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Abstract—As multi-agent systems become more wide-spread
and versatile, the ability to satisfy multiple system-level con-
straints grows increasingly important. In applications ranging
from automated cruise control to safety in robot swarms,
barrier functions have emerged as a tool to provably meet
such constraints by guaranteeing forward invariance of desirable
sets. However, satisfying multiple constraints typically implies
formulating multiple barrier functions, which would be ame-
liorated if the barrier functions could be composed together as
Boolean logic formulae. The use of max and min operators, which
yields nonsmooth functions, represents one path to accomplish
Boolean compositions of barrier functions, and this work extends
previously established concepts for barrier functions to a class of
nonsmooth barrier functions that operate on systems described
by differential inclusions. We validate our results by deploying
Boolean compositions of nonsmooth barrier functions onto a team
of mobile robots.

Index Terms—Robotics, Lyapunov methods, autonomous sys-
tems

I. INTRODUCTION

NUMEROUS applications utilize multi-agent systems to
achieve objectives in a robust and decentralized manner,

including rendezvous, where agents must meet in a decentral-
ized fashion; coverage control, in which agents must cover
an area of importance; and flocking, which mimics biological
systems (e.g., [1], [2], [3]). As the number of agents increases,
accomplishing objectives while satisfying multiple system-
level constraints becomes a concern. For example, collision
avoidance and connectivity maintenance typically must be
ensured throughout the maneuver (e.g., [4]), which translates
into the constraints that agents do not collide and do not lose
connectivity. As such, the ability to provably guarantee the
satisfaction of multiple constraints grows increasingly relevant.

Recently, [5] utilized barrier functions for constraint satis-
faction by ensuring forward invariance of a set that encodes
such safety requirements, and, subsequently, barrier functions
have been used to encode a variety of system constraints across
different domains, such as adaptive cruise control [5], [6],
collision avoidance for ground vehicles [7], unmanned aerial
vehicles [8], and remote-access robotics testbeds [9].

The above-referenced literature on barrier functions ad-
dresses a single, sufficiently smooth barrier function that
operates on a continuous dynamical system. Recently, [10]
achieves a form of Boolean composition through products
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and sums of barrier functions. However, the construction in
[10] forgoes the robustness qualities of the zeroing barrier
functions in [6] and restricts the system to lie strictly in
the interior of the invariant set. In this paper, we retain the
robustness properties associated with zeroing barrier functions
(see [6]) while supporting Boolean composition of barrier
functions by utilizing max and min operators of multiple
component barrier functions. However, the use of max and
min operators introduces points of nondifferentiablity into
the composite barrier functions, preventing the existing re-
sults from applying. Though not considered with regard to
barrier functions, nonsmooth Lyapunov functions have been
extensively studied (e.g., [11], [12], [13], [14]). The tools
developed for nonsmooth Lyapunov functions will also prove
highly useful for Nonsmooth Barrier Functions (NBFs), and in
this paper, we show how to extend the previously established
concepts within the smooth barrier function literature to a rich
class of NBFs.

It should be noted that NBFs are not the only possible tools
for composition of system-level constraints in multi-agent
systems. For example, potential functions and Lyapunov-like
barrier functions represent an approach that also permits some
degree of composition [15], [16], [17]. The major difference
between this work and these other approaches lies in the fact
that the work in this paper explicitly allows for guaranteed
Boolean composition of these objects (i.e., composition with
Boolean ∧, ∨, ¬ operators).

Additionally, the above-mentioned prior methods are often
formulated with respect to a particular task (e.g., obstacle
avoidance) or a particular dynamical system (e.g., differential
drive robots). Another strength of this work is that the NBF
framework is mathematically agnostic to the particular task
under consideration.

This work provides three main results with experimental
validation. First, this work presents a framework that permits
the application of NBFs to a class of systems described
by differential inclusions. Second, this work addresses some
computational requirements imposed by the nonsmooth nature
of the NBF framework, demonstrating that validation of NBFs
can be feasibly performed under certain assumptions. Third,
Boolean compositional NBFs are achieved via max and min
operators and are formulated as Quadratic Programs (QPs).

