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The value of timing information
in event-triggered control

Mohammad Javad Khojasteh Pavankumar Tallapragada Jorge Cortés Massimo Franceschetti

Abstract—We study event-triggered control for stabilization of
unstable linear plants over rate-limited communication channels
subject to unknown, bounded delay. On one hand, the timing of
event triggering carries implicit information about the state of
the plant. On the other hand, the delay in the communication
channel causes information loss, as it makes the state information
available at the controller out of date. Combining these two
effects, we show a phase transition behavior in the transmission
rate required for stabilization using a given event-triggering
strategy. For small values of the delay, the timing information
carried by the triggering events is substantial, and the system
can be stabilized with any positive rate. When the delay exceeds
a critical threshold, the timing information alone is not enough
to achieve stabilization, and the required rate grows. When the
delay equals the inverse of the entropy rate of the plant, the
implicit information carried by the triggering events perfectly
compensates the loss of information due to the communication
delay, and we recover the rate requirement prescribed by the
data-rate theorem. We also provide an explicit construction
yielding a sufficient rate for stabilization, as well as results
for vector systems. Our results do not rely on any a priori
probabilistic model for the delay or the initial conditions.

Index Terms—Data-rate theorem, event-triggered control, con-
trol under communication constraints, quantized control.

I. INTRODUCTION

Cyber-physical systems (CPS) are engineering systems that
integrate computing, communication, and control. They arise
in a wide range of areas such as robotics, energy, civil
infrastructure, manufacturing, and transportation [3], [4]. Due
to the need for tight integration of different components,
requirements and time scales, the modeling, analysis, and
design of CPS present new challenges. One key aspect is
the presence of finite-rate, digital communication channels
in the feedback loop. Data-rate theorems quantify the effect
that communication has on stabilization by stating that the
communication rate available in the feedback loop should be
at least as large as the intrinsic entropy rate of the system
(corresponding to the sum of the logarithms of the unstable
modes). In this way, the controller can compensate for the
expansion of the state occurring during the communication
process. Early formulations of data-rate theorems appeared
in [5]–[7], followed by the key contributions in [8], [9]. More
recent extensions include time-varying rate, Markovian, era-
sure, additive white and colored Gaussian, and multiplicative
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noise feedback communication channels [10]–[16], formula-
tions for nonlinear systems [17]–[19], for optimal control [20]–
[22], for systems with random parameters [23]–[25], and for
switching systems [26], [27]. Connections with information
theory are highlighted in [19], [28]–[31]. Extended surveys of
the literature appear in [32], [33] and in the book [34].

Another key aspect of CPS to which we pay special atten-
tion here is the need to efficiently use the available resources.
Event-triggering control techniques [35]–[37] have emerged as
a way of trading computation and decision-making for other
services, such as communication, sensing, and actuation. In
the context of communication, event-triggered control seeks
to prescribe information exchange between the controller and
the plant in an opportunistic manner. In this way, com-
munication occurs only when needed for the task at hand
(e.g., stabilization, tracking), and the primary focus is on
minimizing the number of transmissions while guaranteeing
the control objectives and the feasibility of the resulting real-
time implementation. While the majority of this literature
relies on the assumption of continuous availability and infinite
precision of the communication channel, recent works also
explore event-triggered implementations in the presence of
data-rate constraints [38]–[43], and packet drops [44]–[46].
In this context, one important observation raised in [39] is
that using event-triggering it is possible to “beat” the data-
rate theorem. Namely, if the channel does not introduce any
delay and the controller knows the triggering mechanism,
then an event-triggering strategy can achieve stabilization for
any positive rate of transmission. This apparent contradiction
can be explained by noting that the timing of the triggering
events carries information, revealing the state of the system.
When communication occurs without delay, the controller can
track the state with arbitrary precision, and transmitting a
single data payload bit at every triggering event is enough to
compute the appropriate control action. The works [39], [40]
take advantage of this observation to show that any positive
rate of transmission is sufficient for stabilization when the
delay is sufficiently small. In contrast, the work in [38] studies
the problem of stabilization using an event-triggered strategy,
but it does not exploit the implicit timing information carried
by the triggering events. The recent work in [47] studies the
required information transmission rate for containability [6] of
scalar systems, when the delay in the communication channel
is at most the inverse of the intrinsic system’s entropy rate.
Finally, [2] compares the results presented here with those of
a time-triggered implementation.

The main contribution of this paper is the precise quantifi-
cation of the amount of information implicit in the timing of
the triggering events across the whole spectrum of possible
communication delay values, and the use of both timing
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information and data payload for stabilization. For a given
event-triggering strategy, we derive necessary and sufficient
conditions for the exponential convergence of the state es-
timation error and the stabilization of the plant, revealing a
phase transition behavior of the transmission rate as a function
of the delay. Key to our analysis is the distinction between
the information access rate, that is the rate at which the
controller needs to receive information, conveyed by both data
payload and timing information and regulated by the classic
data-rate theorem; and the information transmission rate, that
is the rate at which the sensor needs to send data payload,
that is affected by channel delays, as well as design choices
such as event-triggering or time-triggering strategies. We show
that for sufficiently low values of the delay, the timing infor-
mation carried by the triggering events is large enough and
the system can be stabilized with any positive information
transmission rate. At a critical value of the delay, the timing
information carried by the triggering events is not enough
for stabilization, and the required information transmission
rate begins to grow. When the delay reaches the inverse of
the entropy rate of the plant, the timing information becomes
completely obsolete, and the required information transmission
rate becomes larger than the information access rate imposed
by the data-rate theorem. We also provide necessary conditions
on the information access rate for asymptotic stabilizability
and observability with exponential convergence guarantees;
necessary conditions on the information transmission rate for
asymptotic observability with exponential convergence guaran-
tees; as well as a sufficient condition with the same asymptotic
behavior. We consider both scalar and vector linear systems
without disturbances. Extensions for future work include the
consideration of disturbances and the analysis under triggering
strategies different from the one considered here.

Notation: Let R, Z and N denote the set of real numbers,
integers, and positive integers, respectively. We denote by B(r)
the ball centered at 0 of radius r. We let log and ln denote
the logarithm with bases 2 and e, respectively. For a function
f : R → Rn and t ∈ R, we let f(t+) denote the limit
from the right, namely lims↓t f(s). We let Mn,m(R) be the
set of n ×m matrices over the field of real numbers. Given
A = [ai,j ]1≤i,j≤n ∈ Mn,n(R), we let Tr(A) =

∑n
i=1 aii and

det(A) denote its trace and determinant, respectively. We let
m denote the Lebesgue measure on Rn, which for n = 2 and
n = 3 can be interpreted as area and volume, respectively. We
let bxc denote the greatest integer less than or equal to x, and
dxe denote the smallest integer greater than or equal to x. We
denote by mod(x, y) the modulo function, whose value is the
remainder left after dividing x by y. We let ‖x‖ be the L2

norm of x in Rn. We let sign(x) be 1, −1, or 0 when x is
positive, negative, or zero, respectively.

II. PROBLEM FORMULATION

Here we describe the system evolution, the model for the
communication channel, and the event-triggering strategy.

A. System model

We consider the standard networked control system model
composed of the plant-sensor-channel-controller tuple depicted

Fig. 1. System model. The sensor can measure the full state of the system
and the controller applies the input with infinite precision and without delay.
The communication channel only supports a finite rate and is subject to delay.

in Figure 1. We start with a scalar, continuous-time, linear
time-invariant (LTI) system, and then extend the model to the
vector case.

The plant dynamics are described by

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the system
state and control input, respectively. Here, A is a positive
real number, B is a nonzero real number, and |x(0)| < L
is any bounded initial condition, where L is known to both
sensor and controller. The sensor can measure the state of
the system perfectly, and the controller can apply the control
input with infinite precision and without delay. However, the
sensor and the controller communicate through a channel that
can support only a finite communication rate and is subject
to delay. At each triggering event, the sensor can transmit
a packet composed of a finite number of bits, representing
a quantized version of the state, through the communication
channel, which is received by the controller entirely and
without error, after an unknown, bounded delay, as described
next.

B. Triggering strategy and controller dynamics

We denote by {tks}k∈N the sequence of times at which the
sensor transmits to the controller a packet composed of g(tks)
bits representing the state of the plant. For every k ∈ N, we
let tkc be the time at which the controller receives the packet
that the sensor transmitted at time tks . We assume a uniform
upper bound, known to both the sensor and the controller, on
the unknown communication delays

∆k = tkc − tks ≤ γ, (2)

and denote the kth triggering interval by

∆′k = tk+1
s − tks .

