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Abstract— This paper proposes a receding-horizon, multi-
objective optimization approach for robot motion planning
in disaster response scenarios. During a search and rescue
mission, a robot is deployed in the disaster area to find and
egress all victims. In doing so, multiple criteria characterize the
effectiveness of such plan. We define three objective functions
(performance, uncertainty about victim locations, and uncer-
tainty about the environment) and formulate a multi-objective
optimization problem employing a combined weighted-sum and
ε-constraint method. To handle dynamic scenarios, we employ
a receding-horizon approach that allows to dynamically adapt
the ε constraint. We illustrate the effectiveness of the proposed
method via simulations.

I. INTRODUCTION

The adequate use of limited robotic resources in search and
rescue missions is of critical importance. Generally, disaster
areas tend to be spatially large and hence an efficient plan
to find and rescue all victims in a limited amount of time
is necessary. While robots equipped with several onboard
sensors are capable of either exploring, finding, or servicing
victims individually, efficiency requires high-level strategies
that can determine how to alternate among these tasks in an
effective manner. Depending on the context, some of these
objectives may be aligned or in conflict, which leads to
the question of how to find adaptive policies that exploit
synergies between different objectives at different times.
Motivated by this, here we propose a method that builds on
multi-objective optimization tools to capture these tradeoffs.

Literature Review: In [1], an algorithm is proposed for a
distributed team of autonomous mobile robots to search for
an object. This method can be implemented in a fully dis-
tributed manner during the search stage and then, during the
rescue stage, cooperative is carried out via communications
between distributed robots. A case study for human-robot
interaction in the urban search and rescue task is evaluated
in [2], based on the World Trade Center rescue response.
An unmanned aircraft system design for urban search and
rescue missions is presented in [3], where several sensors
are used for indoor and outdoor navigation with a fusion
technique using the extended Kalman filter. The work [4]
integrates target search and tracking methods for multiple
fixed-wing unmanned air vehicles, and develops a high-level
control logic based on finite state automaton mode. While the
above studies are related to action plans in disaster response
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scenarios, many results have been developed as a method-
ology for coverage path planning; see also [5]. Coverage
path planning is closely related to the design of a path for
the purpose of covering areas of interest. Examples of this
approach include lawn mowers [6], [7], cleaning robots [8],
autonomous underwater vehicles [9], aerial remote sensing in
agriculture [10], and automated harvesting [11]. According
to [12], heuristic algorithms may work well in extended
simulations without providing theoretical guarantees on the
coverage performance, while provably correct algorithms
usually require more computational power or time to com-
plete. As a tool to capture tradeoffs in routing problems
for disaster relief operations, multi-objective optimization
approaches [13]–[15] have been adopted to applications such
as emergency supply path optimization [16], [17], multi-
period emergency logistics [18], rout choice of humanitar-
ian response planning for disaster response [19], optimal
evacuation planning [20], [21]. However, these approaches
assume that locations for both rescuers and evacuees are
known a priori. Other works [22], [23] provide solutions
to the motion planning and control problem for multiple
robots by adopting a receding horizon approach. In spite
of these contributions to strategic action plans for disaster
response, efficient strategies that account for multiple criteria
simultaneously are still lacking.

Statement of Contributions: We formulate a multi-
objective optimization problem whose solution provides an
optimized trajectory to realize an efficient high-level strategy
in disaster response scenarios. The objective functions in
the multi-objective optimization problem are defined by the
robot performance, uncertainty about the detected victims’
location, and uncertainty about the environment. To solve
this three-function multi-objective optimization problem, we
propose a method that combines the classical weighted-sum
and ε-constraint methods in a receding horizon fashion that
incorporates measurement updates provided by the robot at
each time step of the plan. Based on the analysis of the
optimal trajectories for the cost function, we determine the
minimum value of the associated ε, and translate the decision
maker’s choice into an easier-to-tune parameter. We further
exploit this result to adapt dynamically the value of the
constraint in our receding-horizon algorithm, aiming for less
conservativeness. We illustrate the proposed method in a
simulation scenario. For reasons of space, the proofs of all
results are omitted and will appear elsewhere.

