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Abstract : Recently, significant gains have been made in our understanding of multi-robot systems, and such systems

have been deployed in domains as diverse as precision agriculture, flexible manufacturing, environmental monitoring,

search-and-rescue operations, and even swarming robotic toys. What has enabled these developments is a combination

of technological advances in performance, price, and scale of the platforms themselves, and a new understanding of how

the robots should be organized algorithmically. In this paper, we focus on the latter of these advances, with particular

emphasis on decentralized control and coordination strategies as they pertain to multi-robot systems. The paper dis-

cusses a class of problems related to the assembly of preferable geometric shapes in a decentralized manner through the

formulation of descent-based algorithms defined with respect to team-level performance costs.
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1. Introduction

During the last decade, multi-robot systems have gone

from isolated and anecdotal laboratory systems to robustly

deployed across a number of domains, such as warehous-

ing [14],[18],[54], precision agriculture [3],[30], search-and-

rescue [4],[29], and environmental monitoring and exploration

[17],[19],[53]. The fundamental reason why more robots are

preferable in these types of domains is that there is strength in

numbers. By using a large number of robots, redundancy is au-

tomatically built into the system – if one robot fails, there are

still a number of operational robots left to continue the mission.

A wider spatial area can also be covered more efficiently if more

robots are deployed, and heterogeneous capabilities can be dis-

tributed across the team without having to dramatically change

the payload (and thus price) of individual robots, e.g.,[32].

In response to these technology and application drivers, a

number of different control and coordination strategies have

been proposed for organizing the robots in order to enable them

to come together and solve team-level, global tasks using local

interaction rules. This paper discusses some of these develop-

ments and identifies some of the salient features common to a

number of proposed coordination strategies. Broadly speaking,

a distributed multi-robot coordination algorithm has to satisfy

four different constraints for it to be useful, namely it must be

(i) local in the sense that individual robots can only act on infor-

mation it has available to it, i.e., through sensing or active com-

munications – this is sometimes referred to as “distributed”;

(ii) scalable in that the algorithms executed by the individual

robots cannot depend on the size of the entire team – some-

times referred to as “decentralized”; (iii) safe – as robots are

physical agents deployed in the real world, they must be safe

both relative to collisions with each other and relative to the en-

vironment; and (iv) emergent in the sense that global properties
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should emerge from the local interaction rules – preferably in a

provable manner [6],[40],[46].

A number of algorithms that satisfy these four constraints

have been proposed and they have been used successfully for

achieving and maintaining formations [28],[49],[51],[67], for

covering areas [9],[11],[42], for securing and tracking bound-

ary curves [47],[61],[69], or for mimicking biological social be-

haviors such as flocking and swarming [12],[13],[24],[59]. In

this overview, we illustrate some of the common features and

unifying assumptions behind this body of work.

To make matters more concrete, consider a collection of N

robots, with positions xi ∈ R
p, i = 1, . . . ,N, with p = 2 in the

case of planar robots and p = 3 for aerial robots. These robots

could for instance be equipped with omni-directional range-

sensors, which enable them to measure the positions of near-by

robots relative to their own positions, i.e., Robot i can measure

the value x j − xi if Robot j is within range of Robot i’s sensors.

The flow of information through sensor measurements or over

communication channels can be encoded abstractly as an ad-

jacency relation between robots, which allows us to define the

graph structure induced by the multi-robot team as G = (V, E),

where V = {1, . . . ,N} is the vertex set associated with the in-

dividual robots, and E ⊂ V × V is the edge-set that encodes

the adjacency relationships, i.e., ( j, i) ∈ E if Robot j is within

range of Robot i’s sensors. For the purpose of this paper, we

assume that the team is homogeneous, i.e., they have the same

kind of sensors and/or communication modalities, which means

that (i, j) ∈ E if and only if ( j, i) ∈ E, and we say that the re-

sulting graph is undirected. Note, however, that as the robots

move around, adjacency relationships will come and go, i.e.,

we cannot assume that the edge set E is static over time.