We assume the upper bound on the communication delays
in (2) to be independent of the packet size. When referring
to a generic triggering time or reception time, for notational
convenience we omit the superscript k in tks and tkc . Our model
does not assume any a priori probability distribution for the
delay, and our results hold for any random communication
delay with bounded support.

From the data received from the sensor, and from the timing
at which the data is received, the controller maintains an
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estimate x̂ of the plant state, which starting from x̂(tk+
c )

evolves during the inter-reception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ [tkc , t
k+1
c ]. (3)

The controller then computes the control input u(t) based on
this estimate. The sensor can compute the same estimate x̂(t)
for the plant state at the controller via communication through
the control input [28]. Namely, assuming that the input has
been computed by the controller as u(t) = µ(x̂(t)), where µ
an invertible function known to both parties, the sensor can
first compute u(t) = (ẋ(t)−Ax(t))/B and then compute x̂(t)
by inversion.

The state estimation error computed at the sensor is then

z(t) = x(t)− x̂(t).

Initially, we let x(0)−x̂0 = z(0). Without updated information
from the sensor, this error grows, and the system can poten-
tially become unstable. The sensor should, therefore, select
the sequence of transmission times {tks}k∈N, the packet sizes
{g(tks)}k∈N and the corresponding quantization strategy used
to determine the data payload, so that the controller can ensure
stability. This choice requires a certain communication rate
available in the channel, which we wish to characterize.

To select the transmission times, we adopt an event-
triggering approach. Consider the event-triggering function
known to both sensor and controller

v(t) = v0e
−σt, (4)

where v0 and σ are positive real numbers. A transmission
occurs whenever

|z(t)| = v(t). (5)

Upon reception of the packet, the controller updates the
estimate of the state according to the jump strategy

x̂(t+c ) = z̄(tc) + x̂(tc), (6)

where z̄(tc) is an estimate of z(tc) constructed by the con-
troller knowing that |z(ts)| = v(ts), the bound (2), and the
decoded packet received through the communication channel.
It follows that

|z(t+c )| = |x(tc)− x̂(t+c )| = |z(tc)− z̄(tc)|.

We also point out that if the control law is not invertible, the
sensor can perform the same computation of the controller to
obtain x̂(t+c ), provided that it can infer the reception times
from jumps in the control input.

By transmitting when the state estimation error |z(t)|
reaches the threshold |v(t)|, the sensor effectively encodes
information in timing using the event-triggering rule (5). On
the other hand, the data payload of the transmissions also
carries information, and the sensor can choose any arbitrary,
finite-precision quantization of the state to construct the data
payload as long as it ensures that, for all tc ∈ [ts, ts + γ],

|z(t+c )| = |z(tc)− z̄(tc)| ≤ ρ(ts) := ρ0e
−σγv(ts), (7)

where 0 < ρ0 < 1 is a given design parameter. Note that
v(tc) = v0e

−σtc ≥ v0e
−σtse−σγ = v(ts)e

−σγ , and hence (7)
ensures that at each triggering event the estimation error drops
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Fig. 2. Evolution of the state estimation error |zld(t)| for a larger delay
upper bound γ = 1.2, and |zsd(t)| for a smaller delay upper bound γ = 0.9.
Here, A = 1, σ = 0.1, and ρ0 = 0.1. The dashed exponential decaying
curve represents the triggering function v(t) = 0.27e−σt. A larger delay
corresponds to a larger overshoot of the estimation error above the triggering
function and higher uncertainty about the state at the controller. Since γ
regulates the resolution of the quantization (7) in an exponential manner,
larger delay corresponds to larger jumps under the triggering function upon
reception of the packet.

below the triggering function, namely

|z(t+c )| ≤ ρ0v(tc).

Consequently, the sequence of transmission times {tks}k∈N
is monotonically increasing, i.e., ∆′k > 0 for all k ∈ N.
Moreover, based on ż = Az and (5), a new transmission
occurs only after the previous packet has been delivered to
the controller, that is tk+1

s > tkc . Additionally, using ż = Az
and (2), we deduce

|z(tc)| ≤ v(ts)e
Aγ ≤ v0e

−σ(tc−γ)eAγ

= v0e
(A+σ)γe−σtc . (8)

From (7) and (8), it follows that the described triggering
strategy ensures an exponentially decaying estimation error.
The design parameter ρ0 regulates the resolution of the quan-
tization, and hence the size of the transmitted packets; as well
as the magnitude of the jumps below the triggering function,
and hence the triggering rate. These also depend on the delay,
which governs the amount of overshoot of the estimation error
above the triggering function, see Figure 2.

The design parameter v0 determines the initial condition
of the estimation error when the first triggering event occurs.
For any given 0 < ρ0 < 1, and 0 < v0 < ∞, our objective
is to determine the rate required to achieve these exponential
bounds for all possible delay realizations, and then provide an
explicit quantization strategy that satisfies these bounds.

C. Information transmission rate

To define the transmission rate, we take the viewpoint of
the sensor and examine the amount of information that it
needs to transmit so that the controller is able to stabilize
the system. Let bs(t) be the number of bits in the data
payload transmitted by the sensor up to time t, and define



4

the information transmission rate as

Rs = lim sup
t→∞

bs(t)

t
.

Since at every triggering time, tks the sensor sends g(tks) data
payload bits, we have

Rs = lim sup
N→∞

∑N
k=1 g(tks)∑N
k=1 ∆′k

.

We now make two key observations. First, in the presence of
unknown communication delays, the state estimate received
by the controller might be out of date so that the sensor might
need to send data at a higher rate than what is needed on
a channel without delay. Second, in the presence of event-
triggered transmissions, the timing of the triggering events car-
ries implicit information. For example, if the communication
channel does not introduce any delay, and assuming that the
sensor and the controller can keep track of time with infinite
precision, then the time of a triggering event reveals the system
state up to a sign, since according to (5),

x(t) = x̂(t)± v(t).

It follows that in this case, the controller can stabilize the
system even if the sensor uses the channel very sparingly,
transmitting a single data payload bit at a triggering event,
that is at a much smaller rate than what needed in any
time-triggered implementation. In general, there is a trade-off
between the information gain due to triggering timing, and the
information loss due to the delay. As we shall see below, this
leads to a phase transition in the minimum rate required to
satisfy (7) and as a consequence (8).

Finally, it is worth pointing out that the exponential con-
vergence of the state estimation error to zero implies the
asymptotic stabilizability of the system.

D. Information access rate
We now consider the viewpoint of the controller and exam-

ine the amount of information that it needs to receive from
the plant to be able to stabilize the system. We define bc(t)
to be the amount of information, measured in bits, conveyed
by both data payload and timing information, received by the
controller up to time t. We define the information access rate
as

Rc = lim sup
t→∞

bc(t)

t
.

Classic data-rate theorems describe the information access rate
required to stabilize the system. They are generally stated for
discrete-time systems, albeit similar results hold in continuous
time as well, see e.g. [48]. They are based on the fundamental
observation that there is an inherent entropy rate

h =
A

ln 2
,

at which the system generates information. It follows that for
the system to be stabilizable the controller must have access
to state information at a rate

Rc ≥ h. (9)

This result indicates what is required by the controller, and
it does not depend on the feedback structure — including
aspects such as communication delays, information pattern at
the sensor and the controller, and whether the times at which
transmissions occur are state-dependent, as in event-triggered
control, or periodic, as in time-triggered control.

III. NECESSARY CONDITION ON THE ACCESS RATE

In this section, we quantify the amount of information that
the controller needs to ensure exponential convergence of the
state estimation error or the state to zero, independently of
the feedback structure used by the sensor to decide when
to transmit. The result obtained here generalizes (9) and
establishes a common ground to compare later against the
results for the information transmission rate, which depend
on the given policy adopted by the sensor. The proof follows,
with minor modifications, the argument in [8, Propositions 3.1
and 3.2] for discrete-time systems.

Theorem 1. Consider the plant-sensor-channel-controller
model described in Section II, with plant dynamics (1), and
state estimation error z(t), and let σ > 0. The following
necessary conditions hold:

(i) If the state estimation error satisfies

|z(t)| ≤ |z(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
+ log

L

|z(0)|
. (10)

(ii) If the system is stabilizable and

|x(t)| ≤ |x(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
. (11)

In both cases, the necessary information access rate is

Rc ≥
A+ σ

ln 2
. (12)

Proof: From (1), we have

x(t) = eAtx(0) + α(t), (13a)

α(t) = eAt
∫ t

0

e−AτBu(τ)dτ. (13b)

Using (13a) we define the uncertainty set at time t

Γt = {x ∈ R : x = eAtx(0) + α(t) and x(0) ∈ B(L)}.