Notation: The set of real and natural numbers are R and
N, respectively. Further, N0 = N∪{0}. The symbol tr(·) and
‖ · ‖ denotes the trace and Euclidean norm, respectively. The
symbols det(·) and adj(·) denote, respectively, the determi-
nant and adjoint of a matrix. Expectation with respect to a



given probability is E[·]. Finally,N (µ,Σ) denotes a Gaussian
probability density function with mean µ and covariance Σ.

II. PROBLEM DESCRIPTION

In our disaster-response scenario, the major tasks are
to find all victims and rescue all survivors by one robot.
Throughout the paper, we assume that the robot is able to
complete its tasks (e.g., service and rescue) for each victim
when the robot arrives at the victim location. At time t ∈ N0,
the location of the robot and the victim are, respectively,
denoted by xt ∈ R2 and θt ∈ R2. We assume that victims
are stationary and thus, their locations are fixed.

A. Formulation of Multiple Objective Functions

Our approach to the robot motion planning problem is to
solve a multi-objective optimization problem of the form,

minimize
x

[F1(x), F2(x), . . . , Fn(x)]

subject to x ∈ X,

where a point x? ∈ X is said to Pareto optimal if and
only if there does not exist another point x ∈ X , such that
Fi(x) ≤ Fi(x

?), ∀i ∈ {1, 2, . . . , n} and Fj(x) ≤ Fj(x
?) for

at least one index j ∈ {1, 2, . . . , n}.
The main objective functions considered in our scenario

are determined by the following functions depending on
a decision variable x = [xT1 , x

T
2 , . . .]

T , representing the
trajectory of the robot.
• f1(x, θt): the robot performance, which we measure by

the distance between the robot and the victim;
• f2(x, θt): uncertainty about the location of the victim,

caused by the measurement noise;
• f3(x): uncertainty about an unknown environment in-

cluding the number of victims and the approximate
location of them.

Although f2 and f3 represent uncertainty, they are different
from each other in the following sense. Before the robot
explores the disaster area, the robot does not know how many
victims there are as well as where they are located. Therefore,
this uncertainty over the domain is quantified by some metric,
which will be related to f3. On the other hand, after the
robot has detected a victim by onboard sensors, there is still
uncertainty on where it is caused by the sensor measurement
inaccuracy. In this case, the straight path connecting two
points between the current location of the robot and the
expected location of the victim may not be desirable to get
to the victim. This quantity is thus represented by f2.

B. Robot Measurement Model

The sensor attached to the robot provides information
about the victim location. No underlying assumptions are
placed on the specific type (technology) of sensors, however,
we consider that the sensor can provide range measurements
such as sonar, infrared, ultrasonic, and laser sensors. Since
these sensors have the limited sensing range, the robot needs
to explore the disaster area in order to find all victims.

Fig. 1: An illustration of a ground robot, its trajectory and
a victim location. Sensor uncertainty is shown by means of
confidence ellipses at different measurement times.

The measurement model of the sensor is given as follows:

zt = Υ(xt, θt) + ωt,

where zt ∈ R2 is the observation vector representing the
victim location at time t ∈ N0, Υ(xt, θt) is the measurement
function in terms of the current location of the robot xt and
the victim θt, and ωt is the white noise with zero mean and
covariance Σobs

t ∈ R2×2 given by

Σobs
t =

[
σ2
x 0

0 σ2
y

]
, (1)

where σx and σy to represent the standard deviation along
the local frame of the sensor (xsensor and ysensor in Fig. 1). We
assume that σx > σy for the sensor model (i.e., uncertainty
along xsensor is larger than that along ysensor).

In a global coordinate frame (denoted by the left super-
script g in the symbol), the mean location of the victim is
obtained by gµobs

t = µobs
t + xt, where µobs

t = E[zt], xt is the
current (exactly known) position of the robot.