In this paper, we describe a number of control and coordina-

tion strategies that adheres to this basic interaction model and

that have a common starting point in that the algorithms can be

viewed as descent algorithms defined relative to performance

costs. The overarching tasks are encoded through these costs

– may they be locational costs for describing how well a team

of mobile robots are covering an area of interest or energy-like

functions describing the pairwise mismatch between robots as

c
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compared to their desired geometric configuration. In particu-

lar, Section 2 addresses the problem of making teams of robots

assemble desired geometric formations, Section 3 discusses the

coverage control problem, while Section 4 describes how to go

from abstract algorithms defined over simplified robot models

and interaction modalities to deployment on real robotic sys-

tems on the ground as well as in the air. Section 5 concludes

the paper with a general description of the optimization-based

approach employed in our discussion for the design of coordi-

nation control laws.

2. Formation Control

2.1 Reaching Decentralized Agreement

To ensure that the algorithms are indeed local, we insist on

the robots acting solely based on the measurable information,

e.g., the relative displacements, in such a way that appropriate

global objectives are achieved. One such objective could be for

the robots to meet at a common location – the robots do not

necessarily know where they are so no a priori agreed upon

meeting location can be used. This is known as the rendezvous

problem [1],[10],[39], and one way of evaluating how well the

robots are doing towards this aim is to evaluate the total error

E(x) =
1

2

N
∑

i=1

∑

( j,i)∈E

‖xi − x j‖
2.

We note that the gradient of the total error with respect to the

individual robot positions is given by

∂E(x)

∂xi

=
∑

( j,i)∈E

(xi − x j), i = 1, . . . ,N.

One direct way to minimize such an error function is to use a

gradient descent flow, i.e., we could simply let the robots move

in the direction of the negative gradient of the total error,

ẋi = −
∑

( j,i)∈E

(xi − x j).

The resulting equation is referred to as the node-level dy-

namics of the system since it describes the movements of the

individual robots. However, in order to analyze the behavior of

the global system, we need the ensemble-level dynamics. To

this end, we first note that the node-level dynamics is linear.

Moreover, it only involves the relative position differences be-

tween adjacent robots, i.e., it encodes the graph structure itself.

To make this explicit, let x = (xT
1
, . . . , xT

N
)T ∈ RpN . If the robots

are scalars, i.e., p = 1, then the previous node-level dynamics

can be written in ensemble form as

ẋ = −Lx,

where L is the (possibly time-varying) N×N-dimensional graph

Laplacian [23] associated with the multi-robot network, given

by

L = [ℓi j]
N
i, j=1, ℓi j =























deg(i) if i = j,

−1 if (i, j) ∈ E,

0 otherwise,

where the degree, deg(i), is the number of vertices that are ad-

jacent to vertex i. Moreover, if p > 1, the resulting ensemble-

level dynamics becomes

ẋ = −(L ⊗ Ip)x,

where Ip is the p × p identity matrix and ⊗ denotes the Kro-

necker product.

The reason for starting the discussion with the rendezvous

problem is three-fold. First, it hints at a systematic way of ob-

taining decentralized multi-robot control laws by starting with

an error function and then producing robot motions that ex-

plicitly reduce this error. This will be generalized in subse-

quent sections together with an introduction of some of the key

tools needed to analyze such systems. Second, it calls out the

sometimes intricate coupling between robot motions and the

evolution of the underlying network structure. In other words,

what makes distributed multi-robot control tricky is that it is

not enough to consider the individual motions. Instead the

motions must be understood in conjunction with their effects

on the underlying network structure. In fact, this is a perva-

sive feature in the literature, see e.g.[6],[45],[46],[57]. Third,

the equation ẋ = −Lx is, by itself, one of the most important

equations in the multi-agent literature. In fact, it plays such a

prominent role that it even has its own name – the consensus

equation [5],[21],[52],[58]. The reason for this is that by mov-

ing around, the robots are agreeing (or reaching consensus) on

where to meet, as shown in Figure 1(a).