The state of the system can be any point in this uncertainty set.
Letting ε(t) = |z(0)| e−σt, we can then find a lower bound
on bc(t) by counting the number of one-dimensional balls of
radius ε(t) that cover Γt. Specifically,

bc(t) ≥ log
m(Γt)

m(B(ε(t)))
= log

eAtm(B(L))

2|z(0)| e−σt

= t log eA+σ + log
L

|z(0)|
,

which proves (i).
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To prove (ii), for any given control trajectory {u(τ)}τ∈[0,t],
define the set of initial conditions for which the plant state
x(t) tends to zero exponentially with rate σ, i.e.,

Π{u(τ)}τ∈[0,t] = {x(0) ∈ B(L) : |x(t)| ≤ |x(0)| e−σt}.

By (13b) x(t) depends linearly on {u(τ)}τ∈[0,t], so that all
the sets Π{u(τ)}τ∈[0,t] are linear transformations of each other.
The measure of Π{u(τ)=0}τ∈[0,t] is 2|x(0)|e−Ate−σt, which
is upper bounded by 2Le−Ate−σt. Hence, this quantity also
upper bounds the measure of each Π{u(τ)}τ∈[0,t] . It follows
that we can determine a lower bound for bc(t) by counting
the number of sets of measure 2Le−Ate−σt required to cover
the ball |x(0)| ≤ L, and we have

bc(t) ≥ log
2L

2Le−(A+σ)t
= t

A+ σ

ln 2
,

showing (ii). Finally, (12) follows by dividing (10) and (11)
by t and taking the limit for t→∞.

Remark 1. Theorem 1 is valid for any control scheme,
and the controller does not necessarily have to compute
the state estimate following (3). This result can be viewed
as an extension of the data-rate theorem with exponential
convergence guarantees. It states that to have exponential
convergence of the estimation error and the state, the access
rate should be larger than the estimation entropy, the latter
concept having been recently introduced in [49]. A similar
result for continuous-time systems appears in [38], but only
for linear feedback controllers. In fact, this work shows that
the bound in (12) is also sufficient for scalar systems when
the controller does not use any timing information about
the triggering events. The classic formula of the data-rate
theorem (9) [8], [9], can be derived as a special case of
Theorem 1 by taking σ → 0 and using continuity. •

IV. NECESSARY AND SUFFICIENT CONDITIONS ON THE
TRANSMISSION RATE

In this section, we determine necessary and sufficient con-
ditions on the transmission rate for the exponential conver-
gence of the estimation error under the event-triggered control
strategy described in Section II. We start by observing that
in an event-triggering implementation, the transmission times
and the packet sizes are state-dependent. Thus, there may be
some initial conditions and delay realizations for which both
the necessary and sufficient transmission rates are arbitrarily
small. For this reason, we provide results that hold in worst-
case conditions, namely accounting for all possible realizations
of the delay and initial conditions, without assuming any a
priori distribution on these realizations.

A. Necessary condition on the transmission rate
Here we quantify the necessary rate at which the sensor

needs to transmit to ensure the exponential convergence of
the estimation error to zero under the given event-triggering
strategy. This rate depends on the number of bits that the
sensor transmits at each triggering event, as well as the
frequency with which transmission events occur, according to
the triggering rule. Our strategy to obtain a necessary rate
consists of appropriately bounding each of these quantities.

To obtain a lower bound on the number of bits transmitted at
each triggering event, consider the uncertainty set of the sensor
about the estimation error at the controller, z(tc), given ts

Ω(z(tc)|ts) = {y : y = ±v(ts)e
A(tc−ts), tc ∈ [ts, ts + γ]}.

On the other hand, consider the uncertainty from the point of
view of the controller about z(tc), given tc

Ω(z(tc)|tc) = {y : y = ±v(t̄r)e
A(tc−t̄r), t̄r ∈ [tc − γ, tc]}.

Clearly, for any tc ∈ [ts, ts + γ], we have Ω(z(tc)|tc) 6=
Ω(z(tc)|ts), namely there is a mismatch between the uncer-
tainties at the controller and at the sensor. The next result
shows that the uncertainty at the sensor is always smaller than
the one at the controller.

Lemma 1. Consider the plant-sensor-channel-controller
model described in Section II, with plant dynamics (1), es-
timator dynamics (3), event-triggering function (4), triggering
strategy (5), and jump strategy (6). Then, Ω(z(tc)|ts) ⊆
Ω(z(tc)|tc).

Proof: The uncertainty set of the sensor can be expressed
as

Ω(z(tc)|ts) = [v(ts), v(ts)e
Aγ ] ∪ [−v(ts)e

Aγ ,−v(ts)].

Noting that for any tc ∈ [ts, ts + γ], v(t̄r)e
A(tc−t̄r) is a

decreasing function of t̄r, we have

Ω(z(tc)|tc) =

[v(tc), v(tc)e
(A+σ)γ ] ∪ [−v(tc)e

(A+σ)γ ,−v(tc)].

The result now follows by noting that, since v is a decreasing
function, for all tc ∈ [ts, ts + γ] we have v(ts) ≥ v(tc) and
v(ts)e

Aγ ≤ v(tc)e
(A+σ)γ .

To ensure that (7) holds, the controller needs to reduce the
state estimation error z(tc) to within an interval of radius
ρ(ts). From Lemma 1, this implies that the sensor needs
to cover at least the uncertainty set Ω(z(tc)|ts) with one-
dimensional balls of radius ρ(ts). This observation leads us
to the following lower bound on the number of bits that the
sensor must transmit at every triggering event.

Lemma 2. Under the assumptions of Lemma 1, if (7) holds
for all k ∈ N, then the packet size at every triggering event
must satisfy

g(tks) ≥ max

{
0, log

(eAγ − 1)

ρ0e−σγ

}
. (14)

Proof: We compute the number of bits that must be trans-
mitted to guarantee that the sensor uncertainty set Ω(z(tc)|ts)
is covered by balls of radius ρ(ts). Define χγ = {y : y =
eAt, t ∈ [0, γ]}. Since g(ts) is the packet size, it is non-
negative. Hence, g(ts) ≥ max

{
0, Hρ(ts)

}
, where

Hρ(ts) := log
m(Ω(z(tc)|ts))
m(B(ρ(ts)))

= log
2v(ts)m(χγ)

2ρ0e−σγv(ts)

= log
2v(ts)(e

Aγ − 1)

2ρ0e−σγv(ts)
, (15)
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and the result follows.
Our next goal is to characterize the frequency with which

transmission events are triggered. We define the triggering rate

Rtr = lim sup
N→∞

N∑N
k=1 ∆′k

. (16)

First, we provide an upper bound on the triggering rate that
holds for all initial conditions and possible communication
delays upper bounded by γ.

Lemma 3. Under the assumptions of Lemma 1, if (7) holds
for all k ∈ N, then the triggering rate is upper bounded as

Rtr ≤
A+ σ

− ln(ρ0e−σγ)
. (17)

Proof: Consider two successive triggering times tks and
tk+1
s and the reception time tkc . We have tks ≤ tkc ≤ tk+1

s .
From (1) and (3), we have ż(t) = A(x(t) − x̂(t)) = Az(t).
The triggering time tk+1

s is defined by

|z(tk+
c )eA(tk+1

s −tkc )| = v(tk+1
s ). (18)

From (7), we have

ρ0e
−σγv(tks)eA(tk+1

s −tkc ) ≥ v(tk+1
s ).

Using (4) and tks ≤ tkc , it follows that

ρ0e
−σγv0e

−σtks eA(tk+1
s −tks ) ≥ v0e

−σtk+1
s ,

and after some algebra we obtain

(A+ σ)(tk+1
s − tks) ≥ − ln(ρ0e

−σγ).

We then have the uniform lower bound for all k ∈ N

∆′k = tk+1
s − tks ≥

− ln(ρ0e
−σγ)

A+ σ
, (19)

which substituted into (16) leads to the desired upper bound
on the triggering rate.

Remark 2. In addition to providing an upper bound on the
triggering rate, Lemma 3 also shows that our event-triggered
scheme does not exhibit “Zeno behavior” [50], namely the
occurrence of infinitely many triggering events in a finite time
interval. This follows from the uniform lower bound for all
k ∈ N on the size of triggering interval in (19). •

If ∆k = 0 and |z(tk+
c )| = ρ0e

−σγv(ts) for all k ∈ N, then
the upper bound on the triggering rate in Lemma 3 is tight.
Our next goal is to provide a lower bound on the triggering
rate that holds for a given initial condition and delay value.
To obtain a nontrivial lower bound, we need to restrict the
class of allowed quantization policies used to construct the
data payload. We assume that, at each triggering event, there
exists a delay such that the sensor can reduce the estimation
error at the controller to at most a fraction of the maximum
value ρ(ts) required by (7). This is a natural assumption, and
in practice corresponds to assuming an upper bound on the size
of the packet that the sensor can transmit at every triggering
event and hence on the precision of the quantization strategy.
Without such a bound, a packet may carry an unlimited amount
of information, the quantization error may become arbitrary
small, and |z(t+c )| may become arbitrarily close to zero for

all delay values, resulting in a triggering rate arbitrarily close
to zero. The next assumption precludes such an unrealistic
scenario.