The covariance matrix for victim location is transformed
by using a rotation matrix R(β) into

gΣobs
t = R(βt)

T Σobs
t R(βt), (2)

where R(βt) and the angle βt are given by

R(βt) =

[
cos(βt) − sin(βt)
sin(βt) cos(βt)

]
, βt = (ψt + ϕt).

with ψt and ϕt defined in Fig. 1. Whenever the robot
receives a new measurement gµobs

t+1 and gΣobs
t+1 at time t+ 1,

the victim location associated with the previous value gµt

and gΣt is updated according to
gµt+1 = gµt +g Σt(

gΣt +g Σobs
t+1)−1(gµobs

t+1 − gµt),

gΣt+1 = gΣt −g Σt

(
gΣt + gΣobs

t+1

)−1 gΣt.
(3)

With this measurement and update model, we formulate the
multi-objective optimization problem for disaster response
scenarios in the following section.

III. MULTI-OBJECTIVE OPTIMIZATION OVER A
FINITE-TIME HORIZON

The future trajectory of the robot {xt+1, xt+2, . . . , xt+h}
can be obtained by solving a multi-objective optimization



problem with an infinite horizon length h. However, the
gains in modeling accuracy of the infinite-horizon problem
are severely compromised by its technical difficulties: 1) the
parameters are not known exactly, and vary in time (even if
victims do no move, the uncertainty on parameter θt changes
over time with new sensor observations); 2) for large horizon
lengths h, computational issues arise.

To avoid these concerns, we use the receding horizon
framework. At the current time t, only a small horizon h
will be considered to predict the trajectory of the robot with
the current estimate for θt, and the robot moves to the very
first step of the planned trajectory. If a new measurement
is available, then the robot updates θt and generates a new
trajectory. In the following, we present a particular multi-
objective optimization formulation that is employed with
receding horizon control approach.

Consider the multi-objective optimization problem associ-
ated with the finite-time horizon h as follows.

minimize
xt+1,...,t+h

[F1(xt+1:t+h|θt), F2(xt+1:t+h|θt), F3(xt+1:t+h)]

subject to gi(xt+1:t+h) ≤ 0, i = 1, . . . ,m,

hj(xt+1:t+h) = 0, j = 1, . . . , n,
(4)

where xt+1:t+h := [xTt+1, x
T
t+2, . . . , x

T
t+h]T ∈ R2h is a

concatenated decision vector describing the trajectory of the
robot from time t+1 to t+h. Robot dynamic constraints are
represented by gi(xt+1:t+h) and hj(xt+1:t+h), respectively.
For instance, there may exist an upper bound in the moving
distance of the robot at each time step due to a limit in the
velocity of the robot.

A. Objective Function for Quantifying Performance

For each detected victim θjt ∼ N (gµj
t ,

gΣj
t ), the perfor-

mance measure f j1 is defined by

f j1 (xt+1:t+h|θjt ) := min
i∈{t+1,...,t+h}

{‖xi − gµj
t‖}, (5)

where gµj
t describes the mean location of θjt at time t. This

objective function describes the minimum distance between
the robot trajectory and the mean location of the victim.
Since we are considering multiple victims detected at the
same time, the priority for visiting multiple candidate loca-
tions needs to be established. This priority must reflect both
uncertainty about the victim location as well as proximity of
the robot to the victim. Thus, F1 is defined by

F1(xt+1:t+h|θt) = {f j1
?
|j? = argmin

j
{tr(gΣj

t ) · ‖xt − gµj
t‖}}.

In this way, the minimization of F1 provides the trajectory
of the robot to reach the victim location that is closer and
more certain.

B. Objective Function for Quantifying Uncertainty About the
Victim Locations

For the given uncertainty gΣj
t about the location of the

victim j, each f j2 is defined as follows:

f j2 (xt+1:t+h|θjt ) := tr(gΣj
t+h). (6)

The optimal solution of the above function will be a robot
trajectory xt+1, . . . , xt+h that minimizes the term tr(gΣj

t+h).
Then, the F2 function is given as an average of the multiple
uncertainty terms as

F2(xt+1:t+h|θt) = 1
N

∑N
j=1 f

j
2 (xt+1:t+h|θjt ), (7)

where N is the total number of victims currently detected.
A reason for taking an average of different f j2 is that the
motion of the robot will minimize the uncertainties about
all victims’ location in a balanced way. A possible concern
about the F2 definition above is that the optimal solution
that minimizes F2 may increase some of f j2 even if their
average F2 decreases. We show that this is not the case in
the following result. The proof is an immediate consequence
of (3).