This article unfolds as follows. Sec. II covers background
material regarding differential inclusions and discusses some
tools from nonsmooth analysis. Sec. III applies these concepts
to NBFs for dynamical systems that are described by dif-
ferential inclusions and introduces convenient computational
methods to check whether a candidate function is a valid NBF.
Sec. IV considers a special case of the results in Sec. III to



compose a number of barrier functions with Boolean logic via
min and max operations. Finally, Sec. V shows the successful
deployment of a Boolean compositional NBF onto a team of
mobile robots.

II. BACKGROUND MATERIAL

This section introduces notation and background material,
including generalized gradients, differential inclusions, and
set-valued Lie derivatives. These tools are necessary to deal
properly with the nondifferentiable points of NBFs.

A. Notation

We denote by R≥0 the set of nonnegative real numbers. For
an integer k > 0, we use the shorthand notation [k] to denote
the set {1, . . . , k}. The symbol ◦ denotes function composi-
tion. The abbreviation a.e. stands for almost everywhere in the
sense of Lebesgue measure. The expression 〈· , ·〉 represents
the inner product of two vectors. The abbreviation co stands
for the convex hull of a set. A function α : R → R belongs
to extended class-K if α is continuous, strictly increasing, and
α(0) = 0. The function α is a class-K function when restricted
to R≥0. A function β : R≥0×R≥0 → R≥0 is class-KL if it
is class-K in its first argument and, for each fixed r, β(r, ·) is
continuous, strictly decreasing, and lims→∞ β(r, s) = 0.

B. Differential Inclusions

Differential inclusions have emerged as a tool to analyze
certain types of dynamical systems. For example, differential
equations with discontinuous right-hand sides have been exten-
sively studied (e.g., in [18]) by transforming the discontinuous
differential equation into a differential inclusion.

When formulating NBFs, we allow for applications to differ-
ential inclusions, potentially facilitating forward-set-invariance
analysis of such systems; though, these results also apply to
systems modeled by continuous differential equations. Given
a set-valued map F : Rn → 2R

n

, consider the differential
inclusion represented by

ẋ(t) ∈ F (x(t)). (1)

We assume that F is locally bounded; upper semi-continuous
(see [19, Sidebar 7]); and takes nonempty, compact, convex
values. These properties ensure the existence (but not unique-
ness) of solutions to (1) (see [19, Prop. S1]). A Carathéodory
solution to (1) is an absolutely continuous trajectory x :
[0, t1] → D ⊂ Rn such that ẋ(t) ∈ F (x(t)), a.e. t ∈ [0, t1],
x(0) = x0, with D an open, connected set and 0 < t1. Later
references to solutions to (1) always assume this definition.

In general, this article focuses on guaranteeing that a set
is forward invariant with respect to a differential inclusion,
meaning that every solution that starts in the set stays in the
set. This notion of forward invariance has been called strong
forward invariance in other work (cf. [19]). This article simply
refers to this property as forward invariance.

Definition 1. A set C is forward invariant, with respect to (1),
if x(0) ∈ C implies that x(t) ∈ C, for every t ∈ [0, t1] and for
every Carathéodory solution of (1) starting from x(0).

C. Nonsmooth Analysis

Here, we review some basic notions on nonsmooth analysis
that are necessary to analyze the nonsmooth functions that
result from applying max and min operators to smooth
functions (e.g., |x| = max{−x, x}). The generalized gradi-
ent of locally Lipschitz functions is a tool that deals with
the nondifferentiable points of nonsmooth functions [20]. A
function f : Rn → Rm is Lipschitz near x is there exist
δ, L > 0 such that ‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖, for every
x1, x2 ∈ B(x, δ). If a function is Lipschitz near every point
in its domain of definition, we refer to the function as locally
Lipschitz. Next, we define the generalized gradient.