Assumption 1. The controller can only achieve ν-precision
quantization. Formally, letting β = 1

A ln(1 + 2ρ0e
−σγ), we

assume there exists a delay realization {∆k ≤ β}k∈N, an
initial condition x(0), and a real number ν ≥ 1, such that for
all k ∈ N

|z(tkc )− z̄(tkc )| ≥ ρ(tks)

ν
. (20)

The upper bound β on the delay in Assumption 1 corre-
sponds to the time required for the state estimation error to
grow from z(ts) to z(ts) + 2ρ(ts). In fact,

z(tc) = z(ts)e
Aβ = z(ts)(1 + 2ρ0e

−σγ),

from which it follows that

z(tc)− z(ts) = 2z(ts)ρ0e
−σγ ,

and since z(ts) = ±v(ts), we have

|z(tc)− z(ts)| = 2ρ(ts).

To ensure (7), the size of the quantization cell should be at
most 2ρ(ts). As the delay takes values in [0, β], the value
of z(tc) sweeps an area of measure 2ρ(ts). It follows that
Assumption 1 corresponds to the existence of a value of the
communication delay for which the uncertainty ball about the
state shrinks from having a radius at most ρ(ts) to having a
radius at least ρ(ts)/ν. With this assumption in place, we can
now compute the desired lower bound on the triggering rate.

Lemma 4. Under the assumptions of Lemma 1, if (7) holds
with ν-precision for all k ∈ N, then there exists a delay
realization {∆k}k∈N and an initial condition such that

Rtr ≥
A+ σ

ln ν + ln(2 + eσγ

ρ0
)
.

Proof: By Assumption 1, for all k ∈ N there exists a
delay ∆k ≤ β such that

|z(tk+
c )| ≥ (1/ν)ρ0v(tks)e−σγ .

From the definition of the triggering time tk+1
s in (18), we

also have

(1/ν)ρ0e
−σγv(tks)eA(tk+1

s −tks−∆k) ≤ v(tk+1
s ).

Noting that for all k ∈ N, ∆k ≤ β, we have

(1/ν)ρ0e
−σγv(tks)eA(tk+1

s −tks−β) ≤ v(tk+1
s ).

By dividing both sides by (1/ν)ρ0e
−σγ and using the defini-

tion of triggering function, we obtain

e(A+σ)(tk+1
s −tks ) ≤ 1

(1/ν)ρ0e−σγe−Aβ
.

Taking the logarithm, we get

∆′k = tk+1
s − tks ≤

− ln((1/ν)ρ0e
−σγ) +Aβ

A+ σ
. (21)
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By substituting (21) into (16), we finally have

Rtr ≥ lim
N→∞

1
− ln((1/ν)ρ0e−σγ)

A+σ + A
A+σβ

=
A+ σ

ln ν − ln(ρ0e−σγ) + ln(1 + 2ρ0e−σγ)

=
A+ σ

ln ν + ln(2 + eσγ

ρ0
)
.

We can now combine Lemma 2 and Lemma 4 to obtain a
lower bound on the information transmission rate.

Theorem 2. Under the assumptions of Lemma 1, if (7) holds
with ν-precision for all k ∈ N, then there exists a delay
realization {∆k}k∈N and an initial condition such that

Rs ≥
A+ σ

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eAγ − 1)

ρ0e−σγ

}
. (22)

Remark 3. Theorem 2 provides a necessary transmission
rate for the exponential convergence of the estimation error
to zero using our event-triggering strategy. By noting that
the lower bound in (22) does not depend on v0, it is easy
to check that as σ → 0, this result also gives a necessary
condition for asymptotic stability, although it does not provide
an exponential convergence guarantee of the state. •

B. Phase transition behavior

We now show a phase transition for the rate required for
stabilization expressed in Theorem 2. By combining Lemmas 3
and 4, we have

A+ σ

ln ν + ln(2 + 1
ρ0e−σγ

)
≤ Rtr ≤

A+ σ

− ln(ρ0e−σγ)
.

It follows that if ρ0 � eσγ/max{2, ν}, we can neglect the
value of 2 inside the logarithm in the left-hand side, as well
as ln ν, and we have

Rtr ≈
A+ σ

− ln(ρ0e−σγ)
.

In this case, the necessary condition on the transmission rate
can be approximated as

Rs ≥
A+ σ

ln 2
max

{
0, 1 +

log(eAγ − 1)

− log(ρ0e−σγ)

}
. (23)

We use this approximation to discuss the phase transition
behavior. The approximation clearly holds for large values
of the delay upper bound γ. It also holds for small values
of γ, since in this case both (22) and (23) tend to zero. For
intermediate values of γ, the approximation holds for large
values of the convergence rate σ. The phase transition is
illustrated in Figure 3.

We make the following observations. For small values of γ,
the amount of timing information carried by the triggering
events is higher than what is needed to stabilize the system
and the value of Rs is zero. This means that if the delay
is sufficiently small, then only a positive transmission rate is
required to track the state of the system and the controller can
successfully stabilize the system by receiving a single bit of

γ

Rs

γeq =
ln 2

A

A+ σ

ln 2

γc

Fig. 3. Illustration of the phase transition behavior in (23). Rs is measured in
bits/sec, and γ is measured in sec. The plot is valid for a generic system and
design parameters. In this specific example, we have chosen A = 5, σ = 3,
and ρ0 = 0.7. Consequently, (A + σ)/ ln 2 = 11.5416, ln 2/A = 0.1386,
and γc = 0.0864.

Fig. 4. Illustration of the phase transition behavior in (23) for different values
of ρ0. Rs is measured in bits/sec, and γ is measured in sec. The plots are
valid for a generic system and design parameters. In this specific example,
we have chosen A = 1, and σ = 0.5. Therefore, (A + σ)/ ln 2 = 2.1640,
ln 2/A = 0.6931, A+σ

ln 2
(1 + A

σ
) = 6.4921.

information at every triggering event. This situation persists
until a critical value γ = γc is reached. This critical value is
the solution of the equation

eAγ − ρ0e
−σγ = 1.

For this level of delay, the timing information of the triggering
events becomes so much out of date that the transmission rate
must begin to increase.

When γ reaches the equilibrium point γeq = ln 2/A,
which equals the inverse of the intrinsic entropy rate of the
system, the timing information carried by the triggering events
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compensates exactly the loss of information due to the delay
introduced by the communication channel. This situation is
analogous to having no delay, but also no timing informa-
tion. It follows that in this case the required transmission
rate matches the access rate in Theorem 1, and we have
Rs = (A+ σ)/ ln 2.

When γ is increased even further, then the timing informa-
tion carried by event triggering is excessively out of date and
cannot fully compensate for the channel’s delay. The required
transmission rate then exceeds the access rate imposed by the
data-rate theorem. In this case, a more precise estimate of
the state must be sent at every triggering time to compensate
for the larger delay. Another interpretation of this behavior
follows by considering the definition Hρ(ts) in (15). The value
γ = γeq = ln 2/A marks a transition point for Hρ(ts) from
negative to positive values. For γ > γeq event triggering does
not supply enough information and Hρ(ts) presents a positive
information balance in terms of the number of bits required
to cover the uncertainty set. On the other hand, for γ < γeq ,
event triggering supplies more than enough information, and
Hρ(ts) presents a negative information balance. We can then
think of event triggering as a “source” supplying information,
the controller as a “sink” consuming information, and Hρ(ts)

as measuring the balance between the two, indicating whether
additional information is needed in terms of quantized obser-
vations sent through the channel.

Finally, Figure 4 illustrates the phase transition for different
values of ρ0. For γ < γeq , since according to (17) smaller
values of ρ0 imply fewer triggering events, it follows that
curves associated to smaller values of ρ0 must have larger
transmission rates to compensate for the lack of timing in-
formation. On the other hand, for γ > γeq the situation is
reversed. The timing information carried by the triggering
events is now completely exhausted by the delay, and the
controller relies only on the state information contained in
the quantized packets. Since, according to (14), smaller values
of ρ0 imply larger packets sent through the channel and, for
each value of the delay, the information in the larger packets
becomes out of date at a slower rate than that in the smaller
packets, it follows that in this case curves associated to smaller
values of ρ0 correspond to smaller transmission rates. Finally,
we observe that all curves have the same asymptotic behavior
for large values of γ, which is independent of ρ0. This occurs
because as γ increases, more information needs to be sent
through the channel and also the triggering rate decreases.
Taking both effects into account yields the asymptotic value
of the transmission rate A+σ

ln 2 (1 + A
σ ).