Lemma 3.1: The function f j2 is a monotonically decreas-
ing function with respect to the number of travel steps.

C. Objective Function for Quantifying Uncertainty About
the Environment

The last objective function is defined to explore unknown
areas. For this purpose, we employ the ergodic metric in [24]
as follows. The distribution of possible victim locations
is described by the probability density function ρ(x). The
ergodic metric measures to what extent the fraction of time
spent by the trajectory is equal to the spatial distribution. We
employ this metric in order to define our function F3. To this
end, recall that the Fourier basis function Γk(x) is

Γk(x) =
1

hk
cos(kxx) cos(kyy), x = [x, y]T ,

where hk is a normalizing factor, kx and ky are coefficients
as in [24]. Then, the ergodic metric φ(t) is defined as

φ(t) =
∑K

k=0 Λk|ck(t)− ρk|2, (8)

where K is the number of the Fourier basis functions and

Λk =
1

(1 + ‖k‖2)
(n+1)

2

, (for 2D map, n = 2)

ck(t) =
1

t+ 1

∑t
i=0 Γk(xi), ρk =

∫
X
ρ(x)Γk(x)dx. (9)

Notice that ck(t) term in the above equation describes the
time averages of the Fourier basis functions for the time
interval [0, t], where t is the current time. Then, we aim
to generate the future trajectory of the robot xt+1:t+h by
defining our objective function F3 as

F3(xt+1:t+h) = φ(t+ h) =

K∑
k=0

Λk|ck(t+ h)− ρk|2. (10)

In this way, the solution of an optimization problem with
the above function F3 over a set of points xt+1:t+h is the
trajectory {xt+1, . . . , xt+h} that minimizes the gap between
the time averages of the Fourier basis functions along the
trajectory (ck) and their spatial averages with respect to the
distribution (ρk).



IV. ALGORITHMIC APPROACH

We propose a mixed method that builds on two classical
approaches, the weighted-sum and ε-constraint methods, to
multi-objective optimization problems. In particular, consider

minimize
xt+1:t+h

αF1(xt+1:t+h|θt) + (1− α)F3(xt+1:t+h)

subject to αF2(xt+1:t+h|θt) ≤ ε(t+ h),

‖xi+1 − xi‖ ≤ r, i = t, . . . , t+ h− 1,
(11)

where α is a positive weight representing the relative impor-
tance between the exploration (F3) and the exploitation (F1),
and ε is the upper bound of uncertainty about the location of
victims (F2). The last inequality constraints denote an `2-ball
characterizing the maximum moving distance of the robot at
each step. The decision maker can then vary the constants
α and ε in order to obtain a Pareto optimal solution that
represents a certain tradeoff.

Our particular problem formulation is based on the fol-
lowing considerations. While a weighted-sum method is
the simplest and most widely used method, any choice of
constants do not necessarily guarantee the recovery of the full
Pareto optimal front in non-convex problems. On the other
hand, the ε constraint method provides such guarantee for
any type of problem by varying the ε constraint parameters
adequately. However, this leads to the difficulty of choosing
ε values that lead to feasible problems and that are non-
conservative at the same time. In this paper we take a middle
ground approach by considering only one such ε constraint
and studying the feasibility of the associated problem.

Due to the dynamic characteristics of the problem (i.e.,
time dependency of the problem associated with new sensor
measurements at every time step), it is not adequate to solve
(11) as a static optimization problem or as an infinite hori-
zon problem, thus we choose a dynamic receding-horizon
approach. Other critical factors in solving (11) are how to
decide ε and α values, which may be changed dynamically
at every time step. In what follows we consider a solution
to the problem that modifies the ε constraint dynamically.

