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Abstract— Recent years have witnessed the success of em-
ploying convex relaxations of the AC optimal power flow
(OPF) problem to find global or near-global optimal solutions.
The majority of the effort has focused on solving problem
formulations where variables live in continuous spaces. Our
focus here is in the extension of these results to the co-
optimization of network topology and the OPF problem. We
employ binary variables to model topology reconfiguration in
the standard semidefinite programming (SDP) formulation of
the OPF problem. This makes the problem non-convex, not
only because the variables are binary, but also because of the
presence of bilinear products between the binary and other
continuous variables. Our proposed convex relaxation to this
problem incorporates the bilinear terms in a novel way that
improves over the commonly used McCormick approximation.
We also address the exponential complexity associated with
the discrete variables by partitioning the network graph in
a way that minimizes the impact on the optimal value of
the relaxation. As a result, the problem is broken down into
several parallel mixed-integer problems, reducing the overall
computational complexity. Simulations in the IEEE 118-bus
test case demonstrate that our approach converges to solutions
which are very close to the lower bound of the mixed-integer
OPF problem.

I. INTRODUCTION

Mixed integer programming (MIP) appears in the con-
text of optimal power flow (OPF) problems, where integer
variables are introduced for switching control. Operators
commonly establish switching control laws off-line to handle
contingency situations and maintain the system stability.
Such prescribed long-term decisions separate the OPF prob-
lem, that usually focus on economic dispatch or loss min-
imization, from topology design or other forms of discrete
control. While the co-optimization of network topology and
power dispatch may give rise to significant potential benefits,
the complexity of such highly non-convex problems makes
progress along this direction difficult.

Literature review: Transmission switching commonly
serves as a corrective mechanism in response to system
contingency, see [1], [2] and references therein for existing
methods. In [3], [4], linearized OPF, also known as DCOPF,
is used for the fast co-optimization of network topology
and OPF. Despite its relative low complexity, DCOPF may
lead, especially in congested systems, to poor solutions
that can even lead to voltage collapse [5]–[7]. [8] proposes
quadratic convex (QC) relaxations for the MIP-OPF prob-
lem, which provides more accurate results than DCOPF,
while still retaining a fast computation time. Recent studies
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have found that semidefinite programming (SDP) [9]–[11]
provides global or near global optimal solutions for many
classes of OPF problems. The SDP-based convex relaxation
of ACOPF is tighter than the ones derived from DCOPF and
QC. However, the handling of discrete decision variables in
the SDP-relaxed OPF problem is challenging and not well
understood, while definitely worthy of further exploration
given its potential impact. The challenges in the MIP-OPF
problem not only stem from the use of discrete variables,
but also from the presence of bilinear terms, which arise
in two different ways. One is the product of the voltage
of the terminal buses when computing the line power flow
between the buses, which is naturally convexified in SDP.
The other terms appear in the product of a discrete (binary)
variable with a continuous decision variable, which has the
physical interpretation of whether the control is active (line is
connected) or not. The paper [12] uses lift-and-branch-and-
bound procedure to deal with the SDP formulation of MIP-
OPF, but the scalability of the approach is very limited. The
work [13] also considers using SDP to solve the MIP-OPF,
where the bilinear terms associated with line connections
is partially addressed by assuming certain nominal network
topology. For the bilinear terms of other discrete decision
variables, [13] tackles them using the standard McCormick
relaxation [16].

Statement of contributions: We formulate the co-
optimization of topology design and OPF by defining a SDP
convexified OPF problem with binary variables. Each binary
variable corresponds to the decision of whether its associated
line is connected or not, which naturally multiplies the
voltage of the terminal nodes. Our contributions are twofold.
First, we propose a new relaxation method to approximate
the bilinear terms involving binary and continuous variables.
Our method introduces a positive semidefinite (PSD) matrix
for each switchable line that encodes the bilinear products
and has the physical interpretation of virtual voltages at the
terminal buses. Inspired by its physical meaning, we impose
various linear constraints that lead to a convexification of
the MIP-OPF problem, as all binary variables appear only
in the bilinear products of the original problem. We show
that the resulting optimal solution satisfies certain physically-
meaningful inequalities regarding power losses and illustrate
how the proposed relaxation can provide better approxima-
tions than the McCormick relaxation. Our second contri-
bution is the introduction of a graph partitioning method
to refine the solution obtained from the convex relaxation.
Our method is based on the observation that the optimal
dual variables correspond to the sensitivity of the optimal



value with respect to perturbing the associated constraints.
This leads us to define an undirected graph whose edge
weights are the sum of the dual variables associated with
the terminal nodes, which we partition using a minimum
weight edge-cut set to minimize the impact on the value of
the optimal solution of the relaxation. Our last step consists
of solving the mixed-integer-SDP problem associated with
each subnetwork in parallel, then reconstructing the solution
of the original problem by combining the solutions of the
sub-networks. Since each sub-network involves less integer
variables than the original problem, it is amenable to standard
integer programming techniques. Simulations on IEEE 118
bus test case demonstrate that the proposed method con-
verges to a near optimum value with a tight difference from
the lower bound. All proofs are omitted due to the space
reasons and will appear elsewhere.

