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Estimation-Based Ocean Flow Field Reconstruction Using
Profiling Floats

Huazhen Fang, Raymond A. de Callafon and Jorge Cortés

Abstract

This note considers ocean flow field monitoring using profiling floats and investigates a foundational estimation
problem underlying flow field reconstruction, which is known as simultaneous input and state estimation. We take
a Bayesian perspective to develop the needed estimation approaches. With this perspective, we first build Bayesian
estimation principles for input and state estimation for both the cases of filtering and smoothing. Then, we formulate
maximum a posteriori estimation problems and solve them using the classical Gauss-Newton method, leading to a set
of algorithms. The proposed algorithms represent a new development of the Bayesian estimation theory to address joint
input and state estimation and generalize a number of relevant methods in the literature. We illustrate the effectiveness
of our approach in addressing an oceanographic flow field estimation problem based on profiling floats that measure
position intermittently and acceleration continuously.
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I. INTRODUCTION

This chapter presents a study of ocean flow field reconstruction using profiling floats. Buoyancy-controlled, semi-
autonomous profiling floats provide an economic and flexible means to monitor ocean flows. However, a key challenge
in enabling this capability lies in how to extract the velocities of the ocean flow at sampled locations from the recorded
motion data of floats. This leads to a problem that can be cast as the joint estimation of a nonlinear dynamic system’s
inputs and states. This chapter develops solutions from the perspective of Bayesian estimation and evaluates their
application to ocean flow field reconstruction through simulations. The proposed results may also be useful in many
other scientific and engineering problems involving input and state estimation.

A. Background

The oceans, which cover over two-thirds of the Earth’s surface, have been an essential part of human life as food
sources and transportation routes for thousands of years. Today, the world is increasingly looking to them in seeking
solutions to various grand challenges such as natural resource and energy shortage and climate change (Costanza,
1999). Associated with this trend is a growing commitment from the research community to understand the oceans
with greater spatial and temporal coverage and finer accuracy. A fundamental research problem is to monitor ocean
flows that result from continuous, directed movement of ocean water and significantly impact the marine environment,
maritime transport, pollution spread, and global climate.

Recent years have witnessed an exponential interest in deploying autonomous underwater vehicles (AUVs) for
flow monitoring, which are capable of operating in dangerous underwater environments without the need for human
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Fig. 1: (a) The scenario for flow-field reconstruction based on submersible profiling floats; (b) the traveling profile
(submerging/surfacing) of a profiling float.

presence. Crucial for the development of advanced AUVs is an integration of control, communication and computation
technologies, which has benefited significantly from the recent sweeping advances in these fields. Technological
sophistication, however, comes initially with high economic costs, making AUVs expensive and not widely available
to oceanographic research. This has provided impetu for using small, inexpensive AUVs, known as profiling floats.
A profiling float only has buoyancy control to change its vertical position and laterally drifts along the flow. Despite
underactuation, it can travel across the ocean at different depths for long durations to observe temperature, salinity and
currents. About 3,900 such instruments, through the internationally collaborative Argo program, have been deployed
in global oceans to collect data for climate and oceanographic research (Riser et al., 2016).

Our work here considers a profiling-float-based ocean observing system (Colgan, 2006; Ouimet and Cortes,
2014), which is schematically illustrated in Fig. 1a. This system consists of a few profiling floats. They can be
released at different locations in a region of interest in the ocean. Then, each one travels in cycling movement
patterns of submerging/surfacing (see Fig. 1b), with lateral motion driven by ocean currents and vertical motion
regulated by buoyancy. While underwater, each float stores a time record of its current depth, acceleration and other
oceanographically-relevant quantities. When coming up to the surface, it determines its geographical location and
then transmits all the data via a communication satellite for analysis and computation. The acceleration is continually
measured by an on-board accelerometer, and the position by a satellite-based Global Positioning System (GPS). It
should be noted that a float’s position is intermittently available—it can be measured only when the float is on surface,
because GPS signals are seriously attenuated while underwater.

The objective here is to reconstruct the flow field and monitor the movement of the profiling floats. Hence, it
is necessary to simultaneously estimate the flow velocities, which act as external inputs applied to a float, and the
float’s underwater positions and velocities, which make up the float’s states, using the float’s position and acceleration
measurements. This leads us to investigate the problem of simultaneous input and state estimation (SISE) for a
nonlinear system based on the system’s output measurement data. It is noteworthy that problems of a similar kind
also arise in other fields, with examples including fault detection, disturbance rejection, vehicle tire-road friction
estimation, and weather forecasting (Schubert et al., 2012; Imine et al., 2006; Kitanidist, 1987), where a system’s
input and state variables are both unknown and need to be estimated. This observation, together with the problem of
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flow field reconstruction specifically considered here, motivates us to develop general-purpose solutions.

B. Literature Survey

Since the 1960s, the systems and control community has explored state estimation with unknown inputs. The
earliest relevant work, to our knowledge, is (Friedland, 1969), which studies state estimation with a constant but
unknown disturbance input. The proposed solution is to augment the state vector to include the disturbance and then
apply the Kalman filter (KF). In (Kitanidis, 1987), minimum variance unbiased estimation (MVUE) is exploited to
estimate states in the presence of completely unknown inputs. Based on (Kitanidis, 1987), a series of MVUE-based
methods are proposed in (Darouach and Zasadzinski, 1997; Darouach et al., 2003; Cheng et al., 2009), along with
a detailed analysis of the existence and stability of the estimators. For these studies, the focus is on enabling state
estimation despite unknown inputs, leaving aside input estimation. However, the unknown inputs are also important
for many real-world systems and, if successfully estimated, can be useful for system analysis and control synthesis.
As such, SISE presents even more appeal and has attracted significant attention from researchers.

The literature on SISE includes two main subjects, simultaneous input and state filtering (SISF) and smoothing
(SISS). As the names suggest, SISF seeks to estimate the input and state at the current time instant using the history
of output measurements, and SISS seeks to estimate the input and state at a past time instant using measurements
inclusive of those lagging behind that time instant. The former thus allows for real-time estimation, and the latter
requires off-line computation leading to better estimation accuracy in spite of an increase in estimator complexity.

For SISF, an early contribution is (Mendel, 1977), which adapts the KF to estimate a linear system’s states
along with covariance-known white noise disturbances. More recent works usually consider completely unknown
inputs and develop SISF techniques by modifying some existing state estimation approaches. Among them, we
highlight those based on the KF (Hsieh, 2000, 2010, 2011), moving horizon estimation (MHE) (Pina and Botto,
2006), H∞-filtering (You et al., 2008), sliding mode observers (Floquet et al., 2007), and MVUE (Gillijns and De
Moor, 2007a,b; Fang et al., 2008, 2011; Fang and de Callafon, 2012; Yong et al., 2016; Shi et al., 2016). Though
reaching a certain level of maturity for linear systems, SISF can become rather complicated when nonlinear systems
are considered. In (Corless and Tu, 1998; Ha and Trinh, 2004), SISF methods are developed for a special class of
nonlinear deterministic systems, which consist of a nominally linear part and a nonlinear part. The work (Hsieh,
2013) decouples the unknown inputs from the nonlinear system and then extends linear SISF methods to handle the
estimation. In our prior work (Fang et al., 2013; Fang and de Callafon, 2011; Fang et al., 2017), we have shown that
Bayesian estimation is a viable approach to cope with SISF for generic-form nonlinear stochastic systems, from low
to high dimensions.