Numerous variations to the consensus equation have been

proposed, and we here discuss two such direct extensions. For

example, let p = 2, i.e., the robots are planar, and assume that

they are arranged in a directed cycle topology. Then, one can,

instead of letting the robots “aim” towards their neighbors, they

can instead move with a slight offset, as

ẋi = R(−ψ)(xi+1 − xi), i = 1, . . . , N − 1

ẋN = R(−ψ)(x1 − xN),

where R(−ψ) is the rotation matrix of angle −ψ. Now, if the

offset angle is ψ = π/N, a perfect circular motion is asymptot-

ically achieved – so-called cyclic pursuit – while if ψ < π/N

the robots will spiral inwards towards a consensus point, and if

ψ > π/N, they will spiral outwards, away from each other [41].

This is illustrated in Figure 1(b).

Finally, if instead of reaching agreements over the positions,

the robots agree on what direction they should move in, i.e., the

consensus equation operates on the robot headings instead of

their positions, φ̇ = −Lφ, where φi is the heading of Robot i,

then the so-called flocking behavior emerges [27],[51],[62], as

seen in Figure 1(c).

In the context of the four constraints imposed on multi-robot

coordination algorithms, the consensus equation is both local

(only involves the measurably information xi − x j) and scalable

(only involves the neighborhood sets Ni as opposed to the full

set of robots). It is moreover emergent, as it has been shown that

it will indeed drive all robots to a common position as long as

the underlying information exchange network is “rich enough”.

In the static and undirected case, the necessary and sufficient

condition is that the graph is connected, i.e., that there exists

a path through the graph from every pair of vertices. In the

static and directed case, consensus is achieved if and only if

the graph contains, as a subgraph, a spanning (all vertices are

present) out-branching tree (a tree graph where the edges all

point in the same direction – away from the root node). In the

dynamic case, the conditions are slightly more involved but a
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(a) (b)

(c) (d)

Fig. 1 Variations on the consensus equation: (a) Rendezvous, (b) Cyclic

Pursuit, (c) Flocking, and (d) Formation Control. In these figures,

the robots start at the red locations and arrive at the green locations

after a a certain amount of time.

sufficient condition is that the necessary and sufficient condi-

tions for the static case holds at each point in time, regardless

of whether the graph is undirected or directed. (The purpose

of this survey is not to cover all of the intricacies of the sta-

bility analysis of the consensus equation – for derivations and

full characterizations of these results, see for example [46] and

the references therein.) But, the consensus equation is not safe!

In fact, rendezvous is by design achieving a massive collision

among all the robots. To remedy this and turn the consensus

equation into a truly useful multi-robot coordination law, we

need to augment it to ensure that the robots do not get too close

to each other.

2.2 Weighted Protocols

The construction in Section 2.1 can be generalized by defin-

ing a symmetric, pairwise performance cost between robots i

and j as Ei j(‖xi − x j‖) = E ji(‖x j − xi‖), with the global perfor-

mance cost being defined by

E(x) =

N
∑

i=1

∑

( j,i)∈E

Ei j(‖xi − x j‖).

The Chain Rule tells us that

∂Ei j(‖xi − x j‖)

∂xi

=
∂Ei j(‖xi − x j‖)

∂‖xi − x j‖

(xi − x j)

‖xi − x j‖

= wi j(‖xi − x j‖)(xi − x j),

i.e., the partial derivative is a scalar function of the inter-robot

distance times the relative displacement. As such, the gradient

descent rule is given by a weighted consensus protocol,

ẋi = −
∂E

∂xi

= −
∑

( j,i)∈E

wi j(‖xi − x j‖)(xi − x j).