II. PRELIMINARIES

This section introduces basic notation and concepts from
graph theory and optimization.

A. Notation

We denote by N, R, R+, and C the sets of positive integers,
reals, positive real, and complex numbers, respectively. We
denote by | N | the cardinality of the set N . For a complex
number a ∈ C, we let |a| and ∠a be the complex modulus
and angle of a. The real and imaginary parts of a are
represented as <(a) and =(a). The 2-norm of a complex
vector v ∈ Cn is written as ‖v‖. Let Sn+ ⊂ Cn×n and Hn ⊂
Sn+ be the set of positive semidefinite and n-dimensional
Hermitian matrices, respectively. For A ∈ Cn×n, let A∗ and
Tr{A} denote its conjugate transpose and trace, respectively.

B. Graph Theory

We review basic notions of graph theory following [14].
A graph is a pair G = (N , E), where N ⊆ N is its set of
vertices or nodes and E ⊆ N ×N is its set of edges. A self-
loop is an edge that connects a vertex to itself. Two nodes
i, k ∈ N are connected if {i, k} ∈ E . The graph is undirected
if {i, k} = {k, i} ∈ E . A path in a graph is a sequence
of vertices such that any two consecutive nodes correspond
to an edge of the graph. An orientation of an undirected
graph is an assignment of exactly one direction to each of
its edges. A simple graph is a graph with neither self-loops
nor multiple edges connecting any pair of two vertices. A
vertex-induced subgraph of G = (N , E), written as Gs[N s],
is a subgraph of G with the set of nodes N s ⊆ N and set of
edges Es = E ∩(N s×N s). An edge cut set is a set of edges
of the graph which, if removed, disconnects it. A weighted
graph is a graph in which each branch {i, k} is given a
numerical weight, wik ∈ R+. Given the weights of all the
edges, w ∈ R| E |+ , the weighted adjacency matrix of a simple
graph, A, has A(i, k) = A(i, k) = wik and A(i, k) = 0
otherwise. A n-optimal partition of G(N , E , A) divides N
into n number of disjoint sets such that ∪ni=1 Vi = N and

at the same time, has
∑
{i,k}∈Ec wik minimized, where Ec

is the edge cut set.

C. Strong Duality of Convex Optimization

Here, we review some fundamental concepts in convex
optimization following [15]. Consider a convex optimization
problem of the form

min
x
f0(x), s.t. Ax = b, fi(x) ≤ 0, i = 1, . . . ,m, (1)

where f0, . . . , fm : Rn → R are convex functions, A ∈
Rn×r, b ∈ Rr, and Ax = b defines affine equality con-
straints. The dual problem of optimization (1) is given as

max
λ≥0,µ

(
min
x
f0(x) +

m∑
i=1

λifi(x) + µ>(Ax− b)
)
, (2)

where λ ∈ Rm and µ ∈ Rr are known as Lagrange
multipliers. Let p? and d? be the optimal value of the primal
and dual problems, respectively. Strong duality holds if p? =
d?. Under strong duality, the Karush-Kuhn-Tucker (KKT)
conditions are a necessary and sufficient characterization of
the optimality of the primal-dual solution (x?, λ?, µ?),

0 ∈ 5f0(x?) +
∑m
i=1 λ

?
i5 fi(x

?) + (µ?)>Ax?,

λ?i fi(x
?) = 0, ∀i = 1, . . . ,m,

(µ?)>(Ax? − b) = 0,

Ax? = b, fi(x
?) ≤ 0, ∀i = 1, . . . ,m,

λ?i ≥ 0, ∀i = 1, . . . ,m.

These conditions correspond to stationarity, complementary
slackness, and primal and dual feasibility, respectively. The
(refined) Slater’s condition holds if there exists x ∈ Rn with

Ax = b and fi(x) < 0, ∀i = 1, . . . ,m.

Slater’s condition implies that strong duality holds. The
analogous results hold for a more general SDP formulation.

D. McCormick Relaxation

The McCormick envelopes [16] provide linear relaxations
for optimization problems that involve bilinear terms. Con-
sider a bilinear term on the variables x, y ∈ R, xy, for which
there exist upper and lower bounds of the form,

x ≤ x ≤ x, y ≤ y ≤ y.

