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Abstract— Time-triggered and event-triggered control strate-
gies for stabilization of an unstable plant over a rate-limited
communication channel subject to unknown, bounded delay
are studied and compared. Event triggering carries implicit
information, revealing the state of the plant. However, the delay
in the communication channel causes information loss, as it
makes the state information out of date. There is a critical delay
value, when the loss of information due to the communication
delay perfectly compensates the implicit information carried
by the triggering events. This occurs when the maximum delay
equals the inverse of the entropy rate of the plant. In this context,
extensions of our previous results for event triggering strategies
are presented for vector systems and are compared with the
data-rate theorem for time-triggered control, that is extended
here to a setting with unknown delay.

I. INTRODUCTION

Internet of things establishes a foundation for emerging
of engineering systems that integrate computing, communi-
cation, and control, these systems are know as cyber-physical
systems (CPS) [1], [2]. One key aspect of CPS is the presence
of finite-rate, digital communication channels in the feedback
loop. To quantify their effect on the ability to stabilize the
system, data-rate theorems have been developed [3], [4].
They essentially state that, in order to achieve stabilization,
the communication rate available in the feedback loop should
be at least as large as the entropy rate of the system,
corresponding to the sum of the logarithms of the unstable
modes. In this way, the controller can compensate for the
expansion of the state occurring during communication

More recent formulations of data-rate theorems include
stochastic, time-varying, Markovian, erasure, additive white
and colored Gaussian, and multiplicative noise feedback
communication channels [5]–[10], formulations for nonlin-
ear sytems [11]–[13], and for systems with uncertain and
variable parameters [14]–[17]. Connections with information
theory are highlighted in [13], [18]–[21]. Extended surveys
of the literature appear in [22] and [23].

Another important aspect of CPS is the need to use dis-
tributed resources efficiently. In this context, event-triggering
control techniques [24], [25] have emerged. These are based
on the idea of sending information in an opportunistic
manner between the controller and the plant. In this way,
communication occurs only when needed, and the primary
focus is on minimizing the number of transmissions while
guaranteeing the control objectives. Some recent results on
event-triggered implementations in the presence of data rate
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constraints appear in [26]–[29]. One important observation
raised in [27] is that using event-triggering is possible to
“beat” the data-rate theorem. More precisely, if the channel
does not introduce any delay, then an event-triggering strat-
egy can achieve stabilization for any positive rate of trans-
mission. This apparent contradiction is resolved by realizing
that the timing of the triggering events carries information,
revealing the state of the system. When communication
occurs without delay, the state can be tracked with arbitrary
precision, and transmitting a single bit at every triggering
event is enough to compute the appropriate control action.

In our previous work [30], we extended the above obser-
vation to the whole spectrum of possible delay values. Key
to our analysis was the distinction between the information
access rate, that is the rate at which the controller needs to
receive data, regulated by the classic data-rate theorem; and
the information transmission rate, that is the rate at which
the sensor needs to send data, regulated by a given triggering
control strategy. For a given triggering strategy, we showed
that for sufficiently low values of the delay, the timing
information carried by the triggering events is large enough
and the system can be stabilized with any positive informa-
tion transmission rate. At a critical value of the delay, the
timing information carried by event triggering is not enough
for stabilization and the required information transmission
rate begins to grow. When the delay reaches the inverse
of the entropy rate of the plant, the timing information
becomes completely obsolete, and the required information
transmission rate becomes larger than the information access
rate imposed by the data-rate theorem.

In the present work, we compare these results with those
of a time-triggered implementation, for which we provide
a formulation of the data-rate theorem for continuous-time
systems in the presence of delay. The comparison leads
to additional insights on the value of information in event
triggering. We also extend results in [30] to vector systems.
Proofs are omitted due to space limitations. Proofs of the re-
sults on time-triggering can be found in the arxiv version [31]
and of the results on event-triggering in the journal version
of this work [32].