Theorem 1 ([20, Theorem 2.5.1]). Let f be Lipschitz near x,
and suppose S is any set of Lebesgue measure zero in Rn.
Then, the generalized gradient of a function ∂f(x) is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where Ωf represents the zero-measure set where f is nondif-
ferentiable.

Often, some regularity is assumed to imbue the generalized
gradient with some desirable properties.

Definition 2 ([20, Definition 2.3.4]). A function f is regular
at x provided that for all v ∈ Rn, the one-sided directional
derivative f ′(x; v) = limh↓0 h

−1(f(x+hv)−f(x)) exists and
that f ′(x; v) = f◦(x; v), where the generalized directional
derivative f◦(x; v) is given by

f◦(x; v) = lim sup
y→x
h↓0

f(y + hv)− f(y)

h
.

If the component functions are regular, the generalized gra-
dient of their point-wise max or min can be easily computed,
as the next result shows.

Proposition 2 ([20, Proposition 2.3.12]). Let {fi} be a finite
collection of functions (i = 1, 2, . . . , k) Lipschitz near x. Then,
the function f defined by

f(x′) = max
i∈[k]
{fi(x′)}

is Lipschitz near x as well. Let I(x′) denote the set of indices
i for which fi(x′) = f(x′). Then,

∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)},

and if fi is regular at x for each i ∈ I(x), then equality holds;
and f is regular at x.

This property becomes of particular interest when consider-
ing Boolean compositions of NBFs in Sec. IV. In particular,
Prop. 2 implies that the behavior of the generalized gradients
of the component functions encapsulates the behavior of the
generalized gradient of the max (or min).

D. Set-Valued Lie Derivatives

Following [19], this section formulates set-valued Lie
derivatives for nonsmooth functions with respect to systems
described by differential inclusions. Set-valued Lie derivatives



encapsulate the behavior of these nonsmooth functions by
combining possible directions between the generalized gra-
dient and the differential inclusion. In [11], these objects are
used to analyze nonsmooth Lyapunov functions; however, the
same tool may be applied to NBFs. The authors of [11]
introduce the following strong version of a set-valued Lie
derivative.

Lemma 2.1 ([11, Lemma 1]). Let x : [0, t1]→ D ⊂ Rn be a
Carathéodory solution to (1), and let h : D ⊂ Rn → R be a
locally Lipschitz, regular function. Then, [0, t1] 3 t 7→ ḣ(x(t))
is absolutely continuous, and

ḣ(x(t)) ∈ LS
Fh(x(t)), a.e. t ∈ [0, t1], (2)

where, for each x′ ∈ D,

LS
Fh(x′) = {a ∈ R | ∃ v ∈ F (x′) s.t. 〈ξ , v〉 = a,

∀ ξ ∈ ∂h(x′)}.

Interestingly, the work [12] extends the strong set-valued
Lie derivative of Lem. 2.1 to the larger class of so-called non-
pathological functions, a class that contains regular functions
as a subset.

Remark 2.1. If the regularity assumption on h is removed
from the hypothesis of Lemma 2.1, then (2) still holds with the
weaker set-valued Lie derivative defined by

LW
F h(x′) = {a ∈ R | ∃ v ∈ F (x′),∃ ξ ∈ ∂h(x′)

s.t. 〈ξ , v〉 = a},
(3)

for each x′ ∈ D. This statement follows from [20, Prop. 2.2.2].
•

Regarding Rem. 2.1, the weak set-valued Lie derivative
generates substantially more values than the strong set-valued
Lie derivative but only requires a locally Lipschitz assumption.
As such, the weak set-valued Lie derivative lends itself to the
Boolean composition of barrier functions (see Sec. IV), as the
regularity property is not necessarily preserved through nested
compositions of max and min operators (e.g., a point-wise
minimum of point-wise maximums). This condition occurs
because regularity of some function f does not imply that
−f is regular.

III. NONSMOOTH BARRIER FUNCTIONS

This section contains the main results of the paper. Initially,
the section introduces the definitions of candidate and valid
NBFs and then provides sufficient conditions to guarantee
the forward-set-invariance properties of NBFs. Finally, this
segment discusses useful computational methods to check
these conditions.