The reason why this construction is systematic and theoret-

ically justified is that if we restrict E to positive semi-definite

functions that are 0 only at the desired, global configuration, we

note that

dE

dt
=
∂E

∂x
ẋ =

N
∑

i=1

∂E

∂xi

ẋi = −

∥

∥

∥

∥

∥

∂E

∂x

∥

∥

∥

∥

∥

2

.

In other words, E is a Lyapunov function and, with bounded

trajectories, one can resort to the LaSalle Invariance Princi-

ple [31] to ensure that the desired configuration is at least a

locally asymptotically stable equilibrium point as long as the

edge set E does not change. If E does change, i.e., edges come

and go, then E will experience discontinuities, and either a hy-

brid version of the LaSalle Invariance Principle must be used,

or arguments must be employed that establish that sooner or

later, the edge set becomes static, see e.g.,[16],[26],[48].

A number of examples of this construction have been dis-

cussed in the literature. First, the standard consensus equation

covered above can be derived from

Ei j(‖xi − x j‖) =
1

2
‖xi − x j‖

2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the

norm, then

Ei j(‖xi − x j‖) = ‖xi − x j‖ ⇒ wi j =
1

‖xi − x j‖
,

which is a form that has been used in [12] to describe coordi-

nated behaviors among schooling fish. The interpretation here

is that, as fish pay more attention to near-by fish, the square

norm counter-acts this by penalizing far-away fish in an overly

aggressive manner.

If the robots are supposed to arrange themselves at a pre-

scribed inter-robot distance δ, we obtain a formation con-

trol protocol,[15],[20],[36],[38],[49],[69], as opposed to a ren-

dezvous protocol. An example of this found in [46] is given

by

Ei j(‖xi − x j‖) =
1

2
(‖xi − x j‖ − δ)

2 ⇒ wi j =
‖xi − x j‖ − δ

‖xi − x j‖
.

The interpretation here is that the weight is negative if the

robots are closer than δ apart, thereby repelling away from each

other, while agents that are further than δ apart are attracted

through the corresponding positive weight.

An additional complication associated with multi-robot net-

works is that, throughout the maneuvers, the robot network

should stay connected,[28],[60],[66],[68]. One way of ensur-

ing this connectivity maintenance property is to ensure that the

weights become sufficiently large as the inter-robot distance ap-

proaches ∆, which is the distance where the robots are no longer

able to sense each other. In [28], the following choices were

shown to guarantee connectivity maintenance

Ei j(‖xi − x j‖) =
‖xi − x j‖

2

∆ − ‖xi − x j‖
⇒ wi j =

2∆ − ‖xi − x j‖

(∆ − ‖xi − x j‖)2
.

A combined formation control and connectivity maintenance

protocol could thus become

Ei j(‖xi − x j‖) =
1

2(∆ − δ)

(

‖xi − x j‖ − δ

∆ − ‖xi − x j‖

)2

⇒ wi j =
1 − δ

‖xi−x j‖

(∆ − ‖xi − x j‖)3
,
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as seen in Figure 1(d).

What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-

tematic selection of scalar weights in the consensus equation.

But, if the objective is not to assemble a particular shape, but

rather to spread the robots out to cover an area, modifications

to this construction are needed.

3. Coverage Control

Another example of the theme of formulating an error func-

tion and then flowing in a negative gradient direction involves

the problem of having the robots cover a planar area in an opti-

mal way [6],[11]. To this end, let the agents be tasked with cov-

ering an areaD, and let each robot be in charge of all the points

in D that are closest to it. This corresponds to partitioning D

into N Voronoi cells, with the robot locations xi, i = 1, . . . , N

as seeds,

Vi(x) = {p ∈ D | ‖xi − p‖ ≤ ‖x j − p‖, ∀ j , i}.

Note that here we use the Euclidean distance to define what

it means to be “closest”. The concept of Voronoi partition

is flexible enough to allow for other notions of distance that

can be used to capture robot capabilities such as limited en-

ergy [33], different sensing ranges or footprints [35], or motion

constraints [2],[34].