When it comes to SISS, and despite its significance, only few studies have been reported. Extrapolating the Bayesian
approach in (Fang and de Callafon, 2011; Fang et al., 2013), we proposed SISS algorithms for nonlinear systems
in (Fang and de Callafon, 2013; Fang et al., 2015) and also specialized them to linear systems. A linear smoothing
algorithm is also developed in (Yong et al., 2014) as an extension of MVUE-based SISF in (Yong et al., 2016). An
exhaustive search shows no more results in the literature other than these studies. It is worth pointing out that ocean
flow field estimation is a problem well suited for SISS, because a typical ocean flow or circulation changes on time
scales ranging from a few days to a season, thus allowing off-line but more accurate estimation.

C. Overview of this Chapter

This chapter summarizes our previous work (Fang and de Callafon, 2011; Fang et al., 2013; Fang and de Callafon,
2013; Fang et al., 2015) to present a systematic introduction of Bayesian-estimation-based SISF and SISS methods for
nonlinear systems. The core idea of Bayesian estimation is updating the probabilistic belief of an unknown variable
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using measurement data and then extracting the best estimate in a probabilistic sense. This methodology has been
proven useful for constructing various state and parameter estimation techniques over the past decades. Our study
further advances this actively researched area to investigate SISE. We start by developing Bayesian SISF and SISS
paradigms to conceptually look at and understand the SISE problems from the perspective of statistical estimation.
This view opens up the possibility of developing Bayesian SISF and SISS estimators. Building upon the Bayesian
paradigm, we formulate maximum a posteriori probability (MAP) estimation problems and solve them using the
Gauss-Newton method, which is a numerical optimization approach capable of overcoming the effects of a system’s
intrinsic nonlinearity on estimation accuracy. For each case of SISF and SISS, we develop separate investigations
for systems with and without direct input-to-output feedthrough, leading to a set of estimation algorithms custom-
built according to the system structure. We conduct a simulation study to apply the proposed algorithms in the
reconstruction of an ocean flow field using observation data collected by a group of buoyancy-controlled profiling
floats. The estimation performance validates the effectiveness of the proposed algorithms.

II. SISF FOR SYSTEMS WITH DIRECT FEEDTHROUGH

This section studies the problem of SISF for dynamic systems with direct feedthrough. It starts with developing a
Bayesian estimation principle and then derives an SISF algorithm using the idea of Bayesian MAP estimation.

A. The Bayesian Paradigm

Consider a nonlinear system with direct input-to-output feedthrough:{
xk+1 = f(xk,uk) +wk,

yk = h(xk,uk) + vk,
(1)

where x ∈ Rn is the state vector, u ∈ Rm the input vector, y ∈ Rp the measurement vector, and w ∈ Rn and v ∈ Rm

mutually independent zero-mean white Gaussian noise sequences, with covariances Qk and Rk, respectively. The
mappings f : Rm×Rn → Rn and h : Rm×Rn → Rp are the state transition and measurement functions, respectively,
which are assumed to be C1. We also assume ∇uh has full rank. For the above system, our objective is to estimate
uk and xk based on the measurement set Y 1:k = {y1,y2, · · · ,yk}. To build a Bayesian estimator, one is interested
in finding out the probability density functions (pdf’s) of uk and xk conditioned on Y 1:k, i.e., p(uk,xk|Y 1:k). As it
is also desirable to achieve sequential estimation, the problem becomes how to enable the passing to p(uk,xk|Y 1:k)

from p(uk−1,xk−1|Y 1:k−1). Akin to Bayesian state estimation Candy (2009), this can be accomplished in a two-step
procedure of prediction and update.

The step of prediction is used to determine the conditional pdf p(xk|Y 1:k−1). By the Chapman-Kolmogorov
equation (Honerkamp, 1993), we have

p(xk|Y 1:k−1) =

∫∫
p(xk|uk−1,xk−1,Y 1:k−1) · p(uk−1,xk−1|Y 1:k−1)duk−1dxk−1.

We note that p(xk|uk−1,xk−1,Y 1:k−1) = p(xk|uk−1,xk−1), since xk depends on only uk−1 and xk−1 because of
the Markovian state propagation as shown in (1). Hence, it follows that

p(xk|Y 1:k−1) =

∫∫
p(xk|uk−1,xk−1) · p(uk−1,xk−1|Y 1:k−1)duk−1dxk−1. (2)

When the measurement yk arrives, it can be used to update p(xk|Y 1:k−1) along with the conditional pdf of uk

(because it is the first measurement conveying information about uk) via determining p(uk,xk|Y 1:k). To proceed,
we make the following assumption:

(A1) {uk} is a white process, independent of x0, {wk} and {vk}.
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Here, ‘white’ means that uk and ul are independent random vectors for k 6= l. Such a whiteness assumption is inspired
by (Robinson, 1957), which has been a foundation for many seismic data processing algorithms. The intuitions
underlying it are: 1) uk, completely unknown to us, may assume all possible values; 2) from the knowledge of uk

we cannot predict ul for k 6= l. A similar treatment of {uk} as a stochastic process is proposed in (Friedland, 1969),
which yet assumes the wide-sense description of uk as known. By (A1), uk is independent of xk and Y 1:k−1 (Gut,
2005, Theorem 10.4, pp. 71).

Using the Bayes’ rule repeatedly, we obtain

p(uk,xk|Y 1:k) =
p(yk|uk,xk,Y 1:k−1) · p(uk,xk|Y 1:k−1)

p(yk|Y 1:k−1)
.

Note that p(yk|uk,xk,Y 1:k−1) = p(yk|uk,xk) due to the fact that yk entirely depends on uk and xk, and that
p(uk,xk|Y 1:k−1) = p(xk|Y 1:k−1) · p(uk) as a result of uk’s independence from xk and Y 1:k−1. Consequently,

p(uk,xk|Y 1:k) =
p(yk|uk,xk) · p(xk|Y 1:k−1) · p(uk)

p(yk|Y 1:k−1)

One can see that p(uk)/p(yk|Y 1:k−1) plays the role of a proportionality coefficient. This implies

p(uk,xk|Y 1:k) ∝ p(yk|uk,xk) · p(xk|Y 1:k−1). (3)

Here, (2) and (3) form the Bayesian SISF paradigm for systems with direct feedthrough. Sequentially updating
them not only provides a conceptual Bayesian solution to the considered SISF problem, but also yields a statistical
framework within which different SISE methods can be developed. Our next step is to derive an SISF algorithm by
formulating and solving an MAP estimation problem based on the proposed Bayesian paradigm.

B. SISF Algorithm Development

Let us begin with some Gaussian distribution assumptions for concerned pdf’s. Specifically, we assume

(A2) p(uk,xk|Y 1:k) ∼ N

([
ûk|k

x̂k|k

]
,

[
Puk|k Puxk|k

(Puxk|k)> P xk|k

])
,

(A3) p(yk|uk,xk) ∼ N (h(uk,xk),Rk),

(A4) p(xk|Y 1:k−1) ∼ N
(
x̂k|k−1,P

x
k|k−1

)
,

where ûk|k is the estimate of uk given Y k with associated covariance Puk|k, x̂k|k−1 and x̂k|k are the estimates of xk

given Y 1:k−1 and Y 1:k with covariances P xk|k−1 and P xk|k , respectively. Ideally, if knowledge of p(uk,xk|Y 1:k)

is available for each k, ûk|k and x̂k|k can be readily obtained by MAP or some other way. However, contrary to
this ideal, determining p(uk,xk|Y 1:k) accurately is known as an intractable issue for nonlinear systems. In order to
overcome this problem, (A2)-(A4) are made to approximately describe the pdf’s by replacing each with a Gaussian
distribution with the same mean and covariance. Assumptions on Gaussian distributions analogous to (A2)-(A4) are
commonly held in nonlinear estimation algorithms, e.g., (Anderson and Moore, 1979; Bell and Cathey, 1993; Spinello
and Stilwell, 2010).