Then the McCormick relaxation consists of substituting the
term xy by its surrogate w ∈ R in the optimization problem
and adding the following McCormick envelopes on w,

w ≥ xy + xy − xy, (3a)

w ≥ xy + xy − xy, (3b)
w ≤ xy + xy − xy, (3c)

w ≤ xy + xy − xy, (3d)

As illustrated in Figure 1, constraint (3) is tight in the sense
that each plane in (3) is tangent to the bilinear-constraint
manifold at two boundary lines. Figure 1 also illustrates
that the convex polyhedral of (x, y, w) encloses the actual
bilinear-constraint manifold.
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Fig. 1. Illustration of all the planes of McCormick envelopes.

III. PROBLEM STATEMENT

This section introduces the problem of interest. We begin
with the formulation of the OPF problem over an electrical
network and its SDP convex relaxation. The formulation
is built according to [17], [18]. In the latter formulation,
we introduce binary variables for the co-optimization of
topology design, control of tap changers, and capacitor
banks.

Consider an electrical network graph with generation
buses NG, load buses NL, and electrical interconnections
described by an undirected edge set E . Let N = NG ∪NL

and denote its cardinality by N . We denote the phasor
voltage at bus i by Vi = Eie

jθi , where Ei ∈ R and
θi ∈ [−π, π) are the voltage magnitude and phase angle,
respectively. When convenient, we let V = {Vi | i ∈ N}
denote the collection of voltages at all buses. The active and
reactive power injections at bus i are given by the power
flow equations

Pi = Tr{YiV V ∗}+ PDi
, (4)

Qi = Tr{Y iV V ∗}+QDi
,

where PDi , QDi ∈ R are the active and reactive power
demands1 at bus i, and Yi, Y i ∈ HN are derived from the
admittance matrix Y∈ CN×N as follows

Yi =
(eie

>
i Y)∗ + eie

>
i Y

2
, (5a)

Y i =
(eie

>
i Y)∗ − eie>i Y

2j
. (5b)

1Some buses may have generation and load simultaneously. For buses
with only generators, PDi

, QDi
are both zero.

Here {ei}i=1,...,N denotes the canonical basis of RN . The
OPF problem also involves the following box constraints

V 2
i ≤ |Vi|2 ≤ V

2

i , ∀i ∈ N ,
P i ≤ Pi ≤ P i, Q

i
≤ Qi ≤ Qi, ∀i ∈ N , (6)

|Vi − Vk|2 ≤ V ik, ∀{i, k} ∈ E ,

where V ik is the upper bound of the voltage difference
between buses i, k, and V i and V i are the lower and upper
bounds of the voltage magnitude at bus i, respectively. The
quantities P i, Qi, P i, Qi, are defined similarly. The objective
function for the OPF problem is typically given as a quadratic
function of the active power injection,∑

k∈NG

ci2P
2
i + ci1Pi, (7)

where ci2 ≥ 0, and ci1 ∈ R. The OPF problem is usually
formulated as minimization over (7) subject to (4) and (6).
Such optimization is non-convex in general due to the
quadratic terms on V . To address this, one can equivalently
define W = V V ∗ ∈ HN (or W ∈ HN and rank(W ) = 1) as
the decision variable (note all the terms in (4), (6) and (7) are
quadratic in V ). Dropping the rank constraint on W makes
the OPF problem convex, giving rise to the following SDP
convex relaxation,

(P1) min
W�0

∑
i∈NG

ci2P
2
i + ci1Pi,

subject to

Pi = Tr{YiW}+ PDi
, ∀i ∈ N , (8a)

Qi = Tr{Y iW}+QDi , ∀i ∈ N (8b)

P i ≤ Pi ≤ P i, ∀i ∈ N , (8c)

Q
i
≤ Qi ≤ Qi, ∀i ∈ N , (8d)



V 2
i ≤ Tr{MiW} ≤ V

2

i , ∀i ∈ N , (8e)

Tr{MikW} ≤ V ik, ∀{i, k} ∈ E . (8f)

where Mi,Mik ∈ HN are defined so that Tr{MiW} = |Vi|2
and Tr{MikW} = |Vi − Vk|2.

We are interested in solving the OPF problem with binary
variables modeling potential topology reconfigurations. As-
sume that we can add a set of edges, Es ⊂ (N ×N ) \ E ,
to the network G = (N , E). With an option for topological
changes, the power system can be made more robust while
lowering the generation cost or power losses. For each line
{i, k} ∈ Es, we define a binary variable αik ∈ {0, 1}. The
line is connected if αik = 1 and disconnected otherwise.
Taking this into account, the active and reactive power
injections of each node become

Pi = Tr{YiW}+ PDi +
∑

k∈N i,s

αikPik, (9)

Qi = Tr{Y iW}+QDi
+

∑
k∈N i,s

αikQik,

where N i,s := {k | {i, k} ∈ Es}, Pik = Tr{YikW}, Qik =
Tr{Y ikW}, Yik, Y ik ∈ CN×N , Pik and Qik are the active
and reactive power flowing from edge i to k, respectively.
We define (P1)-α to be the OPF problem with the topology
determined by a specific α ∈ [0, 1]|Es|. We also define (P2)
to be the optimization (P1) with constraints (8a) and (8b)
replaced by (9). The problem (P2) is non-convex for two
reasons: the binary variables αik and the bilinear products
of αik and W . The first problem is usually addressed using
existing integer programming solvers [13], [19]. McCormick
relaxation procedure described in Section II-D is the standard
way to deal with the second problem. We will instead provide
alternative routes to address each of these problems for the
optimization (P2).