3.1 Lloyd’s Algorithm and Locational Costs

If we moreover assume that points closer to Robot i are cov-

ered more effectively than point further away, we can write

down a so-called locational cost associated with the robot posi-

tions as

E(x) =

N
∑

i=1

∫

Vi(x)

‖xi − p‖2ϕ(p)dp.

Here, the function ϕ : D→ R measures the relative importance

of points in the environment, i.e., if ϕ(p) > ϕ(q), then the point

p is more important than the point q for the robot ensemble. As

before, taking the partial derivative of this locational cost gives

∂E

∂xi

= 2

∫

Vi(x)

(xi − p)ϕ(p)dp.

The reason why the application of Leibniz rule at the area

over which the integral is evaluated does not seem to matter

is because whatever area is moved into Vi by the infinitesimal

movement of xi, exactly the same area is lost in some other cell,

i.e., the effects cancel out.

Following the program laid out in the previous paragraphs

of using a gradient descent flow as a way of enabling LaSalle

Invariance Principle to be applicable, gives us

ẋi = 2

∫

Vi(x)

(p − xi)ϕ(p)dp = 2mi(x)(xi − ρi(x)),

where mi(x) =
∫

Vi(x)
ϕ(p)dp and ρi(x) are, respectively, the

mass and center of mass of the i:th Voronoi cell.

One can also scale the control action by a positive gain, and,

as such, consider a scaled descent flow. Using a particular

choice of gain, the new flow is given by

1

2mi(x)

∂E

∂xi

= xi − ρi(x).

The resulting control law is a continuous-time version of

Lloyd’s Algorithm for coverage control,

ẋi = ρi(x) − xi.

This law reaches [11] asymptotically the set of so-called Cen-

troidal Voronoi Tessellations, whereby xi = ρi(x), i = 1, . . . ,N.

An example of this algorithm in action is shown in Figure 2.

(a) (b) (c)

Fig. 2 Gradient-based coverage control: (a) Initial configuration, (b) Evo-

lution of the ensemble, and (c) Final Configuration. Points in the

environment are colored according to their importance.

The simplicity of this coordination law makes it especially

appealing and, in fact, numerous extensions have been inves-

tigated. We discuss below two of these extensions to time-

varying scenarios and problems that involve specifications in

terms of equitable partitions of the overall load among the

robots. The common denominator of these extensions is that

their synthesis follows the optimization-based approach to de-

sign of coordination laws that we advocate in this survey.

3.2 Time-Varying Locational Optimization and General-

ized Voronoi Partitions

Consider the scenario where the function ϕ measuring the

relative importance of points in the environment changes with

time [11],[37], e.g., according to the preferences specified by a

human operator. Formally, we have ϕ : D × R → R, (p, t) 7→

ϕ(p, t). Based on the discussion above, robots should seek to

achieve a centroidal Voronoi configuration. One can formalize

this by writing the error function

E(x, t) =
1

2

N
∑

i=1

‖xi − ρi(x, t)‖2

Note that the evolution of this function along the robot trajec-

tories can be written as

d

dt
(E(x, t)) =

N
∑

i=1

(xi − ρi(x, t))(ẋi −
∂ρi

∂t
(x, t) −

N
∑

j=1

∂ρi

∂x j

(x, t)ẋ j) =

(x − ρ(x, t))
(

(

IN −
∂ρ

∂x
(x, t)

)

ẋ −
∂ρ

∂t
(x, t)

)

,

where, for simplicity, we use the short-hand notation ρ(x, t) =

(ρ1(x, t), . . . , ρN(x, t)). This computation reveals how the design

of the coordination strategy above should be modified to deal

with time-varying functions ϕ. Specifically, if one sets

(

(

IN −
∂ρ

∂x
(x, t)

)

ẋ −
∂ρ

∂t
(x, t)

)

= k(ρ(x) − x)

then the evolution of the error function E takes the form

d

dt
(E(x(t), t)) = −(x − ρ(x, t))k(x − ρ(x, t)) = −2kE(x(t), t),
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and hence E(x(t), t) = E(x(0), 0) exp(−2kt), guaranteeing expo-

nential convergence. The implementation of this design, how-

ever, is challenging from a distributed viewpoint, because it re-

quires the inversion of the matrix
(

IN −
∂ρ

∂x
(x, t)

)

to compute

the robots’ motion. The matrix is sparse, but its inversion is

not. One can tackle this, for instance, by approximating the

inverse matrix with the Taylor series expansion which, as the

matrix sparse, is amenable to distributed implementation [37].