Notation: Let R and N denote the set of real and positive
integer numbers, respectively. We denote by B(ε) the ball
centered at 0 of radius ε. We let log and ln denote the
logarithm with bases 2 and e, respectively. For any function
f : R→ Rn and t ∈ R, we let f(t+) denote the limit from
the right, namely lims↓t f(s). We let Mn,m(R) be the set of
n×m matrices over the field of real numbers. Let 0n be the
all 0 vector of size n. Given A = [ai,j ]1≤i,j≤n ∈Mn,n(R),
we let tr(A) =

∑n
i=1 aii and det(A) denote its trace

and determinant, respectively. Note that det(eA) is equal to



Fig. 1. System model.

etr(A). We let m denote the Lebesgue measure on Rn, which
for n = 2, and n = 3 corresponds to area and volume,
respectively. Note that for A ∈ Mn,n(R) and X ∈ Rn,
m(AX) = |det(A)|m(X). We let bxc denote the greatest
integer less than or equal to x. We let ‖x‖ be the L2 norm
of x in Rn.

II. PROBLEM FORMULATION

System model: We consider a networked control system
composed by the plant-sensor-channel-controller tuple de-
picted in Figure 1. The plant dynamics are described by a
vector, continuous-time, linear time-invariant (LTI) system

ẋ = Ax(t) +Bu(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm for t ∈ [0,∞) are the plant
state and control input, respectively. Here, A ∈ Mn,n(R),
B ∈Mn,m(R), and

x(0) ∈ B(L)

for some non-negative real number L (L is known to both
sensor and controller). Without loss of generality, we assume
that all the eigenvalues of A are unstable, that is, Re{λi} >
0 for i ∈ {1, . . . , n}. The sensor can measure the state
of the system exactly, and the controller can apply the
control input to the plant with infinite precision and without
delay. However, sensor and controller communicate through
a channel that can support only a finite data rate and is
subject to delay, as we describe next.

Triggering Times and Communication Delay: We denote
by {tks}k∈N the sequence of times at which the sensor
transmits a packet composed of g(tks) bits representing the
system state to the controller. We define the kth triggering
interval by

∆′k = tk+1
s − tks . (2)

We let tkc be the time at which the controller receives and
decodes a packet of data which was encoded and transmitted
at time tks for k ∈ N. We assume a uniform upper bound,
known to the sensor and the controller, on the communication
delays

∆k = tkc − tks ≤ γ. (3)

When referring to a generic triggering time or reception time,
we shall skip the superscript k in tks and tkc .

Time-Triggered and Event-Triggered Control: With the in-
formation received from the sensor, the controller maintains
an estimate x̂ of the plant state, which during the inter-
reception times evolves according to

˙̂x(t) = Ax̂(t) +Bu(t), (4)

starting from x̂(tk+c ).
The state estimation error is then

z(t) = x(t)− x̂(t), (5)

where z(0) = x(0)−x̂(0). Without updated information from
the sensor, this error grows, and the system can potentially
become unstable. The sensor should therefore select the
sequence of transmission times {tks}k∈N and the packet
sizes {g(tks)}k∈N in a way that ensures stabilizability and
observability, while satisfying the rate constraints imposed
by the channel.

The asymptotic notions of stabilizability and observability
that we require are standard, and are formally defined in
[3], [30]. To ensure these asymptotic properties, we consider
two different approaches: event-triggered and time-triggered
control. In an event-triggering implementation, we define a
triggering function v(t) that is known to both the controller
and the sensor. Whenever the state estimation error crosses
the value of this function, a transmission occurs. In a
time-triggered implementation, transmissions are not state
dependent.