IV. APPROXIMATION OF THE BILINEAR TERMS

Here, we discuss an alternative procedure to the Mc-
Cormick relaxation. We start by noting that every binary
variable α only appears in the bilinear products in (9) with
another continuous variable W . If we convexify the binary
variables by allowing them to take values in the interval
[0, 1], then we can interpret each bilinear term of {i, k} ∈ Es
as the line power flow from i to k, with the magnitude less
than or equal to what W indicates. If the direction of power
flow of every line {i, k} ∈ Es was known, then the bilinear
term would no longer be an issue. For example, if we knew
that Pik = Tr{YikW} ∈ R+ and Qik = Tr{Y ikW} ∈ R+,
then we can define new variables, P̂ik ∈ R and Q̂ik ∈ R,
replacing αikPik and αikQik in (9), respectively, and impose
the constraints

0 ≤ P̂ik ≤ Pik, 0 ≤ Q̂ik ≤ Qik. (10)

This would eliminate the bilinear terms and the only re-
maining non-convexity is that the physical feasible solution
should satisfy P̂ik ∈ {0, Pik} and Q̂ik ∈ {0, Qik}. In
general, however, the direction of power flow of the lines

{i, k} ∈ Es is not known a priori and hence the trivial convex
constraints (10) for the relaxation are no longer valid.

Our idea to approximate the bilinear terms builds on
defining a virtual voltage for the terminal nodes. We impose
constraints on the virtual voltage to make sure that it has
physical sense. We make this precise next. Let Ês be an
arbitrary orientation of Es. To define the virtual voltages
(and to keep with the SDP formulation), we introduce a
two-by-two positive semi-definite matrix of virtual voltages
Uik ∈ S2+, for each {i, k} ∈ Ês. This matrix encodes
physically meaningful voltages of the terminal nodes if its
rank is one, namely, Uik = uiku

>
ik, with uik(1) and uik(2)

corresponding to the voltages of nodes i and k, respectively.
We next impose the following constraints on Uik

Uik(1, 1) ≤ Tr{MiW}, (11a)
Uik(2, 2) ≤ Tr{MkW}, (11b)

Tr{M̂ikUik} ≤ Tr{MikW}, (11c)

where M̂ik(1, 1) = M̂ik(2, 2) = 1 and M̂ik(1, 2) =
M̂ik(2, 1) = −1. Constraints (11a) and (11b) make the
voltage magnitudes of i and k derived from Uik is no bigger
than the ones from W . Similarly, constraint (11c) ensures
that the voltage difference between nodes i and k computed
from Uik is less than the corresponding difference from W .
Therefore, by imposing constraint (11) on a rank-one matrix
Uik, we obtain a physically meaningful and feasible voltage
value. Let Ŷik ∈ C2×2 and Tr{Ŷ ik} ∈ C2×2 being the
principal submatrices which take entries associated with node
i, k of Yik and Y ik, respectively. With this we replace αikPik
and αikQik in (9) by Tr{ŶikUik} and Tr{Ŷ ikUik}, and
convexify (P2) as follows

(P3) min
W�0,

Uik�0 ∀{i,k}∈Ês

∑
i∈NG

(
ci2P

2
i + ci1Pi

)
,

subject to (8c)-(8f), (11), and

Pi = Tr{YiW}+ PDi +
∑

k∈N i,s

Tr{ŶikUik}, (12a)

Qi = Tr{Y iW}+QDi +
∑

k∈N i,s

Tr{Ŷ ikUik}. (12b)

We next show the result that all non-trivial solutions Uik of
(P3) have rank(Uik) ≤ 1, as described in the following.

Proposition IV.1. (Optimal solutions have well-defined
virtual voltages). If Slater’s condition holds for (P3), then
the optima of (P3) have rank(Uopt

ik ) ≤ 1, for all {i, k} ∈ Ês.

Recall that Tr{YikUopt
ik } and Tr{Y ikUopt

ik } have the
interpretation of the optimal line power flows from i to k
on the edge {i, k} ∈ Es, that is, for all {i, k} ∈ Es

P opt
ik = Tr{YikUopt

ik }, Qopt
ik = Tr{Y ikUopt

ik }. (13)

These power flows have a nice property regarding the sum of
power loss on each edge. Let W opt

ik ∈ H2 be the principal
sub-matrix of W opt obtained by removing from W opt the



columns and rows different from i and k, respectively. The
next result shows that the sum of the power losses is upper
bounded by the one computed from W opt.