A. Candidate and Valid Nonsmooth Barrier Functions

Here, we define the concepts of candidate and valid NBFs.
Note that, in Def. 3, the function h is not necessarily differen-
tiable. Importantly, if a candidate NBF is a valid NBF, then the
set C, as in Def. 3, is forward invariant. Valid and candidate
NBFs are defined as follows.

Definition 3. A continuous function h : D ⊂ Rn → R, where
D is an open, connected set, is a candidate NBF if the set
C = {x′ ∈ D | h(x′) ≥ 0} is nonempty.

Definition 4. A continuous candidate NBF h : D ⊂ Rn → R
is a valid NBF for (1) if x(0) ∈ C implies that there exists a
class-KL function β : R≥0×R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x(0)), t), ∀ t ∈ [0, t1],

for all Carathéodory solutions x : [0, t1]→ Rn of (1) starting
from x(0).

B. Sufficient Conditions for Valid NBFs
This section provides sufficient conditions that allow us to

determine whether a candidate NBF is in fact a valid NBF.
Toward this end, the following result will be useful.

Lemma 2.2. Let α : R→ R be a locally Lipschitz, extended
class-K function and h : [0, t1] → R be an absolutely
continuous function. If ḣ(t) ≥ −α(h(t)), for almost every
t ∈ [0, t1], and h(0) ≥ 0, then there exists a class-KL function
β : R≥0×R≥0 → R≥0 such that h(t) ≥ β(h(0), t), and
h(t) ≥ 0, ∀ t ∈ [0, t1].

Proof: To prove this result, we utilize a differential
inequality. Toward this end, let

ż(t) = −α(z(t)), z(0) = h(0).

Because α is locally Lipschitz, solutions z(t) exist and are
unique, and since z(0) ≥ 0 and the restriction of an extended
class-K function to R≥0 is a class-K function, the solution
z(t) is a class-KL function β such that

z(t) = β(z(0), t).

Therefore, the solution z(t) is valid over [0, t1]. Then, because

ḣ(t) ≥ −α(h(t)), a.e. t ∈ [0, t1],

h(t) ≥ z(t), ∀t ∈ [0, t1], by [21, Thm. 1.10.2]. Thus,

h(t) ≥ β(h(0), t), ∀ t ∈ [0, t1],

proving the first claim. Because β is a class-KL function,
β(h(0), t) ≥ 0, ∀ t ∈ [0, t1]; thus, h(t) ≥ 0, ∀t ∈ [0, t1].

The following result states a sufficient condition for a
candidate NBF to be valid in terms of its strong set-valued
Lie derivative when evaluated along solutions to (1).

Theorem 3. Let h : D ⊂ Rn → R be a locally Lipschitz,
regular function that is a candidate NBF. If there exists a
locally Lipschitz extended class-K function α : R → R such
that the strong set-valued Lie derivative satisfies

minLS
Fh(x′) ≥ −α(h(x′)), ∀ x′ ∈ D, (4)

then h is a valid NBF for (1).

Proof: Let x(0) ∈ C. By Lem. 2.1, each solution of (1)
satisfies

ḣ(x(t)) ∈ LS
Fh(x(t)), a.e. t ∈ [0, t1].

Thus, at a.e. t ∈ [0, t1]

ḣ(x(t)) ≥ minLS
Fh(x(t)) ≥ −α(h(x(t))).



This condition implies that at a.e. t ∈ [0, t1]

d

dt
(h ◦ x)(t) ≥ −α((h ◦ x)(t)),

when h ◦ x is viewed as a function of t. Since x(0) ∈ C,
(h ◦ x)(0) ≥ 0. Directly applying Lem. 2.2 yields that h is a
valid NBF, as defined in Def. 4.