Information Access Rate: We let bc(t) denote the number
of bits that have been received by the controller up to time
t. We define the information access rate

Rc = lim sup
t→∞

bc(t)

t
. (6)

In this setting, data-rate theorems describe the trade-
off between the information access rate and the ability to
stabilize the system. They are generally stated for discrete-
time systems, albeit similar arguments hold in continuous
time as well, see e.g. [33]. They are based on the fundamental
observation that there is an inherent entropy rate

h(A) =
tr(A)

ln 2
=

∑d
i=1 λi
ln 2

(7)

at which the plant generates information. It follows that to
guarantee stability it is necessary for the controller to have
access to state information at a rate

Rc > h(A). (8)

This result indicates what is required by the controller, and
it does not depend on the feedback structure — including
aspects such as communication delays, information pattern
at the sensor and the controller, and whether the times at
which transmissions occur are state dependent, as in event-
triggered control, or not, as in time-triggered control.

Information Transmission Rate: We now take the view-
point of the sensor when examining the amount of infor-
mation that it needs to transmit to the controller. We make
the following two observations. First, in the presence of



communication delays, the state estimate received by the
controller might be out of date, so that the sensor might
need to send data at a higher rate than what (8) prescribes
to make-up for such discrepancy. Second, in the case of
event-triggered transmissions, the timing of the triggering
events itself carries some information. For instance, if the
communication channel does not introduce any delay, then
a triggering event may reveal the state of the system very
precisely, and effectively carry an unbounded amount of
information. The controller may then be able to stabilize the
system even if the sensor uses the channel very sparingly,
transmitting at a smaller rate than what (8) prescribes.

Motivated by these observations, let bs(t) be the number
of bits transmitted by the sensor up to time t, and define the
information transmission rate by

Rs = lim sup
t→∞

bs(t)

t
. (9)

Since at every triggering time the sensor sends g(tks) bits,
we also have

Rs = lim sup
N→∞

∑N
k=1 g(tks)∑N
k=1 ∆′k

. (10)

III. NECESSARY CONDITION ON THE ACCESS RATE FOR
EVENT TRIGGERING

We now quantify the amount of information that the con-
troller needs to have access to in order to have exponential
convergence of the estimation error and the plant state to
zero, irrespective of the feedback structure used by the sensor
to decide when to transmit. The proof follows, with minor
modifications to the one for the scalar case, cf. [32].

Theorem 1: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1), and
state estimation error z(t). Let σ ∈ R be positive.

1) If the state estimation error satisfies

‖z(t)‖ ≤ ‖z(0)‖ e−σt,

then

bc(t) ≥ t
tr(A) + nσ

ln 2
+ n log

L

‖z(0)‖
. (11)

2) If the system is stabilizable and

‖x(t)‖ ≤ ‖x(0)‖ e−σt,

then

bc(t) ≥ t
tr(A) + nσ

ln 2
. (12)

In both cases, the information access rate is

Rc >
tr(A) + nσ

ln 2
. (13)

Remark 1: Theorem 1 is valid for any control scheme,
and the controller does not necessarily have to compute the
state estimate following (4). This theorem can be viewed
as an extension of the data-rate theorem with exponential
convergence guarantees. It states that, to have exponential
convergence of the estimation error and the state, the access

rate should be larger than the estimation entropy, the latter
concept having been recently introduced in [34]. A similar
result for continuous-time systems appears in [26], but only
for linear feedback controllers. The classic formula of the
data-rate theorem (8), given in [3], [4] can be derived as
a special case of Theorem 1 by taking σ → 0 and using
continuity. •

IV. NECESSARY CONDITION ON THE TRANSMISSION
RATE FOR TIME TRIGGERING

We now derive a data-rate theorem for the information
transmission rate in two different time-triggered scenarios
and in the presence of unknown communication delays.

In the first scenario, we assume the following time-
triggered implementation: the sensor transmits at all times
{tks}k∈N, where

tks = kT, (14)

and T denotes the transmission period. Note that in this
setting, the sensor transmits without considering whether the
previous packets have been received and decoded or not.
Consequently, the communication delay is upper bounded
as (3) only when there is not another packet in the com-
munication channel. In this setting, we have the following
theorem.