An example of this approach is shown in Figure 3 (bottom row),

where a team of robots execute the dynamic coverage control

algorithm.

A different take on the locational problem discussed in Sec-

tion 3.1 is to consider the optimization by the robots of the lo-

cational cost subject to fair partitioning of the areas of the en-

vironment tasked to each of them [8],[55],[56]. For instance,

in case of heterogeneous robots, some with more mobility than

others, the fast robots may be tasked with larger regions than the

slow ones. For the case of homogeneous teams, it makes sense

to prescribe an equitable partition among the robots, where the

mass of each region is the same for all. Interestingly enough,

this is not guaranteed by the centroidal Voronoi configurations

achieved by the Lloyd’s algorithm. To illustrate how to deal

with this, we consider the latter case. Formally, the robots seek

to solve a constrained optimization problem with objective

E(x) =

N
∑

i=1

∫

Vi(x)

‖xi − p‖2ϕ(p)dp

and constraints

mi(x) = m j(x), ∀i, j ∈ {1, . . . ,N}

Remarkably, one can show that the optimal way of partition-

ing the environment to solve this problem also corresponds to

a Voronoi partition, albeit the metric employed to construct is

different from the Euclidean one. Specifically, consider parti-

tioningD into N cells, with the robot locations xi, i = 1, . . . , N

and some weights wi, i = 1, . . . ,N as seeds according to

Vi(x,w) = {p ∈ D | ‖xi − p‖2 − wi ≤ ‖x j − p‖2 − w j, ∀ j , i}.

The interpretation of the role of the weights is clear. The larger

the weight wi is with respect to the other weights, the bigger that

the region of Robot i gets. This Voronoi partition is called the

power diagram. More exotic examples of generalized Voronoi

partitions exist, e.g.,[50], and these notions play an important

role when considering more general versions of the locational

cost defined above. The key observation here is that, given

arbitrary robot positions, one can always select the weights

wi, i = 1, . . . , N so that the equitable constraints mi(x) = m j(x),

for all i, j ∈ {1, . . . , N} are satisfied. Therefore, the design of the

coordination law to solve the constrained locational optimiza-

tion problem described above with equitable partitioning con-

sists of two interconnected algorithms: one strategy prescribing

the physical motion of the robots by having them chase the cen-

troid of their (power diagram) Voronoi cell and another strategy

prescribing how the weights are selected to partition the envi-

ronment equitably given the robot positions.

4. Deployment on Real Robots

A crucial assumption underlying the discussion in the previ-

ous sections was the assumption that we could directly control

the velocities of the robots, i.e., that

ẋi = ui, i = 1, . . . ,N

regardless of the dimension of the state of the system. This is

obviously not true for real robots, and, to this end, we need to be

able to go from integrators to full-blown robot kinematics in or-

der to actually deploy these control laws. The standard manner

in which this is done is to use the velocities resulting from the

coordinated control algorithms as “plans” and then wrap non-

linear controllers around these plans in order to deploy them on

real robotic systems. Rather than characterizing all the different

ways in which this has been done on a large number of differ-

ent types of platforms, we illustrate here this on two standard

classes of robots, namely wheeled, differential drive robots and

aerial quadcopters. The common denominator for both robots

is the use of the concept of differential flatness [22],[63] to carry

out the control design.