Remark 4. The value of γc is a threshold distinguishing
whether (22) is zero or strictly positive. This threshold tends to
γeq = ln 2/A as σ → 0 and ρ0 → 1. This is consistent with the
fact that in this case there is only an asymptotic convergence
guarantee (not an exponential one), and when the delay upper
bound γ is at most the inverse of entropy rate of the system
only a positive transmission rate is necessary for stabilization.
•

C. Sufficient condition on the transmission rate

We now determine a sufficient transmission rate for the
exponential convergence of the state estimation error using
the event-triggering strategy described in Section II-B.

In our strategy, we let the sensor send a packet consisting of
the sign of z(ts) and a quantized version of ts to the controller.
Using the bound (2), and the decoded packet, the controller
constructs q(ts), a quantized version of ts. The controller then
estimates z(tc) as follows

z̄(tc) = sign(z(ts))v(q(ts))e
A(tc−q(ts)). (24)

The next result provides a bound on the error in the time
quantization that guarantees that the requirements of the design
are satisfied.

Lemma 5. Under the assumptions of Lemma 1, using (24), if

|ts − q(ts)| ≤
1

A+ σ
ln(1 + ρ0e

−(σ+A)γ) (25)

then (7) holds.

Proof: Using (24), it follows that

|z(tc)−z̄(tc)| (26)

= v(ts)e
A(tc−ts)

∣∣∣∣1− v(q(ts))

v(ts)
eA(ts−q(ts))

∣∣∣∣
= v(ts)e

A(tc−ts)
∣∣∣∣1− v0e

−σq(ts)

v0e−σts
eA(ts−q(ts))

∣∣∣∣
= v(ts)e

A(tc−ts)
∣∣∣1− e(A+σ)(ts−q(ts))

∣∣∣ .
As a consequence, (7) may be expressed as

|1− e(A+σ)(ts−q(ts))| ≤ ρ0e
−σγe−A(tc−ts).

The smallest possible value of e−A(tc−ts) for (tc−ts) ∈ [0, γ]
is e−Aγ . Therefore, by ensuring∣∣∣1− e(A+σ)(ts−q(ts))

∣∣∣ ≤ ρ0e
−(σ+A)γ , (27)

we can also ensure (7). The condition in (27) can be rewritten
as

1− ρ0e
−(σ+A)γ ≤ e(A+σ)(ts−q(ts)) ≤ 1 + ρ0e

−(σ+A)γ .

Taking logarithms and dividing by (A+ σ), we obtain

1

A+ σ
ln(1− x′) ≤ ts − q(ts) ≤

1

A+ σ
ln(1 + x′), (28)

where x′ = ρ0e
−(σ+A)γ . It follows that to satisfy (7) for all

delay values it is enough that

|ts − q(ts)| ≤ min{| 1

A+ σ
ln(1− x′)|, | 1

A+ σ
ln(1 + x′)|}.

The result now follows.

The next result presents a sufficient transmission rate, along
with the design that meets it.

Theorem 3. Under the assumptions of Lemma 1, if the state
estimation error satisfies |z(0)| < v0, then for any information
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transmission rate

Rs ≥
A+ σ

− ln(ρ0e−σγ)
max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
,

(29)

where b > 1, there exists a quantization policy that
achieves (7) for all k ∈ N (and consequently |z(t)| ≤
v0e

(A+σ)γe−σt).

Proof: Our proof strategy is as follows. We design a quan-
tizer to construct a packet of length g(ts) that the sensor sends
to the controller. Using this packet, the decoder reconstructs
the quantized version q(ts) of ts satisfying (25). The result
then follows from Lemma 5 and quantifying the associated
transmission rate.

In our construction, the first bit of the packet determines the
sign of z(ts), i.e., whether z(ts) = +v(ts) or z(ts) = −v(ts).
For quantizing ts, we first divide the whole positive time
line in sub-intervals of length bγ. Recall that the controller
receives a packet at time tc, and ts ∈ [tc − γ, tc]. Noting that
bγ > γ, upon the reception of the packet at time tc the decoder
identifies two consecutive sub-intervals of length bγ that ts can
belong to — the second bit of the packet is mod

(
b tsbγ c, 2

)
,

which informs the decoder that ts ∈ [ιbγ, (ι + 1)bγ] for
some fixed ι. The encoder divides this interval uniformly
into 2g(ts)−2 sub-intervals, one of which contains ts. After
receiving the packet, the decoder determines the correct sub-
interval and chooses q(ts) as the middle point of it. With this
strategy, we have

|ts − q(ts)| ≤
bγ

2g(ts)−1
. (30)

Hence, from Lemma 5, it is enough to ensure

bγ

2g(ts)−1
≤ 1

A+ σ
ln(1 + ρ0e

−(σ+A)γ), (31)

to guarantee that (7) holds. This is equivalent to

g(ts) ≥ max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
. (32)

The characterization (29) of the transmission rate now follows
from using this bound and the uniform upper bound on the
triggering rate (17).

Theorem 3 ensures the exponential convergence of the
state estimation error. The following result shows that (29)
is sufficient for asymptotic stabilizability when employing a
linear controller.

Corollary 1. Under the assumptions of Theorem 3, (29) is
also a sufficient condition for asymptotic stabilizability.

Proof: With u(t) = −Kx̂(t), we can rewrite (1) as

ẋ(t) = (A−BK)x(t) +BKz(t).

As a consequence, we have

x(t) = e(A−BK)tx(0) + e(A−BK)t

∫ t

0

e−(A−BK)τBKz(τ)dτ.

According to Theorem 3, (29) is sufficient to guarantee
limt→∞ z(t) = 0. Since B 6= 0 one can choose K such that
A−BK < 0, and it follows that criterion (29) is also sufficient

for limt→∞ x(t) = 0. Stability can also be guaranteed from
the above expression.

It should be clear that if the quantization policy designed
for establishing Theorem 3 satisfies Assumption 1, then the
number of bits transmitted at each triggering time is finite. We
conclude this section by providing a condition under which the
designed policy satisfies Assumption 1.

Theorem 4. Under the assumptions of Lemma 1, let ν ≥ 2,
and let the number of bits in each transmitted packet be a
constant g(tks) = g. If g satisfies the lower bound (32) and
the upper bound

g ≤ log
bγ(A+ σ)∣∣∣∣∣∣∣ln

1− 1

(ν−1)

(
2+

1

ρ0e−σγ

)

∣∣∣∣∣∣∣
, (33)

and
1− e−(A+σ) δ2

1− e−(A+σ) δ4
≥ e(A+σ) 3δ

4 , (34)

where δ = bγ/2g−2, then the quantization policy used in
Theorem 3 satisfies Assumption 1 at every triggering time.

Proof: The proof follows from the following two claims.
Claim (a): For all k ∈ N, if tks satisfies

−δ
2

= − bγ

2g−1
≤ tks − q(tks) ≤ −bγ

2g
= −δ

4
, (35)

then there exists a delay ∆k ≤ β such that (20) is satisfied.
Claim (b): The sequence of transmission times {tks} is

uniquely determined by the initial condition z(0) and there
exists a z(0) such that for each k ∈ N, tks satisfies (35).

We first prove Claim (a). Note that when the sensor trans-
mits g bits, lower bounded by (32), the upper bound on the
quantization error (30) holds and thus (35) is well defined.
From (35) and (33), we have

tks − q(tks) ≤ 1

A+ σ
ln

(
1− 1

(ν − 1)(2 + 1
ρ0e−σγ

)

)
, (36)

where we have used the fact that ν ≥ 2 to simplify the absolute
value. We rewrite this inequality as

1− e(A+σ)(tks−q(t
k
s )) ≥ ρ0e

−σγ

(ν − 1)(1 + 2ρ0e−σγ)
> 0.

Thus, from (26), we see that

|z(tkc )− z̄(tkc )| ≥ v(tks)eA∆k
ρ0e
−σγ

(ν − 1)(1 + 2ρ0e−σγ)

≥ ρ(tks)

ν
eA(∆k−β+ln( ν

ν−1 ))

≥ ρ(tks)

ν
, ∀∆k ∈

[
β − ln

(
ν

ν − 1

)
, β

]
,

where in the second inequality, we have used the definition of
ρ(tks) in (7). This proves Claim (a).