Theorem 2: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1).
Assume that the communication delays upper bounded as (3)
when there is no other packet in the channel, and assuming
that the packets are received and decoded by the controller
in the order they are transmitted by the sensor. Then, there
exists a delay realization {∆k}k∈N such that a rate

Rs >


tr(A)

ln 2
if γ < T,

tr(A) γT
ln 2

if γ ≥ T.

is necessary for asymptotic observability and asymptotic
stabilizability.

Remark 2: Theorem 2 provides a data-rate theorem for the
information transmission rate without imposing exponential
convergence guarantees. It shows the existence of a critical
delay value γ = T , at which the rate begins to increase
linearly with the delay. •

We next consider a different time-triggered scenario. Let

t0s = 0, tk+1
s = tks + (b∆k/T c+ 1)T, (15)

where T is a fixed non-negative real number. In this case, the
sensor transmits only at integer multiples of the period T ,
after the previous packet is received. It follows that there
is no delay accumulation, and for all packets the delay
satisfies (3). In this setting, we have the following result for
exponential convergence of the estimation error to zero.

Theorem 3: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1), and



state estimation error z(t). Let σ ∈ R be positive. If using
the time-triggered implementation (15) the state estimation
error satisfies

‖z(tks)‖ ≤ ‖z(0)‖ e−σt
k
s , (16)

for all k ∈ N, then there exists a delay realization {∆k}k∈N
which requires

Rs ≥
(tr(A) + nσ)(b γT c+ 1)

ln 2
. (17)

Remark 3: In the time-triggered setting governed by (14),
a packet is transmitted without considering whether the
previous packets have been received and decoded. On the
other hand, in the time-triggered setting governed by (15)
a packet is transmitted only after the previous packet is
received. Letting σ → 0, for γ < T both Theorems 2
and 3 reduce to Rs ≥ tr(A)/ ln 2. Namely, for low values
of the delay, and without imposing exponential convergence
guarantees, we recover the critical value of the data-rate
theorem for the access rate in Theorem 1. •

V. NECESSARY AND SUFFICIENT CONDITIONS ON THE
TRANSMISSION RATE FOR EVENT-TRIGGERING

A. Component-wise description
In the proposed event-triggered design, we deal with

each coordinate of the system separately. This corresponds
to treating the n-dimensional system as n scalar, coupled
systems. When a triggering occurs for one of the coordinates,
the controller should be aware of which coordinate of the
system the received packet corresponds to. Accordingly, we
assume that there are n parallel finite-rate digital communica-
tion channels between each coordinate of the system and the
controller, each subject to unknown, bounded delay. In the
case of a single communication channel, we can consider the
same triggering strategy, but an additional dlog ne bits should
be appended at the beginning of each packet to identify the
coordinate it belongs to.

For deriving our necessary and sufficient conditions for
vector system, we assume that all of the eigenvalues of A
are real. Recall that every A ∈ Mn,n(R) can be written
as ΦΨΦ−1, where Φ is a real-valued invertible matrix and
Ψ = diag[J1, . . . , Jq], where each Jj is a Jordan block
corresponding to the real-valued eigenvalue λj of A [35]. We
let dj indicate the order of each Jj . Without loss of generality
assume A is equal to its Jordan block decomposition, that
is, A = diag[J1, . . . , Jq]. With the notation of Section II, we
let xji (t), x̂ji (t), and zji (t) be the state, state estimation, and
state estimation error for the ith coordinate of jth Jordan
block, respectively. For each coordinate i of the jth Jordan
block we let {tk,js,i }k∈N, {tk,jc,i }k∈N, g(tk,js,i ) be the sequence of
transmission times, reception times, and the number of bits
that are transmitted at each triggering time. Similarly, the
kth communication delay and kth triggering interval can be
specified for each coordinate. Following (3), we have

∆j
k,i = tk,jc,i − t

k,j
s,i ≤ γ. (18)

When referring to a generic triggering or reception time, we
shall skip the superscript k in tk,js,i and tk,jc,i .