Remark 3.1. The same result holds if we remove the assump-
tion that h is regular and instead the inequality (4) holds with
the weak set-valued Lie derivative LW

F h defined in (3). •

Remark 3.2. By a similar argument, if x(0) ∈ D − C (i.e.,
h(0) < 0) and the solution exists for all t ∈ [0,∞), then
we may show that −h(x(t)) ≤ β(−h(x(0)), t) (i.e., that x(t)
asymptotically returns to C). •

As the eventual goal of this work is to apply NBFs to a
group of mobile robots, the computational requirements of
verifying the NBF inequality conditions become a concern.
Toward this end, the following property of the usual inner
product on two convex hulls becomes of use. In the interest
of space efficiency, we omit this proof and note that it follows
from Caratheódory’s theorem for convex hulls.

Lemma 3.1. Let Ā ⊂ coA ⊂ Rn, B̄ ⊂ coB ⊂ Rn. If for
every a ∈ A, b ∈ B, 〈a , b〉 ≥ c, c ∈ R, then for every ā ∈ Ā,
b̄ ∈ B̄, 〈ā , b̄〉 ≥ c.

Next, we present the second of this article’s main results.
We omit the proof and note that it follows from Lem. 3.1 and
the version of Thm. 3 described in Rem. 3.1.

Theorem 4. Let h : D ⊂ Rn → R be locally Lipschitz func-
tion which is a candidate NBF. Let Ef , Eh : D ⊂ Rn → 2R

n

be set-valued maps such that

F (x′) ⊂ co Ef (x′), ∂h(x′) ⊂ co Eh(x′),

for all x′ ∈ D. If there exists a locally Lipschitz extended
class-K function α : R → R such that for every x′ ∈ D,
ξ ∈ Eh(x′), and v ∈ Ef (x′),

〈ξ , v〉 ≥ −α(h(x′)),

then h is a valid NBF for (1).

In Sec. IV, Thm. 4 facilitates the validation of candidate
NBFs that are defined by max or min operations of smooth
functions by expressing these sufficient conditions in terms of
the component functions.

IV. BOOLEAN LOGIC VIA MAX/MIN

This sections covers applications of max and min functions
to the Boolean composition of barrier functions. In particular,
this section demonstrates that these operators encode a system
of Boolean logic falling into the NBF framework in Sec. III.
We also cover a QP-based formulation of these Boolean
compositional NBFs with respect to a class of control-affine
systems.

A. Composition by Boolean Logic

Throughout this section, we assume that a finite set of
functions hi : D ⊂ Rn → R, i ∈ [k], are candidate NBFs.
Within this framework, max represents a Boolean ∨ operation:
that is, if hmax

[k] : D ⊂ Rn → R defined by

hmax
[k] (x′) = max

i∈[k]
{hi(x′)}, (5)

for x′ ∈ D, is a candidate and valid NBF for (1), then
at each t ∈ [0, t1], there exists at least one j ∈ [k] such
that hj(x(t)) ≥ 0. Similarly, we note that min represents a
Boolean ∧ operation: that is, if hmin

[k] : D ⊂ Rn → R defined
by

hmin
[k] (x′) = min

i∈[k]
{hi(x′)}, (6)

for x′ ∈ D, is a candidate and valid NBF for (1), then at
each t ∈ [0, t1], hj(x(t)) ≥ 0, ∀ j ∈ [k]. Furthermore, −h
represents ¬h. These expressions allow for the application of
De Morgan’s laws in that h1∨h2 = ¬(¬h1∧¬h2), permitting
full Boolean composition.

B. Min/Max Barrier Functions

Having noted the utility of min and max as Boolean opera-
tors, we focus on the criteria that these Boolean compositional
NBFs must satisfy to be covered under the results of Sec. III.
In the interest of space efficiency, we omit the proof of this
result and note that it follows from Prop. 2 and Thm. 4. Prop. 5
holds for the min operator as well.

Proposition 5. Let hi : D ⊂ Rn → R, i ∈ [k], be a finite
set of locally Lipschitz functions which are candidate NBFs,
and let hmax

[k] : D ⊂ Rn → R be defined as in (5). For each
x′ ∈ D, let

J(x′) = {j ∈ [k] | hj(x′) = max
i∈[k]
{hi(x′)}},

and consider the set-valued map Eh : D ⊂ Rn → 2R
n

defined
by

Eh(x′) =
⋃

j∈J(x′)

∂hj(x
′).