We now prove Claim (b). First, we need to determine the de-
pendence of tk+1

s on tks and ∆k. Recall the triggering rule (5),
which we express as v(tks)e−σ∆′k = |z(tk+

c )|eA(∆′k−∆k) =

v(tks)|1− e(A+σ)(tks−q(t
k
s ))|eA∆′k , where we have used the fact
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∆′k = tk+1
s − tks and (26). On simplification, we obtain

∆′k = h(tks − q(tks)), (37)

where, for convenience, we have defined h(t) :=
− 1
A+σ ln(|1 − e(A+σ)t|). Notice that tk+1

s depends only on
tks and not on ∆k and. We show next that tks − q(tks) uniquely
determines tk+1

s − q(tk+1
s ).

To show this, recall that according to the proof of The-
orem 3, the quantization policy has the encoder divide the
interval [ιbγ, (ι+ 1)bγ] for some fixed ι uniformly into 2g−2

sub-intervals, one of which includes tks . The decoder chooses
as q(tks) the middle point of the sub-interval that contains tks .
Thus, we have

q(t) =

⌊
t

δ

⌋
δ +

δ

2
, δ =

bγ

2g−2
. (38)

Letting yk = tks − q(tks), we obtain

yk+1 = tks + ∆′k − q(tks + ∆′k)

= yk +

⌊
tks
δ

⌋
δ + ∆′k −

yk +
⌊
tks
δ

⌋
δ + δ

2 + ∆′k

δ

 δ
= yk + h(yk)−

⌊
yk + δ

2 + h(yk)

δ

⌋
δ =: H(yk),

where in the second step we have used tks = yk + q(tks)
and (38), and in the third step we have used (37). From the
conditions on g, we know that (30) is satisfied and hence H
is a map from the interval [− δ2 ,

δ
2 ] onto itself. We also notice

that H is a piecewise continuous function. In fact, it is easy
to verify that on [− δ2 , 0), the function is piecewise strictly
increasing. Further, note that if H is discontinuous at w < 0,
then the left limit of H at w is δ/2 while the right limit of H
at w is −δ/2.

Next, (34) implies that

ln(1− e−(A+σ) δ2 )− ln(1− e−(A+σ) δ4 ) ≥ (A+ σ)
3δ

4
,

which, after rearranging the terms, we see that it implies

−δ
4

+ h

(
−δ

4

)
≥ −δ

2
+ h

(
−δ

2

)
+ δ.

Now, observe that if w1, w2 ∈ [− δ2 ,
δ
2 ] are such that w2 +

h(w2) = w1 + h(w1) + nδ for some n ∈ Z, then H(w1) =
H(w2). As a result, we conclude that there exists an interval
I ∈ [− δ2 ,−

δ
4 ] such that the restriction H : I → [− δ2 ,

δ
2 ] is

continuous, one-to-one and onto. Hence the inverse mapping
of this restriction is continuous and is a contraction and hence
using the Banach contraction principle [51], there exists a fixed
point of the original map H in I . Finally, note that as we
sweep z(0) through (0, v(0)], t1s varies continuously from ∞
to 0. Thus, there exists a z(0) such that y1 = t1s− q(t1s) is the
fixed point in I . This proves Claim (b).

Remark 5. We use the assumption in (34) in the proof of
Theorem 4 to be able to apply the Banach contraction principle
in establishing the existence of a suitable initial condition. We
use the assumption ν ≥ 2 to ensure that the upper bound
in (33) is well defined. •
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Fig. 5. Comparison between the sufficient and necessary conditions. Rs
is measured in bits/sec, and γ is measure in sec. Here, A = 1.3, σ =
1, b = 1.0001, and ρ0 = 0.9. The dashed line represents the asymptote
((A+ σ)/ ln 2)(1 +A/σ) = 7.6319.

Remark 6. Figure 5 illustrates the gap between the sufficient
conditiont (29) and the supremum over σ of the necessary
condition (22). For small values of γ, both conditions reduce to
Rs > 0. As γ grows to infinity, both conditions converge to the
same asymptote with value A+σ

ln 2 (1 + A
σ ). While (23) reaches

the asymptote monotonically increasing for all ρ0 values, the
sufficient condition has an overshoot behavior for larger values
of ρ0 as depicted in Figure 6. For intermediate values of γ,
the gap can be explained noticing that the exact value of
the communication delay is unknown to the sensor and the
controller, and hence there can be a mismatch between the
uncertainty sets at the controller and the sensor. In addition,
the sensor and the controller lack a common reference frame
for the quantization of the transmission time. •

D. Simulation

In this section, we illustrate an execution of our design
for deriving the sufficient condition on the transmission rate.
Using Theorem 3, we choose the size of the packet to be

g(ts) = max

{
1, d1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)
e
}
, (39)

where the ceiling operator ensures that the packet size is an
integer number (we take the maximum between this quantity
and 1 to make sure to send at least one bit of data payload at
each transmission).

We illustrate the execution of our design for the system

ẋ(t) = x(t) + 0.2u(t), u(t) = −8x̂(t).

The event-triggering function is v(t) = 0.2671e−0.1t. The
upper bound on the communication delay is γ = 1.2. The
design parameter are b = 1.0001, ρ0 = 0.1, and the initial
condition x(0) = 0.2, and x̂(0) = 0.1. Figure 7(a) shows
the evolution of the state estimation error. The triggering
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Fig. 6. Illustration of the sufficient transmission rate for asymptotic
observability versus the upper bound of delay for different values of ρ0.
Rs is measured in bits/sec, and γ is measure in sec. Here, A = 1,
σ = 1, and b = 1.0001. The dashed line represents the asymptote
n((A+ σ)/ ln 2)(1 +A/σ) = 5.7708.

strategy ensures that the state estimation error z(t) converges
exponentially to zero and triggering occurs every time the
state estimation error crosses the triggering function v(t).
The overshoots observed in the plot are due to the unknown
delay in the communication channel. Clearly, |z(t)| is upper
bounded by v0e

(A+σ)γe−σt = e−0.1t. Figure 7(b) shows the
corresponding evolution of x(t) and x̂(t). The values of x(t)
and x̂(t) become close to each other at the reception times
because of the jump strategy, while the distance between x(t)
and x̂(t) grows during the inter-reception interval.

Finally, Figure 8 shows the information transmission rate of
a simulation versus the delay upper bound γ in the channel.
The packet size is chosen according to (39). We calculate the
information transmission rate by multiplying the packet size
and the number of triggering events in the simulation time
interval divided by its length. One can observe from the plot
that, for small delay upper bound γ, the system is stabilized
with an information transmission rate smaller than the data-
rate theorem (3.75 bits/sec in this example). Instead, for larger
γ, the transmission rate becomes greater than the threshold
determined by the data-rate theorem.

V. EXTENSION TO VECTOR SYSTEMS

We generalize here our results to vector systems, building on
the scalar case. Consider the plant-sensor-channel-controller
tuple in Figure 1, and let the plant dynamics be described by
a continuous-time, linear time-invariant (LTI) system

ẋ = Ax(t) +Bu(t), (40)

where x(t) ∈ Rn and u(t) ∈ Rm for t ∈ [0,∞) are the plant
state and the control input, respectively. Here, A ∈Mn,n(R),
B ∈ Mn,m(R), and ‖x(0)‖ < L, where L is known to both
sensor and controller. We assume all the eigenvalues of A are
real. Without loss of generality, we also assume that they are

positive (since stable modes do not need any actuation and we
can disregard them). In this setting, the intrinsic entropy rate
of the plant is

hv =
Tr(A)

ln 2
=

∑n
i=1 λi
ln 2

. (41)

Hence, to guarantee stability it is necessary for the controller
to have access to state information at a rate

Rc ≥ hv.

Using the Jordan block decomposition [52], we can write the
matrix A ∈ Mn,n(R) as ΦΨΦ−1, where Φ is a real-valued
invertible matrix and Ψ = diag[J1, . . . , Jq], where each Jj
is a Jordan block corresponding to the real-valued eigenvalue
λj of A. We let pj indicate the order of each Jordan block.
For simplicity of exposition, we assume from here on that
A is equal to its Jordan block decomposition, that is, A =
diag[J1, . . . , Jq].

In the following, we deal with each state coordinate sepa-
rately. This corresponds to treating the n-dimensional system
as n scalar, coupled systems. When a triggering occurs for one
of the coordinates, the controller should be aware of which
coordinate the received packet corresponds to. Accordingly,
we assume there are n parallel finite-rate digital communica-
tion channels between each coordinate of the system and the
controller, each subject to unknown, bounded delay.

We use the same notation of Section II, but add subindex
i and superindex j to specify the ith coordinate of the jth

Jordan block. So, for instance, {tk,js,i }k∈N, {tk,jc,i }k∈N, g(tk,js,i )
denote the sequences of transmission times, reception times,
and number of bits that the sensor transmits at each triggering
time. Similarly, the kth communication delay ∆j

k,i and kth

triggering interval ∆′
j
k,i can be specified for each coordinate.