An event is triggered for coordinate i in Jordan block j
whenever

|zji (t
j
s,i)| = vji (t

j
s,i), (19a)

where vji (t) is the event-triggering function

vji (t) = vj0,ie
−σt, (19b)

where vj0,i and σ are positive real numbers.
Let z̄ji (t

j
c,i) be an estimate of zji (t

j
c,i) constructed by the

controller knowing |zji (t
j
s,i)| = vji (t

j
s,i), the bound (18),

and the decoded packet received through the communication
channel. We define the following updating procedure, called
jump strategy

x̂ji (t
j+
c,i ) = z̄ji (t

j
c,i) + x̂ji (t

j
c,i). (19c)

Note that with this jump strategy, we have

zji (t
j+
c,i ) = xji (t

j
c,i)− x̂

j
i (t

j+
c,i ) = zji (t

j
c,i)− z̄

j
i (t

j
c,i).

When a triggering occurs for coordinate i of the jth Jordan
block, we assume that the sensor sends enough bits to ensure

|zji (t
j+
c,i )| ≤ ρ(tjs,i) := ρ0e

−σγv(tjs,i). (19d)

When referring to a generic Jordan block, we skip the
superscript and subscript j. For the scalar case we skip the
subscript i too.

The transmission rate for each coordinate is then

Rjs,i = lim sup
Nji→∞

∑Nji
k=1 g(tk,js,i )∑Nji
k=1 ∆′jk,i

Assuming n parallel communication channels between
the plant and the controller, each devoted to a coordinate
separately, we have

Rs =

q∑
j=1

dj∑
i=1

Rjs,i.

To obtain our necessary condition, we need to restrict the
class of allowed quantization policies. We assume that, at
each triggering event, there exists a delay such that the sensor
can reduce the estimation error at the controller to at most
a fraction of the maximum value ρ(tjs,i) required by (19d).
This is a natural assumption, see [32].

Assumption 1: The controller can only achieve ν-
precision quantization, namely there exists ν ≥ 1, and a
delay at most β := 1

A ln(1 + 2ρ0e
−σγ), such that

|z(tjc,i)− z̄(t
j
c,i)| ≥

ρ(tjs,i)

ν
.

B. Review of results in the scalar case

The following results for scalar systems are the building
blocks for our vector case derivation and appear in [32].

Theorem 4: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1), esti-
mator dynamics (4), and n = 1. If using the event-triggering
strategy (19), packet sizes such that z(tc) is determined at
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Fig. 2. Illustration of the necessary bit rate for time-triggering control of
a scalar plant (17) and approximation of the necessary bit rate for event-
triggering control of a scalar plant (21) versus the worst-case delay in the
communication channel. For the time-triggered scheme, T = ln 2/A.

the controller within a ball of radius ρ(ts) = ρ0e
−σγv(ts)

with ν-precision, and the state estimation error satisfies (16),
then there exists a delay realization {∆k}k∈N which requires

Rs ≥
A+ σ

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eAγ − 1)

ρ0e−σγ

}
. (20)

Moreover, when σ is sufficiently large the result can be
approximated by

Rs ≥
A+ σ

ln 2
max

{
0, 1 +

log(eAγ − 1)

− log(ρ0e−σγ)

}
. (21)

We also have a corresponding sufficient condition for the
scalar case.

Theorem 5: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1), esti-
mator dynamics (4), and n = 1. If the state estimation error
satisfies |z(0)| < v0, using the event-triggering strategy (19)
we can achieve

|z(t)| ≤ v0e(A+σ)γe−σt,

with an information transmission rate

Rs ≥
A+ σ

− ln(ρ0e−σγ)
max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
,

(22)

where ρ0 is a constant in the interval (0, 1), and b > 1.
Remark 4: Figure 2 compares the results of Theorem 3

and Theorem 4. For small values of γ, the necessary trans-
mission rate in Theorem 4 becomes, cf. [30],

Rs ≥ 0. (23)

On the other hand, the result of Theorem 3 in the scalar case
and for small values of γ can be written as

Rs ≥
A+ σ

ln 2
. (24)

Comparing (23) and (24), the value of the intrinsic timing

information in communication in an event-triggered design
becomes evident. When the delay is small, the timing in-
formation carried by the triggering events is substantial and
ensures that controller can stabilize the system. In contrast,
for small values of the delay the information transmission
rate required by a time-triggered implementation equals the
information access rate required by the classic data-rate
theorem.

