ∇µLaug(x, λ, µ) = Ax− b. (A.13c)

Note that a point in Rn×Rm≥0×Rp is an equilibrium of the
above dynamics if and only if it is a primal-dual optimizer
of (A.11). Next, we state the convergence result.

Theorem A.2: (Asymptotic convergence of (A.13)): As-
sume there exists a primal-dual optimizer (x∗, λ∗, µ∗)
of (A.11) satisfying the strict complementary slackness con-
dition, that is, for all i ∈ {1, . . . ,m}, either (λ∗)i 6= 0
or gi(x∗) 6= 0. Then, any trajectory of (A.13) starting in
Rn × Rm≥0 × Rp converges asymptotically to a point in the
set of primal-dual optimizers of (A.11).