The communication delays for all coordinates are uniformly
upper-bounded by γ, a non-negative real number known to
both the sensor and the controller. The transmission rate for
each coordinate is then

Rjs,i = lim sup
Nji→∞

∑Nji
k=1 g(tk,js,i )∑Nji
k=1 ∆′jk,i

.

Assuming n parallel communication channels between the
plant and the controller, each devoted to a coordinate sepa-
rately, we have

Rs =

q∑
j=1

pj∑
i=1

Rjs,i.

Using the same notation of Section II, when referring to a
generic triggering or reception time, we omit the superscript k.

The controller maintains an estimate x̂ of the state, which
evolves according to

˙̂x(t) = Ax̂(t) +Bu(t), (42)

during the inter-reception times. The state estimation error is
z(t) = x(t)− x̂(t), which initially is set to z(0) = x(0)− x0.
For the ith coordinate of the jth Jordan block, we consider an
event-triggering function as in (4) with different initial values
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Fig. 7. An example realization of our design. (a) shows the evolution of the absolute value of the state estimation error, the value of the event-triggering
function, and the upper bound on the state estimation error. (b) shows the corresponding evolution of the state and state estimation. The continuous-time
dynamics is discretized with step size 0.0002. Because of this, a triggering happens when z(t) becomes larger than the triggering function and there is no
packet in the communication channel. In fact, since the sampling time is small, a triggering happens when z(t) becomes approximately equal v(t).

0.0002 0.4002 0.8002 1.2002 1.6002
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Fig. 8. Information transmission rate versus the upper bound of the delay in
the communication channel. Rs is measured in bits/sec, and γ is measured
in sec. Here, A = 2.4, B = 1, u(t) = −8x̂(t), σ = 0.2, b = 1.0001,
ρ0 = 0.1, v0 = 0.0442, x(0) = 0.201, and x̂(0) = 0.2. The value of
γ ranges from 0.0005 to 2.0005, in steps of 0.2. For each value of γ, we
compute the transmission rate over an interval of 7 seconds of simulation.

vj0 for each coordinate, namely

vji (t) = vj0,ie
−σt. (43)

For each coordinate, we employ the triggering rule (5) and
the jump strategy (6). When a triggering occurs for the ith

coordinate of the jth Jordan block, we assume that the sensor
sends a packet large enough to ensure

|zji (t
j+
c,i )| ≤ ρ0e

−σγv(tjs,i). (44)

When referring to a generic Jordan block, we omit the super-
script and subscript j.

Although each Jordan block is effectively independent of
each other, the vector case is not an immediate extension of
the scalar one. Specifically, from (40) and (42), we have that

ż1(t) = λz1(t) + z2(t) (45)
...

żp−1(t) = λzp−1(t) + zp(t)

żp(t) = λzp(t),

where p denotes the order of the Jordan block. This shows
that the evolution of the coordinates is coupled and hence,
even assuming parallel communication channels, care must be
taken in generalizing the results for the scalar case.

Our first result generalizes Theorem 1 on the necessary
condition for the information access rate.

Theorem 5. Consider the plant-sensor-channel-controller
model described in Section II, with plant dynamics (40), and
state estimation error z(t). Let σ ∈ R be positive, then the
following necessary conditions hold:

(i) If the state estimation error satisfies

‖z(t)‖ ≤ ‖z(0)‖ e−σt,

then

bc(t) ≥ t
Tr(A) + nσ

ln 2
+ n log

L

‖z(0)‖
.

(ii) If the system in (40) is stabilizable and

‖x(t)‖ ≤ ‖x(0)‖ e−σt,
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then

bc(t) ≥ t
Tr(A) + nσ

ln 2
.

In both cases, the information access rate is Rc ≥ Tr(A)+nσ
ln 2 .

The proof of this result, omitted for space reasons, is
analogous to that of Theorem 1, noting that for A ∈Mn,n(R)
and X ∈ Rn, m(AX) = |det(A)|m(X), det(eA) = eTr(A),
and that the Lebesgue measure of a sphere of radius ε in Rn
is knεn, where kn is a constant that changes with dimension.

We next generalize the necessary condition on the infor-
mation transmission rate. If A is diagonalizable, then the
necessary and sufficient bit rate for the vector system is equal
to the sum of the necessary and sufficient bit rates that we
provide in Section IV for each coordinate of the system. We
now generalize this idea to any matrix with real eigenvalues.

Theorem 6. Consider the plant-sensor-channel-controller
model with plant dynamics (40), where all eigenvalues of A are
real, estimator dynamics (42), event-triggering strategy (5),
event-triggering function (43), and packet sizes such that
zji (t

k,j
c,i ) is determined at the controller within a ball of radius

ρ(tk,js,i ) = ρ0e
−σγv(tk,js,i ) with ν-precision, ensuring (44) via

the jump strategy (6) for all k ∈ N, i = 1, . . . , pj , and
j = 1, . . . , q. Then, there exists a delay realization and initial
condition, such that

Rs ≥
q∑
j=1

pj(λj + σ)

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eλjγ − 1)

ρ0e−σγ

}
.

Proof: Since there is no coupling across different Jordan
blocks in (40), the inherent entropy rate (41) is

hv(A) = hv(J1) + · · ·+ hv(Jq).

Therefore, it is enough to prove the result for one of the Jordan
blocks. Let J be a Jordan block of order p with associated
eigenvalue λ. Note that the part of the vector z(t) which
corresponds to J is governed by (45). The solution of the
first differential equation in (45) is

z1(t) = eλtz1(0) + eλt
∫ t

0

e−λτz2(τ)dτ.

If for the first coordinate a triggering event occurs at time ts,1,
then z1(tc,1) belongs to the set

Ω(z(tc,1)|ts,1) = {y = y1 + y2 : y1 = ±v1(ts,1)eλ(tc,1−ts,1),

y2 =

∫ tc,1

ts,1

eλ(tc,1−τ)z2(τ)dτ ; tc,1 ∈ [ts,1, ts,1 + γ],

z2(τ) ∈ ζs,2τ for τ ∈ [ts,1, tc,1]},

where ζs,2τ is the uncertainty set for z2(τ) at the sensor. We
define

Y1 = {y1 : y1 = ±v(ts,1)eλ(tc,1−ts,1), tc,1 ∈ [ts,1, ts,1 + γ]},

which is the uncertainty set of z1(tc,1) given ts,1 for the
differential equation ż1 = λz1. By comparing the definitions
of the sets Ω(z(tc,1)|ts,1) and Y1, we have

m(Ω(z(tc,1)|ts,1)) ≥ m(Y1).

Finally, we apply Lemmas 2 and 4 for each coordinate
separately, so that the necessary bit rate for each must satisfy

Rs,i ≥
λ+ σ

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eλγ − 1)

ρ0e−σγ

}
for i = 1, . . . , p. The result now follows.

Note that, when ρ0 � eσγ/max{2, ν}, the result in
Theorem 6 can be simplified to

Rs ≥
q∑
j=1

pj(λj + σ)

ln 2
max

{
0, 1 +

log(eλjγ − 1)

− log(ρ0e−σγ)

}
.

Our next result generalizes the sufficient condition of Theo-
rem 3 to vector systems.

Theorem 7. Consider the plant-sensor-channel-controller
model with plant dynamics (40), where all eigenvalues of A are
real, estimator dynamics (42), event-triggering strategy (5),
and event-triggering function (43). For the jth Jordan block
choose the following sequence of design parameters

0 < ρj1 < . . . < ρjpj−1 < ρjpj = ρ0 < 1.

If the state estimation error satisfies |zji (0)| ≤ vj0,i, then we
can achieve (44) and

|zji (t)| ≤ v
j
0,i((ρ0 − ρji ) + e(λj+σ)γ)e−σt

for i = 1, . . . , pj and j = 1, . . . , q, with an information
transmission rate, Rs, at least equal to
j=q∑
j=1

i=pj∑
i=1

(λj + σ)

− ln(ρ0e−σγ)
max

(
0, 1 + log

bγ(λj + σ)

ln(1 + ρjie
−(σ+λj)γ)

)
,

where

0 < vj0,i ≤
vj0,i−1(λj + σ)(ρ0 − ρji )

((ρ0 − ρji ) + e(λj+σ)γ)(e(λj+σ)γ − 1)
, (46)

for i = 2, . . . , pj and j = 1, . . . , q, and b > 1.

Proof: It is enough to prove the result for one Jordan
block. The solution of the last two equations in (45) is

zp−1(t) = eλtzp−1(0) + eλt
∫ t

0

e−λτzp(τ)dτ, (47)

zp(t) = eλtzp(0).