Lemma IV.2. (Bounds on the sums of line active and
reactive powers). If the line charging susceptance is zero
for all {i, k} ∈ Ês, then the following inequalities hold for
all {i, k} ∈ Ês

0 ≤ P opt
ik + P opt

ki ≤ Tr{(Yik + Yki)W
opt
ik }, (14a)

0 ≤ Qopt
ik +Qopt

ki ≤ Tr{(Y ik + Y ki)W
opt
ik }. (14b)

The bounds shown in Lemma IV.2 are only on the optimal
line power losses (or the sum of the directional active and
reactive power flow). We seek the upper bound on each of
|Pik|, |Pki|, |Qik|, and |Qki|, which are combined stricter
than (14) because (14) is only on their sums, i.e., P opt

ik +P opt
ki

and Qopt
ik +Qopt

ki . We next show that under certain conditions
for (P3), stricter conditions on the voltages retrieved from the
optimal solution Uopt

ik and W opt hold. To state the result, we
introduce ui, uk, wi, wk ∈ C such that [ui, uk]

>[ui, uk] =
Uopt
ik and [wi, wk]

>[wi, wk] =W opt
ik .

Proposition IV.3. (Bounds on directional power flow).
Assume {i, k} ∈ Ês is purely inductive and has zero charging
susceptance, |uk| ∈ {0, |wk|} and

|wi| ≥
1

2
|wk|, |wk| ≥

1

2
|wi|. (15)

Then the following inequalities hold

|P opt
ik |≤|Tr{YikW

opt
ik }|, |P

opt
ki |≤|Tr{YkiW

opt
ik }|, (16a)

|Qopt
ik |≤|Tr{(Y ik + Y ki)W

opt
ik }|. (16b)

The assumption (15) holds for most existing power sys-
tems [20]. An analogous result holds by restricting ui as uk,
as shown in the next result.

Proposition IV.4. (Bounds on directional power flow. II).
If {i, k} ∈ Ês is purely inductive and has zero charging
susceptance, |ui| ∈ {0, |wi|} and V ik is sufficiently small
such that (15) holds, then the following inequalities hold

|P opt
ik |≤|Tr{YikW

opt
ik }|, |P

opt
ki |≤|Tr{YkiW

opt
ik }|,

|Qopt
ki | ≤ |Tr{(Y ik + Y ki)W

opt
ik }|.

For the general impedance case, similar nonlinear inequal-
ities hold, while the LHS of (16) becomes more complicated.
We do not pursue those results here. Propositions IV.3
and IV.4 show that when the diagonal entries of Uik are
at the boundary points of their constraints, (P3) eliminates
the bilinear terms on the active line power flow of (P2) in
the same way as (10). Based on the intuition that in (P3),
the diagonal elements of Uik scaled the “α”, we approximate
the value of αik in (9) by

α̂ik = Tr{Uopt
ik }/Tr{W

opt
ik }. (17)

Note that α̂ik ∈ [0, 1] because of (11). One can always
round α̂ to {0, 1}|Ês| and derive a candidate possible solution

for (P2), α̂r. The following result is straightforward, which
draws the relation between (P2) and (P3) based on the
rounded solution α̂r.

Lemma IV.5. (Properties of the reconstructed solution).
Optimal values of (P2), (P3) satisfy popt2 ≥ popt3 . Moreover,
if (P1)-α̂r has the optimal value popt1 = popt3 , then the optimal
solution of (P1)-α̂r, W opt

1 , combined with α̂r is an optimal
solution of (P2).

Beyond providing candidate values for the binary vari-
ables, we rely on the optimization (P3) and its solution as
a key component of our algorithmic solution to solve (P2)
described in the next section.

Remark IV.6. (Comparison with the McCormick relax-
ation). For comparison, we briefly explain how we im-
plement the McCormick relaxation on the problem (P2).
The bilinear terms in (P2) are on αikPik and αikQik. We
define new variables P̂ik ∈ R and Q̂ik ∈ R for each
{i, k} ∈ Ês. Next, we impose constraints (3) on P̂ik and
Q̂ik based on αik ∈ {0, 1} and the upper and lower bounds
of line active/reactive power flow, P ik, Qik ∈ R+, P ik =
−P ik, Qik = −Qik. The upper bound of the active power is
typically given by line specifications to prevent overheat. We
impose the upper bound on the reactive power part for the
purpose of the relaxation. We offer two advantages of the
formulation proposed in (P3) over the McCormick approxi-
mation we just described. On the one hand, P̂ik and Q̂ik are
loosely tied with the decision variable W in the McCormick
relaxation, whereas (P3) introduces constraints (11a)-(11c)
that enforce a stronger physical connection between the
virtual voltages and W . Additionally, the upper and lower
bounds on the line power flows may be far from the actual
optimal line power flows, which affects the quality of the
McCormick relaxation. In contrast, the proposed (P3) is
not sensitive to those line power bounds as the virtual
voltages are bounded by the power computed from W instead
of P ik, Qik, P ik, Qik. One therefore needs to accurately
estimate the bounds of the line power flow to make the
McCormick relaxation effective. For example, knowing the
power flow direction improves the estimates significantly, but
such information is not available in general. �

Remark IV.7. (Optimal switching of transformer taps and
capacitor banks). Our focus has been on the co-optimization
of network topology and OPF, but in fact, the formulation
(P3) can also be employed to relax the bilinear terms
involved in transformer taps and capacitor banks. Both of
them entail a physical variable x such that x = αs

√
W (i, i),

where αs can take multiple positive integer values, which can
always be equivalently represented by some binary variables.
Without loss of generality, we assume αs ∈ {0, 1} and relax
the bilinear term by introducing a two-by-two real-value
positive semidefinite matrix Us such that

Us(1, 2) + Us(2, 1) = x,

Us(1, 1) ≤ Tr{MiW},



Us(2, 2) ≤ 1/4.

In this way, the last two inequalities being strict corresponds
to αs = 1 and αs = 0 if Us = 0. We can also show that
rank(Us) = 1. We do not incorporate transformer taps and
capacitor banks in the OPF formulation only for simplicity
of presentation. �

V. PROPOSED ALGORITHM FOR MIXED-INTEGER OPF

This section focuses on further addressing the complexity
associated with the binary variables. Note that the values
obtained from the solution of (P3) by means of (17) may not
in general belong to {0, 1}|Ês|. In such case, one may resort
to branch-and-bound algorithm and use (P3) to generate the
lower bounds in the algorithm. The approach can easily
become intractable as |Ês| grows because each lower bound
computation from (P3) is expensive. We therefore propose
to further manipulate the solution of (P3) with the objective
of relieving the exponential complexity while finding a more
accurate solution.

Our algorithm is based on partitioning the graph G to
reduce the original problem into several others of smaller
size. Solving the optimization problems associated with
each subgraph can dramatically reduce the computational
complexity. The proposed partition minimizes the correlation
between the resulting subgraphs. If the correlation between
the subgraphs (that is, the sensitivity of perturbing certain
constraints) is small, then the reconstruction of the solution
to (P2) from the ones of the subgraphs may result in a better
approximation. Intuitively speaking, our procedure is based
on the idea that, if the optimal solutions to the problems
in each subgraph do not violate the constraints that connect
them to other graphs’ solutions, then we should be able to
recover the full problem solution by putting them together.

1) Graph reduction: We view the disconnection of a line
in E as a perturbation on the constraints (8c)-(8d). The view-
point is natural in the sense that the disconnection changes
the nodal active and reactive power injections of the terminal
nodes, which in turn may cause (8c)-(8d) to be violated.
Therefore, we seek to partition the graph so that the edge
cut set, Ec, induces the minimal perturbation on the optimal
value popt. In particular, edge removal should not affect
switchable lines and result into terminal nodes belonging to
different subgraphs. This is because, if there exists a line
{i, k} ∈ Ês with i and k belonging to different subgraphs,
then solving the OPF associated with each subgraph cannot
capture how the switch in {i, k} affects the optimal value.

We therefore aim to find a partition such that Es ∩Ec = ∅.
To do so, we ‘hide’ the nodes that are connected by Es to
the partitioning algorithm that finds Ec. Let N s := {i ∈
N | {i, k} ∈ Es} and let N s,i be the set of nodes that
are connected to node i ∈ N s through a line in Es. All
nodes in N s,i are clustered as one representative node and
all the edges connected to one of N s,i are considered being
connected to the representative node. This results in a graph
Gs =

(
(N \N s) ∪ V, Ev

)
, where V is the collection of

Fig. 2. Simplified graph with nodes connected by Es are collapsed into
one node. The dash lines denote the edges in Es; the solid lines denote the
edges in E

representative nodes. Notice that Ev ⊆ E and Ev is a strict
subset of E if there is {i, k} ∈ E such that a path connecting
nodes i and k exists in the graph (N , Es). Figure 2 illustrates
the construction of Gs and has Ev ⊂ E as one edge of E is
dropped in the process of graph reduction.