Based on the idea of MAP estimation, we intend to enable state prediction by considering

x̂k|k−1 = arg max
xk

p(xk|Y 1:k−1), (4)

which maximizes the probabilistic presence of xk given Y 1:k−1. To solve this problem, we first look at the first-order
Taylor series expansion of f(uk,xk) around (ûk|k, x̂k|k):

f (uk,xk) ≈ f
(
ûk|k, x̂k|k

)
+∇f

(
ûk|k, x̂k|k

) [uk − ûk|k

xk − x̂k|k

]
, (5)
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where ∇f =
[
∇uf ∇xf

]
. Then by (A2), (2) and (5), the approximate solution to (4) is given by

x̂k|k−1 = f
(
ûk−1|k−1, x̂k−1|k−1

)
, (6)

with the associated prediction error covariance P xk|k−1 given by

P k ≈ ∇f
(
ûk−1|k−1, x̂k−1|k−1

) [ Puk−1|k−1 Puxk−1|k−1
(Puxk−1|k−1)

> P xk−1|k−1

]
∇f>

(
ûk−1|k−1, x̂k−1|k−1

)
+Qk−1. (7)

Then, (6) and (7) constitute the prediction formulae together, computing the state prediction and prediction error
covariance, respectively.

Let us now consider updating p(xk|Y 1:k−1) using yk and define the following MAP estimator:[
ûk|k

x̂k|k

]
= arg max

uk,xk

p(uk,xk|Y 1:k). (8)

We further define the MAP cost function as L(uk,xk) = p(uk,xk|Y 1:k). According to (3) and (A3)-(A4), one has

L(uk,xk) = λ · exp
[
−α>kR−1k αk − β>k (P xk|k−1)

−1βk

]
,

where λ combines all the constants, αk = yk − h(uk,xk) and βk = xk − x̂k|k−1. It is easier to deal with the
logarithmic cost function `(uk,xk) = − lnL(uk,xk):

`(uk,xk) = δ + r>(uk,xk) · r(uk,xk), (9)

where δ = − lnλ and

r(uk,xk) =

 R
− 1

2

k αk(
P xk|k−1

)− 1

2

βk

 .
Thus, (8) can be equivalently written as [

ûk|k

x̂k|k

]
= arg min

uk,xk

`(uk,xk). (10)

The MAP optimization in (10) usually defies the development of a closed-form solution when considered for
a nonlinear system. However, as a nonlinear least-squares problem, it can be numerically addressed using the
Gauss-Newton method (Björck, 1996). The classical Gauss-Newton method can iteratively compute the sequences of
approximations û(i)

k and x̂(i)
k , where (i) denotes the iteration step. Specifically,

ξ̂
(i+1)

k = ξ̂
(i)

k −
[
∇>ξ r

(
ξ̂
(i)

k

)
· ∇ξr

(
ξ̂
(i)

k

)]−1
· ∇>ξ r

(
ξ̂
(i)

k

)
· r
(
ξ̂
(i)

k

)
, (11)

where ξk =
[
u>k x>k

]>
, and ∇ξr =

[
∇ur ∇xr

]
. One can let the initial guess be ξ̂

(0)

k = [0> x̂>k|k−1]
> for

convenience, though it can be set to arbitrary values. The iteration continues until the iteration step (i) reaches the
preselected maximum imax or the difference between two consecutive iterations is less than a preselected small value.
Then, ξ̂

(i)

k obtained in the final iteration will be exported and assigned to ûk|k and x̂k|k, respectively. The iteration
process in (11) refines the input and state estimates continually by re-evaluating the joint estimator around the latest
estimated input and state operating point. Despite demanding more computational power, the iterative refinement
enhances not only the estimation performance but also the robustness to nonlinearities. In its practical use, one can
try to strike a balance between computational complexity and estimation performance by selecting a proper stopping
condition.
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initialize: k = 0, ξ̂0|0 = E(ξ0), P
ξ
0|0 = p0I , where p0 is typically a large positive value

repeat
k ← k + 1

Prediction:
predict the state via (6)
compute prediction error covariance via (7)

Update:
initialize: i = 0, ξ̂

(0)
k = [0> x̂>k|k−1]

>

while i < imax do
perform Gauss-Newton based joint input and state filtering via (11)
i← i+ 1

end while
export ξ̂

(imax)
k and assign to ûk|k and x̂k|k

compute joint filtering error covariance via (12)-(14)
until no more measurements arrive

TABLE I: The SISF-wDF algorithm (SISF for systems with direct feedthrough).

The estimation error covariance is equal to the inverse of the Fisher information matrix, as is known for MAP
estimators under Gaussian distributions (Mutambara, 1998). Then we have Puk|k Puxk|k(

Puxk|k

)>
P xk|k

 = F−1
(
ûk|k, x̂k|k

)
, (12)

where F is the Fisher information matrix defined as

F =

[
Fu Fux

(Fux)> Fx

]
= E

([
∇>u`
∇>x `

] [
∇u` ∇x`

])
. (13)

The explicit formulae for the involved gradients are as follows:

∇ur =

[
−R−

1

2∇uh
0

]
, ∇xr =

 −R− 1

2∇xh(
P xk|k−1

)− 1

2

 ,
∇u` = r>∇ur = α>R−1∇uh,

∇x` = r>∇xr = α>R−1∇xh+ β>
(
P xk|k−1

)−1
.

Hence, F is given by

F =

∇>uhR−1∇uh ∇>uhR−1∇xh

∇>xhR−1∇uh ∇>xhR−1∇xh+
(
P xk|k−1

)−1
 . (14)

Putting together the above results yields a nonlinear SISF algorithm named SISF-wDF, which is formally described
in Table I. This algorithm is based on a novel Bayesian perspective to addressing the SISE problems, while the
literature usually considers the problem from the viewpoint of filter design and optimal gain selection. It should be
pointed out that the SISF-wDF algorithm can be applied to nonlinear systems of general form, instead of being
restricted to systems of some required special forms.