For large delay values, it can be easily shown that while
both the necessary and sufficient conditions for the event-
triggered design in Theorems 4 and 5 converge to the
asymptote ((A + σ)/ ln 2)(1 + A/σ) as γ → ∞, the time-
triggered result in Theorem 3 for grows linearly as γ →∞.
The reason for this difference is that the time-triggered
design (15) depends only on the delay while the event-
triggered scheme depends on both state and delay. In both
time-triggered and event-triggered schemes the sensor does
not have fore-knowledge of the delay, and the sensor needs
to send larger packets when the worst-case delay is larger.
On the other hand, the triggering rate in the event-triggering
case tends to zero as γ tends to infinity. More precisely, using
Lemma 3 of [32] in the event-triggering setting for all of the
possible realizations we have

tk+1
s − tks ≥

− ln(ρ0e
−σγ)

A+ σ
,

which tends to infinity as γ → ∞. In contrast, in the time-
triggered case for delay realization ∆k = 0 for all k ∈ N we
have

tk+1
s − tks = T,

and in this case the rate increases linearly with the delay. •

C. Necessary and sufficient transmission rate

We now extend the event-triggering results to the vec-
tor case.

Theorem 6: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1),
where all eigenvalues of A are real and A is equal to its
Jordan block decomposition, estimator dynamics (4), event-
triggering strategy (19), and packet sizes such that zji (t

k,j
c,i ) is

determined at the controller within a ball of radius ρ(tk,js,i ) =

ρ0e
−σγv(tk,js,i ) with ν-precision. Then there exist a delay

realization such that

Rs >

q∑
j=1

dj(λj + σ)

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eλjγ − 1)

ρ0e−σγ

}
.

Moreover, when σ is sufficiently large the result can be
approximated by

Rs >

q∑
j=1

dj(λj + σ)

ln 2
max

{
0, 1 +

log(eλjγ − 1)

− log(ρ0e−σγ)

}
.

Theorem 7: Consider the plant-sensor-channel-controller
model described in Section II with plant dynamics (1), where
all eigenvalues of A are real and A is equal to its Jordan
block decomposition, estimator dynamics (4), and event-
triggering strategy (19). For the jth Jordan block choose the



following sequence of design parameters

0 < ρj1 < . . . < ρjdj−1 < ρjdj = ρ0 < 1.

If the state estimation error satisfies |zji (0)| ≤ vj0,i, then we
can achieve

|zji (t)| ≤ v
j
0,i((ρ0 − ρ

j
i ) + e(λj+σ)γ)e−σt

for i = 1, . . . , dj and j = 1, . . . , q, with an information
transmission rate Rs at least equal to

j=q∑
j=1

i=dj∑
i=1

(λj + σ)

− ln(ρjie
−σγ)

max

(
0, 1 + log

bγ(λj + σ)

ln(1 + ρjie
−(σ+λj)γ)

)
,

where

0 < vj0,i ≤
vj0,i−1(λj + σ)(ρ0 − ρji )

((ρ0 − ρji ) + e(λj+σ)γ)(e(λj+σ)γ − 1)
, (25)

for i = 2, . . . , dj and j = 1, . . . , q, and b > 1.

VI. CONCLUSIONS

We investigated observability and stabilizability of a
continuous-time scalar systems without disturbances in the
presence of a finite rate digital communication channel
subjected to unknown delay in the feedback loop. Our
previous results about inherent information in event-triggered
strategy have been extended to the vector case and compared
with two time-triggered designs. Open problems for future
research include studying the effect of system disturbances
and obtaining exponential convergence guarantees for the
stabilizability of the system.
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