2) Graph partitioning: Our next step is to find an edge
cut set Ec of the graph Gs with Es ∩Ec = ∅. In order to
minimally affect the optimal value popt, the graph parti-
tioning is based on the optimal dual variables of (P3). The
optimum dual variables measure how the optimal value popt3

of (P3) changes with respect to the corresponding constraint.
Formally, by taking the derivative of the Lagrangian of (P3),
we have for each i ∈ N that

λopti =
∂popt3

∂P i
, λ

opt

i =
∂popt3

∂P i
,

γopt
i

=
∂popt3

∂Q
i

, γopti =
∂popt3

∂Qi
,

With this interpretation, we define a weighted adjacency
matrix A as follows{
A(i, k) =

∑
l∈{i,k} λl + λl + γl + γ

l
, {i, k} ∈ Ev,

A(i, k) = 0, otherwise.
(18)

Note that if i ∈ V , then the computation on the entry
A(i, k) uses λl, λl, γl, γl of node l ∈ N s which connects
to k in the original graph. Given the weighted adjacency
matrix associated with Gs, we do an n-optimal partition
on Gs, which gives Gs[V0

1], · · · ,Gs[V
0
n] with ∪ni=1 V

0
i =

(N \N s)∪V . Since all the removed edges are in E , we can
use the same cut for the partition of G: G[V1], · · · ,G[Vn]
with ∪ni=1 Vi = N . Such partition ensures Ec ∩Es = ∅.
The intuition is that the cut minimally perturbs popt because
it select edges with minimal weight for the graph G with
adjacency matrix A. Though finding the cut set is NP-
hard, there are algorithms that can find a cut set with small
weights to determine an n-optimal partition of the graph in
few seconds for graphs with the order of a thousand nodes,
e.g., [21], [22].



3) Integer optimization on subgraphs: Given an n-
partitioned graph G[V l], l = 1, · · · , n, we define an opti-
mization problem associated with each subgraph, which is a
variant of (P2) that is convenient for the reconstruction of
the solution of (P2) over the original G. For subgraph l, let
E l be its set of edges, Wl ∈ S| Vl |

+ the decision variable, Ês,l
the set of switchable lines, and Bl the set of nodes in V l
that connects to at least one node of another subgraph. We
propose that each subgraph l solves the following

(P4) min
Wl�0,αik∈{0,1}
∀{i,k}∈Ês,i

∑
i∈NG ∩Vl

(
ci2P

2
i + ci1Pi

)
,

subject to

P i ≤ Pi ≤ P i, ∀i ∈ V l,
Q
i
≤ Qi ≤ Qi, ∀i ∈ V l,

V 2
i ≤ Tr{MiWl} ≤ V

2

i , ∀i ∈ V l,
Tr{MikWl} ≤ V ik, ∀{i, k} ∈ E l .
For all i ∈ V l \Bl,

Pi = Tr{YiWl}+ PDi
+

∑
k,{i,k}∈Es,i

αikTr{YikWl,ik},

Qi = Tr{Y iWl}+QDi
+

∑
k,{i,k}∈Es,i

αikTr{Y ikWl,ik}.

For all i ∈ Bl,

Pi = Tr{YiWl}+ PDi
+ P l,i+

∑
k,{i,k}∈Es,i

αikTr{YikWl,ik},

Qi = Tr{Y iWl}+QDi
+Ql,i+

∑
k,{i,k}∈Es,i

αikTr{Y ikWl,ik},

where P l,i =
∑
k∈N \Vl,{i,k}∈E P

opt
ik sums the active power

flow from the solution of (P3), Ql,i is defined in a similar
way, and with slight abuse of notation, all Mi, Mik, Yi,
Y i, Yik take proper dimensions matching Wl. Adding P l,i
and Ql,i in (P4) accounts for the “coupling” between G[V l]
and the other subgraphs. Since P l,i and Ql,i are constants
without considering their dependency on the terminal voltage
determined by the solutions of the subgraphs, the P l,i and
Ql,i approximation on the power exchanged (or coupling)
between the subgraphs is not accurate. Therefore, the so-
lutions from the previous problems may not result into a
feasible solution of (P2). Instead, their combination provides
a solution to (P2) with a perturbation on (8c) and (8d),
which further justifies the graph partitioning with respect to
A. Notice that (P4) is NP-hard due to αik, but it is more
approachable as the number of switches in each partition,
| Es,i |, is far less than | Es | if the partition consists of a
large number of subgraphs.

4) Full SDP optimization with fixed topology: In the last
step, we define the candidate optimal switch αopt

c ∈ [0, 1]| Es |

from the solutions of (P4). With this in place, we solve
(P1)-αopt

c to obtain the candidate optimal solution W opt
c . We

regard (αopt
c ,W opt

c ) as the reconstructed solution of (P2). We
summarize this section by Algorithm 1.