Remark 1. (Improvements to the Gauss-Newton method). While the basic Gauss-Newton iteration shown in (11)
solves linear problems within only a single iteration and has fast local convergence on mildly nonlinear problems,
it may suffer from divergence for some nonlinear problems. To improve the convergence performance, a damping
coefficient α(i) > 0 can be added:

ξ̂
(i+1)

k = ξ̂
(i)

k − α(i)
[
∇>ξ r

(
ξ̂
(i)

k

)
· ∇ξr

(
ξ̂
(i)

k

)]−1
· ∇>ξ r

(
ξ̂
(i)

k

)
· r
(
ξ̂
(i)

k

)
. (15)
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One can show that the damped Gauss-Newton iteration keeps moving to the critical point in a descent direction for
sufficiently small α(i) > 0, thus guaranteeing its local convergence. Yet, α(i) must be selected with caution to ensure
the viability of the damped Gauss-Newton, and a few methods have been proposed, e.g., the Armijo-Goldstein step
length principle. A further improvement is to introduce a stabilizing term:

ξ̂
(i+1)

k = ξ̂
(i)

k − α(i)
[
∇>ξ r

(
ξ̂
(i)

k

)
· ∇ξr

(
ξ̂
(i)

k

)
+ δ(i)D(i)

]−1
· ∇>ξ r

(
ξ̂
(i)

k

)
· r
(
ξ̂
(i)

k

)
,

whereby the rank deficiency problem of
(
∇>ξ r∇ξr

)
that may appear in (11) and (15) can be avoided, given that

δ(i) > 0 and D(i) is a specified symmetric positive definite matrix. This is known as the trust region method or
Levenberg-Marquardt method. For more details about Gauss-Newton-type methods, the reader is referred to (Björck,
1996). •

Remark 2. (Generality of the Bayesian SISF algorithm). The work (Fang et al., 2013) proves that the SISF-wDF
algorithm, if applied to a linear system with direct feedthrough, will given the same input and state estimation as
in (Gillijns and De Moor, 2007b). The method in (Gillijns and De Moor, 2007b) is based on MVUE, and development
of the SISF-wDF algorithm provides its statistical interpretation. That is, it is statistically optimal if the following
assumptions hold: (1) x0 ∼ N (x̂0|0,P

x
0|0); (2) {wk} and {vk} are zero-mean white Gaussian; (3) x0, {wk} and

{vk} are independent of each other; (4) {uk} is white Gaussian and independent of x0, {wk} and {vk}. Compared
to the assumptions made for the classical KF, (4) is the only additional one, which ensures that the state propagation
and output measurement sequences are Gaussian distributed. It is noteworthy that, even though the derivation of the
method in (Gillijns and De Moor, 2007b) proceeds without imposing the assumption (A1), its statistical optimality
still implicitly relies on this assumption. We note that the observations here partially reflects the fact that Bayesian
estimation can offer a general framework to solve SISE problems. •

III. SISF FOR SYSTEMS WITHOUT DIRECT FEEDTHROUGH

In this section, we extend the results in Section II and consider a nonlinear system described by equations of the
following form: {

xk+1 = f(xk,uk) +wk,

yk = h(xk) + vk,
(16)

where no direct input-to-output feedthrough exists. In this situation, the input estimation has to be delayed by one
time step, because the first measurement containing information about uk−1 is yk. Therefore, it is p(uk−1,xk|Y 1:k)

that is of interest here and should be sequentially updated. We impose the same assumption as (A1) to uk for the
system in (16), i.e., {uk} is a white process independent of x0, {wk} and {vk}. Using the Bayes’ rule, we can
construct a Bayesian SISF paradigm for this case. Omitting the intermediate steps,

p(uk−1,xk|Y 1:k) ∝ p(yk|xk)

∫
p(xk|uk−1,xk−1) · p(xk−1|Y 1:k−1)dxk−1. (17)

We also introduce the following assumptions in order to formulate a tractable MAP-based SISF problem:

p(uk−1,xk|Y k) ∼ N

([
ûk−1|k

x̂k|k

]
,

[
Puk−1|k Puxk−1,k|k

(Puxk−1,k|k)> P xk|k

])
,

p(yk|xk) ∼ N (h(xk),Rk) .

From (17), a MAP cost function can be defined as done previously in (9), which is

`(uk−1,xk) = δ + r>(uk−1,xk) · r(uk−1,xk). (18)
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Here, δ is a constant and

r(uk−1,xk) =

[
R
− 1

2

k ρk
Π−

1

2 (uk−1)ζk

]
,

where ρk = yk − h(xk), ζk = xk − f(uk−1, x̂k−1|k−1), and Π(uk−1) = ∇xf(uk−1, x̂k−1|k−1) · P xk−1|k−1 ·
∇>xf(uk−1, x̂k−1|k−1)+Qk−1. For this problem, a numerical solution can also be developed using the Gauss-Newton
method through the following iterative procedure:

σ̂
(i+1)
k = σ̂

(i)
k −

[
∇>σr

(
σ̂
(i)
k

)
· ∇σr

(
σ̂
(i)
k

)]−1
· ∇>σr

(
σ̂
(i)
k

)
· r
(
σ̂
(i)
k

)
, (19)

where σk =
[
u>k−1 x>k

]>
and ∇σr =

[
∇ur ∇xr

]
. Here, one can set the initial condition as σ̂(0)

k = 0, run the

procedure iteratively, and finally assign the obtained σ̂(imax)
k to ûk−1|k and x̂k|k.

Proceeding further, the associated estimation error covariance matrix can be computed by evaluating the Fisher
information matrix at ûk−1|k and x̂k|k, i.e., Puk−1|k Puxk−1,k|k(

Puxk−1,k|k

)>
P xk|k

 = F−1(ûk−1|k, x̂k|k), (20)

where the definition of F is identical to (13). Fully determining each block of F entails the computation as below.
The l-th column of the gradient matrix of r with respect to (w.r.t.) u is given by,

∂r

∂ul
=

[
0

−Π−
1

2
∂f
∂ul
− 1

2Π
1

2 Π−1 ∂Π
∂ul

Π−1ζ

]
.

The following relation is used here:
∂X

1

2

∂τ
= −1

2
X

1

2X−1
∂X

∂τ
X−1,

where X is a symmetric positive definite matrix dependent on τ (Spinello and Stilwell, 2010). The l-th column of
the gradient matrix of r w.r.t. x is

∂r

∂xl
=

[
−R−

1

2
∂h
∂xl

Π−
1

2el

]
, ∇xr =

[
−R−

1

2∇xh
Π−

1

2

]
,

where el is the standard basis vector with a 1 in the l-th element and 0’s elsewhere. The lj-th entries of ∇>ur∇ur,
∇>ur∇xr and ∇>xr∇xr are expressed as, respectively,

∂r>

∂ul

∂r

∂uj
=
∂f>

∂ul
Π−1

∂f

∂uj
+

1

2
ζ>Π−1 ·

(
∂Π

∂ul
Π−1

∂f

∂uj
+
∂Π

∂uj
Π−1

∂f

∂ul

)
+

1

4
ζ>Π−1

∂Π

∂ul
Π−1

∂Π

∂uj
Π−1ζ,

∂r>

∂ul

∂r

∂xj
= −∂f

>

∂ul
Π−1ej −

1

2
ζ>Π−1

∂Π

∂ul
Π−1ej ,

∂r>

∂xl

∂r

∂xj
=
∂h>

∂xl
R−1

∂h

∂xj
+ e>l Π−1ej ,

∇>xr∇xr = ∇>xhR−1∇xh+ Π−1.

Then, we have
∂`

∂ul
= r>

∂r

∂ul
= −ζ>Π−1

∂f

∂ul
− 1

2
ζ>Π−1

∂Π

∂ul
Π−1ζ,

∂`

∂xl
= r>

∂r

∂xl
= −ρ>R−1 ∂h

∂xl
+ ζ>Π−1el,

∇x` = −ρ>R−1∇xh+ ζ>Π−1.
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initialize: k = 0, σ̂0 = E(σ0), Pσ
0 = p0I , where p0 is a large positive value

repeat
k ← k + 1

initialize: i = 0, σ̂(0)
k = 0

while i < imax do
perform Gauss-Newton based joint input and state filtering via (19)
i← i+ 1

end while
export σ̂(imax)

k and assign to ûk−1|k and x̂k|k
compute joint filtering error covariance via (20)

until no more measurements arrive

TABLE II: The SISF-w/oDF algorithm (SISF for systems without direct feedthrough).