Before we start discussing the different platforms, a few

words must be made about the notation used. First, as we will

focus exclusively on the kinematics of an individual robot in

this section, we will suppress the subscript i for the sake of no-

tational convenience. Second, if we let the position of the robot

be in Rp, with p = 2 in the case of ground robots and p = 3

in the case of aerial robots, we will let u ∈ Rp denote the de-

sired velocity obtained from the single integrator model, based

(perhaps) on one of the previously discussed coordinated con-

trollers. We will subsequently use (x, y) or (x, y, z) to denote the

position of the robot, and let φ be the heading (or yaw in the

aerial case) of the robot, θ be the pitch and ψ be the roll in the

aerial case.

4.1 Ground Robots

One of the most commonly used robotic platforms is the

wheeled, differential-drive ground robot. It is equipped with

two independently controlled wheels of radius R, where the

control inputs are the angular velocities of the right ωr and left

ωl wheels. If the wheel axis has length L, then the kinematics

of the differential drive robot is

ẋ = R
2

(ωr + ωl) cos φ

ẏ = R
2

(ωr + ωl) sin φ

φ̇ = R
L

(ωr − ωl).

Now, as it is not particularly natural to define motions in

terms of wheel velocities, a standard transformation is to map

this to a unicycle model, where the control inputs are instead

given by the translational v and angular ω velocities of the

robot. As the unicycle dynamics is given by

ẋ = v cos φ

ẏ = v sinφ

φ̇ = ω

we somehow have to map (v, ω) onto (ωr, ωl). By equating

(ẋ, ẏ, φ̇) in the two expressions above, we get

v = R
2

(ωr + ωl)

ω = R
L

(ωr − ωl)

which inverts to
ωr =

2v+ωL
2R

ωl =
2v−ωL

2R
.
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As a result, we can design controllers for the unicycle model

and then simply generate (ωr, ωl) from the velocities (v, ω). But

we still have to go from u ∈ R2 to (v, ω). And, if we are willing

to ignore the orientation of the vehicle, this can be achieved by

considering a point off the wheel axis of the robot by a distance

0 , ℓ ∈ R,
x̃ = x + ℓ cos φ

ỹ = y + ℓ sinφ.

In fact, these variables work as flat outputs. Their derivative is

given by
˙̃x = v cos φ − ℓω sinφ
˙̃y = v sinφ + ℓω cos φ.

If we now postulate that ( ˙̃x, ˙̃y)T = u we can invert this expres-

sion to get (v, ω) in terms of u as

[

v

ω

]

=

[

1 0

0 1
ℓ

]

R(−φ)u,

where R is the rotation matrix.

A series of different examples of employing this method for

going from u ∈ R2 via (v, ω) to (ωr, ωl) are shown in Figure 3

for a number of the coordinated controllers discussed in this

paper.

Fig. 3 Top: Five robots are solving the rendezvous problem. Middle: 15

robots are forming a “G” by executing an energy-based formation

control strategy resulting in a weighted consensus equation. Bot-

tom: The robots move to cover a time-varying density function by

minimizing the locational cost.

4.2 Aerial Robots

For quadcopters, the situation gets slightly more involved due

to the complexity of the dynamics. In fact, under the stan-

dard assumption that the body rotational rates of the quad-

copter are directly controllable through the fast response of

an onboard controller, the state of the system becomes q =

[x, y, z, ẋ, ẏ, ż, φ, θ, ψ]T . Moreover, by controlling the angular

velocities of the four rotors (analogous to the wheel velocities

in the differential-drive robot case), these input velocities can be

mapped bijectively to the body rotational rate ω = [ωx, ωy, ωz]
T

and the thrust τ, resulting in the four-dimensional input signal

w = [ωT , τ]T . Finally, the dynamics of the quadcopters, as dis-

cussed for example in [25],[44], takes on the form

q̇ = F(q,w),

which is a highly nonlinear dynamical system.