If hmax
[k] is a candidate NBF and there exists a locally Lipschitz

extended class-K function α : R → R such that for every
x′ ∈ D, ξ ∈ Eh(x′), and v ∈ F (x′),

〈ξ , v〉 ≥ −α(hmax
[k] (x′)),

then hmax
[k] is a valid NBF for (1).

C. Quadratic-Program-Based Controllers

The formulation of a smooth barrier function with respect to
control-affine systems produces an affine constraint on the sys-
tem, and coupling this affine constraint with the minimization
of a quadratic cost, at each point in time, results in a quadratic
program (e.g., [5], [10]). This section provides similar results
for NBFs with respect to a class of control-affine systems.
In the nonsmooth case, the component functions generate a
series of constraints, rather than a single constraint, that must
be enforced point-wise in time. In the interest of space, we



Fig. 1. A group of 8 differential-drive robots in the Robotarium successfully navigate through a pair of obstacles (circles) to their desired destination (crosses)
and avoid inter-robot collisions. This task is accomplished by solving online for a QP-based controller with respect to the NBF in (7) that encodes and enforces
safety requirements.

omit the proof and note that it follows from [22, Thm. 1] and
Prop. 5.

Proposition 6. Let f : Rn → Rn, G : Rn → Rn×m, and
u : Rn → Rm be locally Lipschitz, and consider the control-
affine system ẋ(t) = f(x(t))+G(x(t))u(x(t)). Let hmin

[k] : D ⊂
Rn → R be defined as in (6), where each hi : D ⊂ Rn → R
is a continuously differentiable candidate NBF with a locally
Lipschitz derivative. Consider the functions w∗ : D ⊂ Rn →
R and u∗ : D ⊂ Rn → Rm defined by

w∗(x′) = min
(u,w)∈Rm+1

w

s.t. ∇hi(x′)T (f(x′)+G(x′)u)+α(hi(x
′))−w≥0,∀ i ∈ [k]

and

u∗(x′) = arg min
u∈Rm

uTH(x′)u+ b(x′)Tu

s.t. ∇hi(x′)T (f(x′) +G(x′)u)+α(hi(x
′)) ≥ 0, ∀ i ∈ [k],

where H : D ⊂ Rn → Rm×m is locally Lipschitz, symmetric,
positive definite and b : D ⊂ Rn → Rm is locally Lipschitz.
If hmin

[k] is a candidate NBF and w∗(x′) > 0, for all x′ ∈ D,
then u∗ is locally Lipschitz; and hmin

[k] is a valid NBF for the
closed-loop system under the controller u∗.

Intuitively, w∗ in the above result gives some notion of
the width of the feasible set of solutions. If the feasible set
has non-zero width at all points, then a locally Lipschitz
solution may be selected from the feasible set. In general, the
computational complexity of a QP depends on the decision
variables, the constraints, and the utilized solver. For an
excellent survey of these methods for multi-agent systems, we
refer the reader to [8].

V. EXPERIMENTAL RESULTS

This section features a group of robots in the Robotarium
(see [9]), which is a remote-access, multi-agent robotics test
bed. The agents attempt to achieve a navigation objective
by utilizing a given controller that accomplishes the desired
goal but disregards safety measures: inter-agent collisions and
static obstacles. In this experiment, a QP wraps the existing
controller in an NBF framework such that it simultaneously
satisfies multiple safety requirements and fulfills the intent
behind the original controller.

Consider a team of 8 planar, single-integrator agents each
with state xi(t) ∈ R2, i ∈ [8], and dynamics ẋi(t) = ui(x(t)).
To solve the ensemble problem via QP, we stack the states
and inputs into vectors x(t) =

[
x1(t)T . . . x8(t)T

]T
, where

x(t) ∈ R16 and u(x(t)) is defined in the same fashion. The
agents’ objective is to drive from their initial condition to some
pre-specified goal points xg ∈ R16, which is accomplished by
use of a locally Lipschitz proportional controller

uobj(x(t)) = xg − x(t).