To compute the Fisher information matrix, E
(
∇>u`∇u`

)
, E
(
∇>u`∇x`

)
and E

(
∇>x `∇x`

)
are needed. Their lj-th

entries are

E

(
∂`>

∂ul

∂`

∂uj

)
=
∂f>

∂ul
Π−1

∂f

∂uj
+

1

4
tr

(
∂Π

∂ul
Π−1

∂Π

∂uj
Π−1

)
,

E

(
∂`>

∂ul

∂`

∂xj

)
= −∂f

>

∂ul
Π−1ej ,

E

(
∂`>

∂xl

∂`

∂xj

)
=
∂h>

∂xl
Π−1

∂h

∂xj
+ e>l Π−1ej ,

E
(
∇>x `∇x`

)
= ∇>xhR−1∇x`+ Π−1.

With the above derivation, we have fully developed the SISF algorithm for the system in (16), which is named
SISF-w/oDF and summarized in Table II. Note that, if applied to a linear system, the SISF-w/oDF algorithm will
reduce to (Gillijns and De Moor, 2007a), which offers a MVUE-based SISF algorithm for linear systems without
direct feedthrough. Or in other words, if the conditions (1)-(4) proposed in Remark 2 are also valid for the linear
version of (16), the algorithm in (Gillijns and De Moor, 2007a) can be directly derived using the Bayesian paradigm
along with MAP estimation. In addition, (Gillijns and De Moor, 2007a) gives the same state update as (Kitanidis,
1987; Darouach and Zasadzinski, 1997) and the same input update as (Hsieh, 2000). This suggests that these methods
can be regarded as special cases of the SISF-w/oDF algorithm.

IV. SISS FOR SYSTEMS WITH AND WITHOUT DIRECT FEEDTHROUGH

Our results above are concerned with the filtering problem, where uk (or uk−1) and xk are estimated based on the
measurement Y 1:k. Another interesting problem is to make the estimation when all the measurements are available.
Suppose that the total time is N . Then, the question is to make an estimate of uk (or uk−1) and xk using Y 1:N .
This is a problem of smoothing or SISS as termed before, which is the theme of this section. Following a similar
structure as Sections II and III, we will first investigate Bayesian SISS for systems with direct feedthrough and then
move forward to those without it. Here, we would like to point out that developing effective and efficient enough
SISS algorithms for nonlinear systems without direct feedthrough is rather difficult, because of the asynchronous
coupling between uk−1 and xk and the nonlinearity involved. We thus focus on only linear systems in this case.

A. SISS for Nonlinear Systems with Direct Feedthrough

Consider the nonlinear system in (1). Section II discusses SISF for (1) from the viewpoint of determining
p(uk,xk|Y 1:k), or more specifically, the passing from p(uk−1,xk−1|Y 1:k−1) to p(uk,xk|Y 1:k). Here, we shift



11

our attention to p(uk,xk|Y 1:N ) in order to achieve fixed-interval SISS. Because the reader has been familiar with
the notation, we use ξk =

[
u>k x

>
k

]> to improve notational simplicity. Applying the Bayes’ rule, we can build the
Bayesian SISS paradigm for (1), which unveils the backward recursion of p(ξk|Y 1:N ) from p (xk+1|Y 1:N ):

p(ξk|Y 1:N ) = p(ξk|Y 1:k)

∫
p(xk+1|ξk) · p (xk+1|Y 1:N )

p(xk+1|Y 1:k)
dxk+1. (21)

Here, we demonstrate the derivation. First,

p(ξk|Y 1:N ) =

∫
p(ξk, ξk+1|Y 1:N )dξk+1 =

∫
p
(
ξk|ξk+1,Y 1:N

)
· p
(
ξk+1|Y 1:N

)
dξk+1.

Note that ξk is conditionally independent of Y k+1:N and uk+1 given xk+1, due to the Markovian state propagation
and (A1). Hence, p

(
ξk|ξk+1,Y 1:N

)
= p (ξk|xk+1,Y 1:k). Then, we have

p(ξk|Y 1:N ) =

∫
p (ξk|xk+1,Y 1:k) · p

(
ξk+1|Y 1:N

)
dξk+1

=

∫
p (ξk|xk+1,Y 1:k) · p (xk+1|Y 1:N ) dxk+1. (22)

Meanwhile, we have

p (ξk|xk+1,Y 1:k) =
p(ξk,xk+1,Y 1:k)

p(xk+1,Y 1:k)
=
p(xk+1|ξk,Y 1:k) · p(ξk|Y 1:k)

p(xk+1|Y 1:k)
=
p(xk+1|ξk) · p(ξk|Y 1:k)

p(xk+1|Y 1:k)
. (23)

Inserting (23) into (22), we can obtain (21).
The Bayesian paradigm in (21) is an input and state smoother in a statistical sense, which illustrates the backward

update of ξk given Y 1:N . However, a direct analytical evaluation of the pdf’s is known to be quite difficult, if not
impossible, for nonlinear systems. Hence, we will formulate an MAP estimation problem based on (21) and seek a
numerical solution. To proceed further, we make Gaussian distribution assumptions for the following pdf’s:

(A5) p(xk+1|ξk) ∼ N (f(ξk),Qk);
(A6) p(ξk|Y 1:k) ∼ N

(
ξ̂k|k,P

ξ
k|k

)
;

(A7) p(xk+1|Y 1:N ) ∼ N
(
x̂k+1|N ,P

x
k+1|N

)
;

(A8) p(xk+1|Y 1:k) ∼ N
(
x̂k+1|k,P

x
k+1|k

)
.

Here, ξ̂k|k is the filtered estimate of ξk given Y 1:k, P ξk|k is the filtering error covariance, x̂k+1|N is the smoothed
estimate of xk+1 given Y 1:N , and P xk+1|N is the smoothing error covariance. These assumptions are made to bridge
the gap from the Bayesian paradigm in (21) to an executable smoother.

We now consider developing an MAP-based smoother to estimate uk and xk via maximizing p(ξk|Y 1:N ). The
smoother then can be expressed as:

ξ̂k|N = arg max
ξk

p(ξk|Y 1:N ). (24)

The above maximization of p(ξk|Y 1:N ) can be transformed into the following problem of minimizing a cost function
with assistance of the assumptions (A5)-(A8), which is given as:

ξ̂k|N = arg min
ξk

`(ξk), (25)

where

`(ξk) :=
(
ξk − ξ̂k|k

)> (
P ξk|k

)−1 (
ξk − ξ̂k|k

)
+ (f(ξk)− δk)>∆−1k (f(ξk)− δk) , (26a)

∆k =

[(
P xk+1|N

)−1
−
(
P xk+1|k

)−1]−1
+Qk, (26b)
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δk =

[(
P xk+1|N

)−1
−
(
P xk+1|k

)−1]−1
·
[(
P xk+1|N

)−1
x̂k+1|N −

(
P xk+1|k

)−1
x̂k+1|k

]
. (26c)

For a detailed derivation of the above, an interested reader is referred to (Fang et al., 2015). Furthermore, the sum
of the weighted 2-norms in (26) can be rewritten as