Algorithm 1 Partition-Based MIP-OPF Algorithm
1: Compute the optimal solution W opt of (P3)
2: Compute a graph reduction Gs (Section V-.1)
3: Compute the adjacency matrix for Gs (Section V-.2)
4: Compute a cut set Ec to partition Gs into n subgraphs,

use it to partition G into n subgraphs (Section V-.2)
5: Solve an integer optimization problem (P4) on each

subgraph to find αopt
c (Section V-.3)

6: Solve (P1)-αopt
c (Section V-.4)

VI. SIMULATION STUDIES

In this section, we present simulation studies on the IEEE
118 bus test system. The test system has 152 lines, 27 of
which are switchable as described in Table I (we take this
list from [23]). We solve two convexified versions of the
optimizations of (P2): (P3) and the optimization resulting
from the McCormick relaxation. We include additional an
cost function on the line power losses for both of them so
that the optimal solution is more likely not to have all the
edges connected.

TABLE I
LIST OF THE SWITCHABLE LINES IN IEEE 118 TEST SYSTEM.

Index 1 2 3 4 5 6
Line (31,32) (49,66) (27,32) (3,12) (61,62) (69,70)
Index 7 8 9 10 11 12
Line (46,47) (77,82) (24,70) (55,59) (54,59) (56,59)
Index 13 14 15 16 17 18
Line (69,77) (59,61) (37,40) (59,60) (64,65) (15,19)
Index 19 20 21 22 23 24
Line (65,66) (80,96) (64,61) (30,38) (70,71) (92,100)
Index 25 26 27
Line (11,12) (94,100) (23,25)

We simulate (P2) with the McCormick relaxation as
described in Remark IV.6 for two different estimates on the
upper bounds of the line power flow. One places conservative
bounds on P ik, P ik, Qik, Q

ik
with P ik = Qik = 5(p.u.)

and P ik = Q
ik

= −5(p.u.) for all {i, k} ∈ Ês. We impose
those bounds by solving the nominal IEEE 118 example with
all the switchable lines connected, and pick the value of
the largest line active/reactive power flow. The other case
sets P ik = Qik = 1(p.u.) and P ik = Q

ik
= −1(p.u.)

for all switchable lines, which bound the line power flow
more aggressively but which results in a better McCormick
approximation because the bounds are closer to the line
power flow solution of the nominal IEEE test case. Their
results on α are shown in the rows of McC and McC-t,
respectively, of Table II. As shown in this table, all the α
from (P3) are close to zero or one except line 19. In contrast,
the α obtained from the McCormick relaxations provide far
less information on what value α should take as they are
mostly close to 0.5. The optimal values of (P1)-α after
substituting the rounded values of α from the McCormick
relaxations are 153660 and 151370, respectively. On the
other hand, substituting α retrieved from (P3) in (P1)-α gives



the optimal value 151040, which is noticeable better than the
former two solutions.

TABLE II
SOLUTION OF α FROM (P3) AND THE OPTIMIZATION WITH THE

MCCORMICK RELAXATION.

Index 1 2 3 4 5 6 7 8 9
(P3) 1 1 .99 1 1 1 1 1 .98
McC. .5 .5 .49 .49 .51 .49 .49 .49 .49

McC.-t .52 .87 .51 .5 .47 .73 .49 .49 .49
Index 10 11 12 13 14 15 16 17 18
(P3) .99 .98 .98 .99 1 1 1 1 1
McC. .49 .49 .49 .51 .51 .49 .49 .54 .5

McC.-t .49 .5 .5 .78 .6 .5 .56 .98 .5
Index 19 20 21 22 23 24 25 26 27
(P3) .39 1 0 1 1 1 1 1 1
McC. .5 .49 .51 .49 .5 .49 .5 .49 .5

McC.-t .42 .57 .52 .58 .14 .50 .51 .62 .8

We also have implemented Algorithm 1 to improve the
solution obtained from (P3). The graph partitioning step
described in Section V-.2 is done by using the MATLAB
script in [21]. Algorithm 1 gives the same rounded-up value
of α as the one from (P3). Algorithm 1 does not improve
the solution from the one of (P3) in this case. A possible
reason is that the solution of (P3) is already close to the true
optimum of (P2). The optimal value of (P3) is 150990, while
the retrieved solution from (P1)-α is 151040. The difference
is less than 0.1% and (P3) is likely to give the optimal α for
(P2) already, and thus there is no room for Algorithm 1 to
further improve it.

VII. CONCLUSIONS

This paper considers MIP-OPF problems that appear in
the co-optimization of network topology and OPF. We have
addressed the challenges posed by the non-convex bilinear
terms and discrete variables. To handle the non-convex
bilinear part, we have introduced auxiliary positive semidef-
inite matrices that convexify the bilinear terms. We show
that those PSD matrices can be interpreted as physically
meaningful virtual voltages for the original network. Such
relationship between the auxiliary variables and the physical
ones in the original problem is not captured by the purely
geometric McCormick relaxation. To handle the non-convex
discrete variable part, we have proposed a graph partitioning
method that significantly reduces the computational com-
plexity of the original problem. Future work will provide
further analysis on the proposed relaxation methods and
additional numerical tests on a larger class of power system
testbeds.
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