To avoid collisions with other agents, the following compo-
sitional candidate NBF applies to each pair of agents

hc(x(t)) =

8∧
i=1

8∧
j=i+1

‖xi(t)− xj(t)‖2 − (δc)2,

where δc > 0. Similarly, each agent avoids collisions with two
circular obstacles in the plane via the NBF

ho(x(t)) =

8∧
i=1

2∧
j=1

‖xi(t)− oj‖2 − (δo)2,

where oj ∈ R2 indicates the static position of an obstacle and
δo > 0. The final Boolean compositional barrier function is
given by

hmin(x(t)) = hc(x(t)) ∧ ho(x(t)). (7)
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Fig. 2. Value of Boolean compositional NBF in (7) over the course of the
experiment. Because the NBF remains positive over time, all safety objectives
are simultaneously satisfied.



Now, we examine the derivatives of the component barrier
functions of hc and ho. Taking a component barrier function
in hc with agents i and j yields

d

dt

(
‖xi(t)− xj(t)‖2 − (δc)2

)
= Aij(x(t))u.

Here, the superscript Aij indicates that this vector describes
the derivative for agents i and j. Aij maps to a row vector
whose indices satisfy

Aij
i (x′) = 2(x′i−x′j)T , A

ij
j (x′) = −Aij

i (x′), Aij
k (x′) = 0,

where k 6= i, j and the subscript indicates a particular two-
dimensional element of Aij(x′). Importantly, Aij is locally
Lipschitz.

Similarly, each component function of ho will have a
derivative for agent i and obstacle j

d

dt

(
‖xi(t)− oj‖2 − (δo)2

)
= Bij(x(t))u,

where the superscript Bij indicates that this function is
between agent i and obstacle j. Bij maps to a row vector
whose indices satisfy

Bij
i (x′) = 2(x′i − oj)T , B

ij
k (x′) = 0, k 6= i,

where the subscript indicates a particular two-dimensional
element in Bij(x′). In this case, Bij is also locally Lipschitz.

Now, we utilize the QP formulation noted in Prop. 6 with the
objective function uTu−2uobj(x(t))Tu, which is equivalent to
minimizing the squared norm ‖u−uobj(x(t))‖2. This cost at-
tempts, at each point in time, to minimally modify the existing
controller uobj(x(t)) such that the modified controller achieves
the safety objectives. In this experiment, we assume that the
selection α(hmin(x(t))) = γhmin(x(t))3, γ > 0 makes w∗,
as defined in Prop. 6, satisfy the condition w∗(x′) > 0 for all
x ∈ R16.

The QP is formulated as in Prop. 6 with the parameters
γ = 1000, δc = 0.04, δo = 0.1; and we deploy the resulting
controller onto the Robotarium’s team of unicycle-modeled
robots using the method in [23, Sec. 5].

Fig. 1 displays the mobile robots during this experiment,
and Fig. 2 shows the NBF of (7) during the course of the
experiment. The Boolean compositional NBF in (7) starts
positive and remains positive over the course of the experi-
ment; thus, all component barrier functions are simultaneously
satisfied. Furthermore, as a result of the minimally invasive
modification, the robots also arrive at the desired goal position,
satisfying their original navigation objective and the NBF.
Additionally, we note that the width of the feasible set remains
strictly greater than zero, validating the application of Prop. 6.

VI. CONCLUSIONS

We have introduced a class of Nonsmooth Barrier Func-
tions (NBFs), showing that existing results for smooth barrier
functions apply to NBFs and allowing formulation of Boolean
compositional NBFs via max and min operators. Furthermore,
we have provided results that illustrate some computational
methods for these conditions, allowing one to validate a class
of NBFs with quadratic programs. To validate these results,

a Boolean compositional NBF was deployed onto a team of
mobile robots in the Robotarium. Future work on this topic
could include temporal logic specifications for NBFs.
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