`(ξk) = r>(ξk) · r(ξk), (27)

where

r(ξk) =

(P ξk|k)− 1

2
(
ξk − ξ̂k|k

)
∆
− 1

2

k (f(ξk)− δk)

 .
This would allow the use of the classical Gauss-Newton method, which performs an iterative searching process that
linearizes around the current arrival point, determines the best search direction and then moves forward to the next
point. Specifically, we have

ξ̂
(i+1)

k|N = ξ̂
(i)

k|N −
[
∇>ξ r

(
ξ̂
(i)

k|N

)
· ∇ξr

(
ξ̂
(i)

k|N

)]−1
· ∇>ξ r

(
ξ̂
(i)

k|N

)
· r
(
ξ̂
(i)

k|N

)
, (28)

where (i) denotes the iteration number, and

∇ξr(ξk) =

 (
P ξk|k

)− 1

2

∆
− 1

2

k ∇ξf(ξk)

 .
One can let ξ̂k|N = ξ̂

(imax)

k|N , where imax is the maximum number of iterations. The Fisher information matrix F
for (36) is approximately given by

F(ξk) =
(
P ξk|k

)−1
+∇>ξ f(ξk)∆−1k ∇ξf(ξk).

Evaluating F at ξ̂k|N and inverting it will lead to the error covariance, i.e.,

P ξk|N = F−1(ξ̂k|N ) =

[(
P ξk|k

)−1
+∇>ξ f(ξ̂k|N )∆−1k ∇ξf(ξ̂k|N )

]−1
. (29)

We say that (28)-(29) are the backward smoothing equations for input and state estimation. The corresponding
forward filtering equations are given by the SISF-wDF algorithm. The above nonlinear SISS algorithm can be readily
specialized to the linear case. Consider a linear system of the following form{

xk+1 = F kxk +Gkuk +wk,

yk = Hkxk + Jkuk + vk.
(30)

Then, the smoother in (28)-(29) can find the best input and state estimates in a single iteration, which leads to a
linear SISS algorithm. It can be proven that the algorithm can be expressed as

ξ̂k|N = ξ̂k|k +Kk(x̂k+1|N − F̄ kξ̂k|k), (31a)

Kk = P ξk|kF̄
>
k

(
P xk+1|k

)−1
, (31b)

where F̄ k = [Gk F k]. The associated smoothing error covariance is given by

P ξk|N = P ξk|k +Kk(P xk+1|N − P
x
k+1|k)K>k . (32)

To sum up, we call the obtained forward-backward smoothing algorithm as SISS-wDF and summarize it in Table III.
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Forward filtering:
for k = 1 to N do

compute filtered input and state estimate via the SISF-wDF algorithm
end for

Backward smoothing:
for k = N − 1 to 1 do

initialize: i = 0, ξ̂
(0)
k|N = ξ̂k|k

while i < imax do
perform Gauss-Newton-based joint input and state smoothing via (28) (or (31a)-(31b) for
linear systems)
i← i+ 1

end while
export ûk|N and x̂k|N from ξ̂

(imax)
k|N

compute joint smoothing error covariance via (29) (or (32) for linear systems)
end for

TABLE III: The SISS-wDF algorithm: SISS for systems with direct feedthrough.

B. SISS for Systems without Direct Feedthrough

Now, let us consider Bayesian SISS for systems without direct feedthrough, which are shown in (16). In this case,
we use the notation σk =

[
u>k−1 x

>
k

]>. Given the assumption (A1), the Bayesian smoothing paradigm for input and
state estimation is given by (Fang et al., 2015):

p(σk|Y 1:N ) = p(σk|Y 1:k)

∫∫
p(xk+1|xk,uk) · p(σk+1|Y 1:N )∫
p(xk+1|xk,uk) · p(xk|Y 1:k)dxk

dukdxk+1. (33)

Our research shows that it is challenging to derive a viable SISS method based on (33) for a nonlinear system of
general form as shown in (16). This is because uk−1 and xk are asynchronous in time with a gap of one time step
between them. The asynchronous coupling complicates the nonlinear relationship between uk−1, xk and the output
measurements, which is only exacerbated further in the backward smoothing scenario. Hence, we instead constrain
our scope to SISS for linear systems. Consider{

xk+1 = F kxk +Gkuk +wk,

yk = Hkxk + vk.
(34)

For (34), the MAP smoother ξk|N = arg maxξk p(ξk|Y 1:N ) can be converted into the following problem:

σ̂k|N = arg min
σk

`(σk), (35)

where

`(σk) :=
(
σk − σ̂k|k

)> (
P σk|k

)−1 (
σk − σ̂k|k

)
+ (F kNσk − δk)>∆−1k (F kNσk − δk) , (36a)

Mk =
[
−Gk I

]
, N =

[
0 I

]
, (36b)

∆k =

[(
MkP

σ
k+1|NM

>
k

)−1
−
(
P x∗k+1|k

)−1]−1
+Qk (36c)

δk = F kx̂k|k − P x∗k+1|k

(
MkP

σ
k+1|NM

>
k − P x∗k+1|k

)−1 (
Mkσ̂k+1|N − F kx̂k|k

)
, (36d)

P x∗k+1|k = F kP
x
k|kF

>
k +Qk. (36e)

The solution to (35) can then be derived as follows:

Kk = P σk|kN
>F>k

(
P x∗k+1|k

)−1
, (37a)
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Forward filtering:
for k = 1 to N do

compute filtered input and state estimate via the SISF-w/oDF algorithm or the algorithm
in (Gillijns and De Moor, 2007a)

end for

Backward smoothing:
for k = N − 1 to 1 do

perform joint input and state smoothing via (37a)-(37b)
export ûk−1|N and x̂k|N from σ̂k|N
compute joint smoothing error covariance via (37c)

end for

TABLE IV: The SISS-w/oDF algorithm: SISS for linear systems without direct feedthrough.

σ̂k|N = σ̂k|k +Kk

(
Mkσ̂k+1|N − F kx̂k|k

)
, (37b)

P σk|N = P σk|k +Kk

[
MkP

σ
k+1|NM

>
k −

(
P x∗k+1|k

)]−1
K>k . (37c)

In above, we formulate and solve an MAP-optimization-based SISS problem for linear systems without direct
feedthrough. The backward smoothing solution is offered in (37a)-(37c), and its associated forward filtering can
be accomplished by running the SISF-w/oDF algorithm, which only requires a single iteration. Please note that
application of the SISF-w/oDF algorithm to linear systems leads to the joint input and state estimator proposed
in (Gillijns and De Moor, 2007a), as mentioned in Section III. Finally, we outline the obtained SISS algorithm,
named SISS-w/oDF, in Table. IV.

V. APPLICATION EXAMPLE

Ocean flow field reconstruction has been a research subject of intense interest for its vital role in helping oceano-
graphers understand the oceans. Flows are known to be crucial for fishing, shipping, navigation, weather forecasting,
environmental monitoring and climate change. To study these flows, consider a swarm of inexpensive buoyancy-
controlled profiling floats acting as an ocean observing system (Colgan, 2006; Ouimet and Cortes, 2014; Han et al.,
2010), deployed to traverse a region of the ocean. The floats are capable of arbitrary vertical migration while traveling
along the flows. During the travel, each float measures and stores a time record of its depth, acceleration, position
and some oceanographic quantities such as temperature and salinity. The data record is sent to a central server for
processing when the float comes up to the surface. Here, we only consider a three-dimensional flow domain (see
Fig. 2), the space of which is occupied mainly by two adjacent eddies of opposite direction of rotation.