Luckily, this system is differentially flat too, meaning that the

state and input can be algebraically recovered from a subset of

states and their derivatives. In fact, as shown in [43],[64],[70],

the flat output of the system is η = [x, y, z, φ]T , i.e., the position

and the yaw of the quadcopter together describe the system in

the sense that
[

q

w

]

= G(η, η̇, η̈,
...
η )

for certain mapping G. This construction is in part why quad-

copters are reasonably easy to control – one can almost think of

them as unicycles with an added, freely controlled z-dimension.

The way we now can connect the output from the coordina-

tion protocols u ∈ R3 is as follows: when the quadcopter is in

location (x, y, z), we simply generate a waypoint a short while

into the future through [x, y, z]T +δtu for some look-ahead hori-

zon δt. Setting the new yaw equal to the old yaw, and producing

a thrice continuously differentiable interpolating curve ηd , with

ηd(t) = [x, y, z, φ]T , ηd(t + δt) = [x+ δtux, y+ δtuy, z+ δtuz, φ]T

can thus be used to generate the feedforward part of the quad-

copter motion. (A feedback law is typically added as well to

ensure increased robustness to modeling errors.)

An example of combining the described flatness-based con-

troller with a coordinated control signal for a team of quad-

copters is shown in Figure 4.

Fig. 4 Five quadcopters execute a distributed formation control strategy

based on planned trajectories for the flat outputs.

5. Conclusions and Optimization-Based Coordinated

Control

What all the previous discussion have in common is the re-

liance on the formulation of the desired robot behavior through

a cost to be minimized. If we again let xi be the state of Robot

i and use xNi
to denote the states of all robots adjacent to Robot

i (however the adjacency relationship happens to be defined),

then one can realize that all the costs already discussed were of

the following form:

E(x) =

N
∑

i=1

Fi(xi, xNi
).

For example, in the weighted formation control costs, we had

Fi(xi, xNi
) =

∑

(i, j)∈E

Ei j(‖xi − x j‖),

while the locational cost for coverage control was

Fi(xi, xNi
) =

∫

Vi(xi,xNi
)

‖xi − p‖2ϕ(p)dp.

The reason why a gradient descent algorithm is particularly ap-

propriate for coordinated control is that the adjacency relation-

ship implied in the cost is made explicit by the descent algo-

rithm in that
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∂E(x)

∂xi

=
∂Fi(xi, xNi

)

∂xi

+
∑

(i, j)∈E

∂F j(x j, xN j
)

∂xi

,

i.e., Robot i can evaluate this expression solely by having access

to the states of adjacent agents. This preservation of adjacency

is in general lost if higher-order derivatives are taken. Directed

topologies also complicate the design of provably correct co-

ordination laws through this path. This is because the evalua-

tion of the gradient of the cost function requires an undirected

flow of information and is therefore not implementable over di-

rected graphs. Some works [7],[52],[65], however, are able to

still draw inspiration from the undirected case to design imple-

mentable coordination strategies, but the directed information

flow makes in general the convergence analysis described next

harder.

The second reason why the gradient descent flow is useful is

that even through the introduction of a strictly positive (possibly

state-dependent) gain

ẋi = −γi(xi, xNi
)
∂E(x)

∂xi

leads to

dE(x(t))

dt
= −

∂E(x(t))

∂x

T

Γ(x)
∂E(x(t))

∂x
= −

∥

∥

∥

∥

∥

∂E(x(t))

∂x

∥

∥

∥

∥

∥

2

Γ(x)

≤ 0,

where Γ(x) ≻ 0 is a positive definite, diagonal matrix with the

individual gains on the diagonal.

As a consequence, through LaSalle Invariance Principle, we

can (subject to sufficient regularity assumptions on the cost)

draw the conclusion that the state converges to the set of sta-

tionary points, i.e., points where the gradient of the cost is zero.

In this paper, we have illustrated this fact through a number

of different examples – from rendezvous and formation con-

trol to coverage control. This distributed optimization-based

paradigm in fact transcends multi-robot systems and has found

its way into numerous domains involving network systems.
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