The differential equation that governs zp(t) is similar to what
we considered in Theorem 3. It follows that if the transmission
rate for coordinate p is lower bounded as (29) and |zp(0)| ≤
v0,p, then we can ensure |zp(t)| ≤ v0,pe

(σ+λ)γe−λt.
Assume now that a triggering happens for coordinate p− 1

at time ts,p−1, namely |zp−1(ts,p−1)| = v(ts,p−1), and the
controller receives the packet related to coordinate p − 1 at
time tc,p−1. Then the uncertainty set for zp−1(tc,p−1) at the
controller is

Ω(z(tc,p−1)|tc,p−1) = {wp−1 = w
(1)
p−1 + w

(2)
p−1 :

w
(1)
p−1 = ±vp−1(t̄r,p−1)eλ(tc,p−1−t̄r,p−1),

w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

t̄r,p−1 ∈ [tc,p − γ, tc,p−1],
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zp(τ) ∈ ζc,pτ for τ ∈ [t̄r,p−1, tc,p−1]}, (48)

where ζc,pτ is the uncertainty set for zp(τ) at the controller.
Clearly, the measure of Ω(z(tc,p−1)|tc,p−1) is larger when
w

(1)
p−1 and w

(2)
p−1 in (48) have the same sign. Hence, we can

assume that zp−1(t̄r,p−1) and zp(τ) for τ ∈ [t̄r,p−1, tc,p−1]
and t̄r,p−1 ∈ [tc,p−1 − γ, tc,p−1] are positive. Define

Wp−1 = {wp−1 = w
(1)
p−1 + w

(2)
p−1 :

w
(1)
p−1 = ±vp−1(t̄r,p−1)eA(tc,p−1−t̄r,p−1),

w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

t̄r,p−1 ∈ [tc,p − γ, tc,p−1],

|zp(τ)| ≤ v0,pe
(σ+λ)γe−στ for τ ∈ [t̄r,p−1, tc,p−1]}.

Clearly, we have

m(Ω(z(tc,p−1)|tc,p−1)) ≤ m(Wp−1). (49)

Hence, a sufficient condition for Wp−1 will also be a sufficient
condition for Ω(z(tc,p−1)|tc,p−1). We note that Wp−1 is the
Brunn-Minkowski sum of the following sets

W
(1)
p−1 = {w(1)

p−1 : w
(1)
p−1 = ±vp−1(t̄r,p−1)eA(tc,p−1−t̄r,p−1),

t̄r,p−1 ∈ [tc,p − γ, tc,p−1]}

W
(2)
p−1 = {w(2)

p−1 : w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

|zp(τ)| ≤ v0,pe
(σ+λ)γe−στ for τ ∈ [t̄r,p−1, tc,p−1],

t̄r,p−1 ∈ [tc,p − γ, tc,p−1]}.

By the Brunn-Minkowski inequality [53], we have

m(Wp−1) ≥ m(W
(1)
p−1) +m(W

(2)
p−1). (50)

The operators in the definition of W
(1)
p−1 and W

(2)
p−1 are

continuous and the operator in the definition of W
(2)
p−1 is

integral. Hence, even if during the time interval [t̄r,p−1, tc,p−1]

the value of zp(τ) jumps according to (6), W (2)
p−1 remains a

connected compact set. Therefore, W (1)
p−1 and W (2)

p−1 are closed
intervals that are translation and dilation of each other. In this
case, the inequality (50) is tight [54], and by (49) we have

m(Ω(z(tc,p−1)|tc,p−1)) ≤ m(W
(1)
p−1) +m(W

(2)
p−1). (51)

This allows us to deal with each coordinate, p − 1 and p,
separately as follows. If there is no coupling in the differential
equation that governs zp−1(t), we have

żp−1(t) = λzp−1(t).

Using Theorem 3, and equation (51) with the rate

Rs,p−1 ≥ (52)
λ+ σ

− ln(ρp−1e−σγ)
max

{
0, 1 + log

bγ(λ+ σ)

ln(1 + ρp−1e−(σ+λ)γ)

}
,

we can ensure

Υc
t+c,p−1

≤ ρp−1vp−1(tc,p−1) +m(W
(2)
p−1), (53)

where Υc
t+c,p−1

is the uncertainty set for zp−1(t+c,p−1) at the

controller.
We now find an upper bound for m(W

(2)
p−1) as follows.

Since, Rs,p is lower bounded as (29), we can ensure |zp(t)| ≤
v0,pe

(σ+λ)γe−σt, and

m(W
(2)
p−1) =

∫ tc,p−1

tc,p−1−γ
eλ(tc,p−1−τ)zp(τ)dτ

≤ v0,pe
(σ+λ)γeλtc,p−1

∫ tc,p−1

tc,p−1−γ
e−(λ+σ)τdτ

=
v0,pe

(σ+λ)γe−σtc,p−1

λ+ σ
(e(λ+σ)γ − 1). (54)

From (46), we have

v0,p ≤
v0,p−1(λ+ σ)(ρ0 − ρp−1)

e(λ+σ)γ(e(λ+σ)γ − 1)
.

Hence,

v0,pe
(σ+λ)γe−σtc,p−1

λ+ σ
(e(λ+σ)γ − 1) ≤ (ρ0 − ρp−1)v0,p−1e

−σtc,p−1

= (ρ0 − ρp−1)vp−1(tc,p−1).

Consequently, from (54) we have

m(W
(2)
p−1) ≤ (ρ0 − ρp−1)vp−1(t). (55)

Therefore, using (53) and (55) we have m(Υc
t+c,p−1

) ≤
ρ0vp−1(tc,p−1) and |zp−1(t+c )| ≤ ρ0vp−1(tc,p−1). When Rs,p
is lower bounded as (29) and Rs,p−1 is lower bounded as (52),
we can ensure

|zp−1(t)| ≤ ((ρ0 − ρp−1) + e(λ+σ)γ)vp−1(tc,p−1)

because the solution of the differential equation that governs
zp−1 is given in (47), and using (55) we have

|z(tc,p−1)| ≤
vp−1(tc,p−1 − γ)eλγ + (ρ0 − ρp−1)vp−1(tc,p−1)

= ((ρ0 − ρp−1) + e(λ+σ)γ)vp−1(tc,p−1).

With the same procedure we can find the sufficient rate Rs,i
for i = p− 2, . . . , 1, and this concludes the proof.

Remark 7. In a Jordan block of order pj , the inequality (46)
provides an upper bound on the value of the triggering function
for coordinate i using the value of the triggering function
for coordinate i − 1, where i = 2, . . . , pj . This is a natural
consequence of the coupling among the coordinates in a Jordan
block, cf. (45), which makes the error in coordinate i affect
the error in coordinates 1 to i− 1, for each i = 2, . . . , pj . •

Corollary 1 can be generalized, provided (A,B) is stabiliz-
able, using a linear control u(t) = −Kx̂(t) with A−BK Hur-
witz. This is a consequence of Theorem 7 which guarantees
that, using the stated communication rate, the state estimation
error for each coordinate converges to zero exponentially fast.

Remark 8. In our discussion, we have assumed that x̂(t) is
known to both controller and sensor. Since the sensor has
access to the state, using the system dynamics, it can deduce
u(t), and then obtain x̂(t), cf. [28]. Note that the controller
design for our sufficient condition is linear u(t) = −Kx̂(t),
and thus the sensor can deduce x̂(t) assuming that BK is
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invertible. Alternatively, the controller can directly signal the
acknowledgment of the reception of the packet (and as a result
tkc ) to the sensor by applying a control input to the system that
excites a specific frequency of the state each time a symbol
has been received, and the sensor can construct x̂(t) at all
time t if it knows the decoding rule at the controller. On the
other hand, assuming knowledge of x̂(t) at the sensor does
not affect the generality of the necessary condition. •

VI. CONCLUSIONS

We have studied event-triggered control strategies for sta-
bilization and exponential observability of linear plants in the
presence of unknown bounded delay in the communication
channel between the sensor and the controller. Our study has
been centered on quantifying the value of the timing infor-
mation implicit in the triggering events. We have identified a
necessary and a sufficient condition on the transmission rate
required to guarantee stabilizability and observability of the
system for a given event triggering strategy. Our results reveal
a phase transition behavior as a function of the maximum
delay in the communication channel, where for small delays,
a positive transmission rate ensures the control objective is
met, while for large delays, the necessary transmission rate is
larger than that of classical data-rate theorems with periodic
communication and no delay. Future research will consider
disturbances to the plant dynamics, additional errors in the
communication channel not caused by quantization, extensions
to the case when the communication delay is a function of
thepacket size, replacing the Assumption 1 with packet size
constraints, and the study of other event-triggering strategies.
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