A. Float Dynamics

For simplicity, we only examine a float’s motion along the x-direction. The same results can apply to y-direction
due to the independence of perpendicular components of motion. For a float, the flow velocity v(dx, z) at its x-
displacement dx is time-stationary and dependent only on its depth z. The dynamics of a float is described in (Booth,
1981):

md̈x = c · sign
(
v(dx, z)− ḋx

)
·
(
v(dx, z)− ḋx

)2
, (38)

where m is the constant rigid mass and c the drag parameter. The right hand side of the above equation represents
the drag force that quantifies the resistance exercised on the profiling float in the flow field.
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(a) (b)

Fig. 2: (a) The three-dimensional flow field; (b) top view of the flow field.

From (38), we define two state variables x1 := dx and x2 := ḋx. Further, v(dx, z) can be viewed as the unknown
external input into the float, naturally implying the definition of u := v(dx, z). Then (38) can be rewritten as,

ẋ1 = x2,

ẋ2 =
c

m
· sign (u− x2) · (u− x2)2 .

(39)

Its discrete-time representation, obtained by hypothetically holding the input constant over half open intervals [kT, (k+

1)T ), doing forward finite difference and measuring output measurements at kT , is given by

x1,k+1 = x1,k + T · x2,k,

x2,k+1 = x2,k + T · c
m
· sign (uk − x2,k) · (uk − x2,k)2 ,

(40)

where uk := u(kT ) and xi,k := xi(kT ) for i = 1, 2. The above equation can be expressed as

xk+1 = f(xk, uk), (41)

where f can be easily determined from the equations.
The motion of the float is characterized by an irregularly cycling submerging/surfacing pattern—it submerges and

moves underwater for a certain duration, then resurfaces, and repeats the process over time. No matter whether it is
underwater or on the surface, the depth zk := z(kT ) and acceleration d̈x,k := d̈x(kT ) are measurable; however, the
position dx,k := dx(kT ) can only be measured when it is at surface. Thus, irregularly sampled measurements arise
as a result, with the fast one τk := d̈x,k and slow one ηk := dx,k given by, respectively,

τk =
c

m
· sign (uk − x2,k) · (uk − x2,k)2 ,

ηk = x1,k.
(42)

For simplicity of notation, we rewrite (42) as

τk = ϕ(uk, xk),

ηk = φ(xk).
(43)
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Fig. 3: Estimation results for the profiling float released at (−400,−600) m: (a) x1 — displacement along
x-direction; (b) x2 — velocity along x-direction; (c) u — flow velocity; (d) trajectory of the float (the circle

denotes the location where the float is released).

Combining (40) and (42), we obtain the state space model to capture the dynamics of the float:

Σ :

{
xk+1 = f(xk, uk) +wk,

yk = h(xk, uk) + vk,
(44)

Here, when the float is underwater, yk = τk and h = ϕ; when at surface, yk =
[
τ>k η>k

]> and h =
[
ϕ> φ>

]>.
In addition, w and v are added to account for noise in real world. They are assumed to be white Gaussian and
independent of each other. The proposed SISF-wDF and SISS-wDF algorithms are applicable to the system Σ

in (44) to acquire the information estimates of not only the velocities of the flow field (unknown input variables) but
also the trajectory and velocity profile of the float (state variables).
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Filtering Smoothing
Erru 340.02 90.61
Errx1 33931.97 19123.04
Errx2 83.08 26.89

TABLE V: A quantified comparison between filtering and smoothing errors
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Fig. 4: (a) True surface flow velocity along x-direction; (b) smoothed surface flow velocity along x-direction; (c)
True surface flow velocity along y-direction; (b) smoothed surface flow velocity along y-direction.

B. Numerical Simulation

The flow field considered has dimensions of (−1000,1000) m × (−1000,1000) m × (0, 30) m, and the eddies are
centered at (500, 500) m and (−500,−500) m, respectively, as shown in Fig. 2. Compared to the typical size of these
flows, its scale is intentionally narrowed to reduce computational burden (this does not restrict the applicability of
the proposed algorithms to larger flow fields). Let 20 profiling floats be deployed evenly along the line segment from
(−800,−1000) m to (1000, 800) m. The mass of a profiling float is 1.5Kg, the drag coefficient c is 2 N · s2/m2, and
the sampling period T is 0.05 s. The total traversing duration is 52 min.
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The SISF-wDF and SISS-wDF algorithms are used together to build smoothed estimates of the inputs and states
in the state-space model of a float. Let us examine the float released at (−400,−600) m and consider its motion
in the x-direction. Fig. 3a-3b demonstrate the filtered and smoothed estimation of the flow velocity, x-displacement,
and x-velocity, respectively. We observe that the smoothed estimates are overall closer to the truth than the filtered
ones. This is particularly evident for input estimation in Fig. 3a—the filtered input estimates are quite noisy, but the
smoothing reduces the errors significantly, thus improving the reconstruction accuracy. A quantitative comparison is
further presented in Table V. The metric is accumulative estimation error, defined by

Errs =
1

N

N∑
k=1

(ŝk − sk)2,

where sk for k = 0, 1, · · · , N is a discrete-time signal and ŝk is its estimate. Table V shows that the smoothing errors
are considerably smaller than the filtering errors, illustrating the enhancement of accuracy achieved by smoothing.
Fig. 3d shows a good match between the smoothed trajectory and the true one.

Further, the estimated inputs of all profiling floats, which are the smoothed flow velocity data at different locations,
are put together and used to reconstruct the flow field via the tessellation-based linear interpolation. The first and
second rows in Fig. 4 illustrate the true and reconstructed flow velocity fields along x- and y-directions, respectively.
One can see that the estimated velocities at the two eddies and the transition area are quit close to the actual case.
Despite some minor differences observed, the overall reconstruction accuracy is quite satisfactory. This indicates that
the proposed algorithms are able to provide reliable input and state estimates.

VI. CONCLUSION

The world has increasingly realized the scientific and commercial importance of oceans for our society. Propelled by
this trend, research of ocean monitoring based on advanced mechatronic systems has seen remarkable progress. This
chapter considers the critical problem of ocean flow field estimation based on inexpensive profiling floats. The success
of such an ocean observing system largely depends on the availability and effectiveness of algorithms capable of
extracting necessary information from the motion data of the floats. Our analysis shows that the fundamental problem
is to achieve joint input and state estimation of a dynamic system, which motivates our focus on the SISE problem
from the perspective of Bayesian estimation, considering both the scenarios of filtering (SISF) and smoothing (SISS).
We propose Bayesian paradigms, revealing how to update the probability density functions of the unknown input
and state variables conditioned on the measurement data. Based on the paradigms and leveraging some Gaussian
distribution assumptions, we formulate MAP estimation problems and exploit the Gauss-Newton method to build
numerical solutions, leading to a catalog of SISF and SISS algorithms. We validate the effectiveness of our approach
by applying two of the algorithms to simulations for flow field estimation using a swarm of profiling floats.
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Björck, Å. (1996). Numerical Methods for Least Squares Problems. SIAM, Philadelphia.
Booth, D. A. (1981). On the use of drogues for measuring subsurface ocean currents. Ocean Dynamics, 34:284–294.
Candy, J. V. (2009). Bayesian Signal Processing: Classical, Modern and Particle Filtering Methods. Wiley-

Interscience, New York, NY, USA.
Cheng, Y., Ye, H., Wang, Y., and Zhou, D. (2009). Unbiased minimum-variance state estimation for linear systems

with unknown input. Automatica, 45(2):485–491.



19

Colgan, C. (2006). Underwater laser shows. Explorations, Scripps Institution of Oceanography, 12(4):20–27.
Corless, M. and Tu, J. (1998). State and input estimation for a class of uncertain systems. Automatica, 34(6):757–764.
Costanza, R. (1999). The ecological, economic, and social importance of the oceans. Ecological Economics, 31:199–

213.
Darouach, M. and Zasadzinski, M. (1997). Unbiased minimum variance estimation for systems with unknown

exogenous inputs. Automatica, 33(4):717 – 719.
Darouach, M., Zasadzinski, M., and Boutayeb, M. (2003). Extension of minimum variance estimation for systems

with unknown inputs. Automatica, 39(5):867 – 876.
Fang, H. and de Callafon, R. (2011). Nonlinear simultaneous input and state estimation with application to flow field

estimation. In Proc. of IEEE Conference on Decision and Control and European Control Conference (CDC-ECC),
pages 6013–6018.

Fang, H. and de Callafon, R. A. (2012). On the asymptotic stability of minimum-variance unbiased input and state
estimation. Automatica, 48(12):3183 – 3186.

Fang, H. and de Callafon, R. A. (2013). Simultaneous input and state smoothing and its application to oceanographic
flow field reconstruction. In Proceedings of American Control Conference, pages 4705–4710.

Fang, H., de Callafon, R. A., and Cortés, J. (2013). Simultaneous input and state estimation for nonlinear systems
with applications to flow field estimation. Automatica, 49(9):2805 – 2812.

Fang, H., de Callafon, R. A., and Franks, P. J. S. (2015). Smoothed estimation of unknown inputs and states in
dynamic systems with application to oceanic flow field reconstruction. International Journal of Adaptive Control
and Signal Processing, pages 1224–1242.

Fang, H., Shi, Y., and Yi, J. (2008). A new algorithm for simultaneous input and state estimation. In Proceedings
of American Control Conference, pages 2421–2426.

Fang, H., Shi, Y., and Yi, J. (2011). On stable simultaneous input and state estimation for discrete-time linear systems.
International Journal of Adaptive Control and Signal Processing, 25(8):671–686.

Fang, H., Srivas, T., de Callafon, R. A., and Haile, M. A. (2017). Ensemble-based simultaneous input and state
estimation for nonlinear dynamic systems with application to wildfire data assimilation. Control Engineering
Practice, 63:104–115.

Floquet, T., Edwards, C., and Spurgeon, S. K. (2007). On sliding mode observers for systems with unknown inputs.
International Journal of Adaptive Control & Signal Processing, 21(8-9):638–656.

Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions on Automatic Control, 14(4):359–367.
Gillijns, S. and De Moor, B. (2007a). Unbiased minimum-variance input and state estimation for linear discrete-time

systems. Automatica, 43(1):111–116.
Gillijns, S. and De Moor, B. (2007b). Unbiased minimum-variance input and state estimation for linear discrete-time

systems with direct feedthrough. Automatica, 43(5):934–937.
Gut, A. (2005). Probability: A Graduate Course. Springer, New York.
Ha, Q. P. and Trinh, H. (2004). State and input simultaneous estimation for a class of nonlinear systems. Automatica,

40(10):1779–1785.
Han, Y., De Callafon, R. A., Cortés, J., and Jaffe, J. (2010). Dynamic modeling and pneumatic switching control of

a submersible drogue. In International Conference on Informatics in Control, Automation and Robotics, volume 2,
pages 89–97, Funchal, Madeira, Portugal.

Honerkamp, J. (1993). Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. Wiley, New
York, NY, USA.

Hsieh, C.-S. (2000). Robust two-stage Kalman filters for systems with unknown inputs. IEEE Transactions on



20

Automatic Control, 45(12):2374–2378.
Hsieh, C.-S. (2010). On the optimality of two-stage Kalman filtering for systems with unknown inputs. Asian Journal

of Control, 12(4):510–523.
Hsieh, C.-S. (2011). Optimal filtering for systems with unknown inputs via the descriptor Kalman filtering method.

Automatica, 47(10):2313–2318.
Hsieh, C. S. (2013). A unified framework for state estimation of nonlinear stochastic systems with unknown inputs.

In Proceedings of the 9th Asian Control Conference, pages 1–6.
Imine, H., Delanne, Y., and M’Sirdi, N. K. (2006). Road profile input estimation in vehicle dynamics simulation.

Vehicle System Dynamics, 44(4):285–303.
Kitanidis, P. K. (1987). Unbiased minimum-variance linear state estimation. Automatica, 23(6):775–778.
Kitanidist, P. K. (1987). Unbiased Minimum-variance Linear State Estimation. Automatica, 23(6):775–778.
Mendel, J. (1977). White-noise estimators for seismic data processing in oil exploration. IEEE Transactions on

Automatic Control, 22(5):694–706.
Mutambara, A. G. O. (1998). Decentralized Estimation and Control for Multisensor Systems. CRC Press, Inc., Boca

Raton, FL, USA.
Ouimet, M. and Cortes, J. (2014). Robust, distributed estimation of internal wave parameters via inter-drogue

measurements. IEEE Transactions on Control Systems Technology, 22(3):980–994.
Pina, L. and Botto, M. A. (2006). Simultaneous state and input estimation of hybrid systems with unknown inputs.

Automatica, 42(5):755–762.
Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A., Belboch, M., Gilbert, D., Xu, J., Pouliquen, S.,

Thresher, A., Le Traon, P.-Y., Maze, G., Klein, B., Ravichandran, M., Grant, F., Poulain, P.-M., Suga, T., Lim, B.,
Sterl, A., Sutton, P., Mork, K.-A., Vlez-Belch, P. J., Ansorge, I., King, B., Turton, J., Baringer, M., and Jayne, S. R.
(2016). Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2):145–153.

Robinson, E. (1957). Predictive decomposition of seismic traces. Geophysics, 22(4):767–778.
Schubert, U., Kruger, U., Wozny, G., and Arellano-Garcia, H. (2012). Input reconstruction for statistical-based fault

detection and isolation. AIChE Journal, 58(5):1513–1523.
Shi, D., Chen, T., and Darouach, M. (2016). Event-based state estimation of linear dynamic systems with unknown

exogenous inputs. Automatica, 69:275 – 288.
Spinello, D. and Stilwell, D. (2010). Nonlinear estimation with state-dependent Gaussian observation noise. IEEE

Transactions on Automatic Control, 55(6):1358–1366.
Yong, S. Z., Zhu, M., and Frazzoli, E. (2014). Simultaneous input and state smoothing for linear discrete-time

stochastic systems with unknown inputs. In Proceedings of IEEE Conference on Decision and Control, pages
4204–4209.

Yong, S. Z., Zhu, M., and Frazzoli, E. (2016). A unified filter for simultaneous input and state estimation of linear
discrete-time stochastic systems. Automatica, 63:321 – 329.

You, F.-Q., Wang, F.-L., and Guan, S.-P. (2008). Hybrid estimation of state and input for linear discrete time-varying
systems: A game theory approach. Acta Automatica Sinica, 34(6):665–669.