A. Dynamic ε-constraint method

The solution to the previous multi-objective optimization
problem depends critically on the choice of parameters and,
in particular, the value of ε. In this way, if ε is too small,
then the problem may not be feasible. On the other hand,
if the ε value was too large, the solution would be in favor
of one objective function (F1 in our case). In addition, the
optimization problem (11) is time varying, implying that ε
value can be changed at different times t. In the following
result, we find what is the minimum value of the function
F2, which sets a lower bound on the value of ε that makes
the multi-objective optimization problem feasible. Based on
this, we choose values for ε(t+h), which do not violate this
constraint and which translates the decision maker’s choice to
a new variable δ. In choosing the constraint dynamically, we
expect the conservativeness of the approach to be reduced.

Theorem 4.1 (Feasible minimum value for f j2 ): Consider
that at time t, the robot has detected the victim j, which is

described by θjt ∼ N
(
µj
t ,Σ

j
t

)
. The optimal trajectory that

minimizes f j2 is given by the spiral of Theodorus [25]. The
optimal solution f j?2 for this optimization problem with h
time steps later, εj(t + h, t) := minimize f j2 (xt+1:t+h|θjt ),
is obtained as follows

f j?
2 = tr

(
gΣj?

t+h

)
=

(
gΣj

t

−1
+

t+h∑
i=t+1

R(βj
i

?
)T Σobs

t

−1
R(βj

i

?
)

)−1

where βj?
i is the sensing angle of the victim in the global co-

ordinate, computed by βj?

i = βj?

i−1 − arcsin

(
r

dj
i−1

)
, i =

t+1, . . . , t+h, and dji =
√

(dji−1)2 − (r)2, i = t+1, . . . , t+

h, is the distance between the robot and the victim j with
the initial value djt = ‖xt − µj

t‖.
Remark 4.1 (Validity of Theorem 4.1): As proved in the

theorem above, tr(gΣj
t+h) achieves the minimum when

det(Ξ) has its maximum, which is obtained under the as-
sumption that sx|t > sy|t. Once this assumption is violated
(e.g., sx|t = sy|t), det(Ξ) becomes independent of the
choice of βj

i and for any angle βj
i , the optimal solution that

minimizes tr(gΣj
t+h) is obtained. •

From the definition of F2 in (7) with the result in The-
orem 4.1, it can be shown that F2 is lower bounded by
1

N

∑N
j=1 ε

j(t+h, t) ≤ F2, therefore, in order for the multi-
objective optimization problem to be feasible, we need to
impose that ε > α 1

N

∑N
j=1 ε

j(t + h, t). Since this should
work for any α ∈ [0, 1], and by introducing a constant δ > 0,
we transform the right-hand side of our constraint, ε(t+ h)
in (11) as

ε(t+ h) = 1
N

∑N
j=1 ε

j(t+ h, t) + δ, (12)

with the aim of obtaining a less conservative result with
respect to F2.

The values of δ and α in (11) now control the tradeoffs
between F1, F3, and F2 while respecting feasibility. In this
way, a choice of α represents a tradeoff between approaching
the estimated victim’s location and the exploration of the
environment. As the value of δ becomes larger, the robot
trajectory becomes closer to a straight line between the robot
position and the mean location of the victim. This is because
the uncertainty constraint about the victim location is relaxed
for large δ. However, a small δ is in favor of F2 objective,
making the robot detour around the victim location. For a
fixed α, smaller δ may also further increase the chance of
finding another victim, which favors the objective xF3.

B. Planning via Multi-Objective Optimization

We describe the general framework in Algorithm 1 that
provides the formal procedure to generate the optimal trajec-
tory of the robot. The proposed dynamic ε-constraint method
is used at each time step after updating θjt by (3).

If the robot detects victim j, who was not previously
found, then increase the total number of detected victims
N ∈ N, followed by the mean gµj

t and covariance gΣj
t

update from (3). If N = 0 at the current time step t, the
weight α is set to be 0. In this stage, the multi-objective op-
timization problem (11) becomes a F3 minimization problem



Algorithm 1 Planning via multi-objective optimization
1: initialize t← 0, N ← 0
2: while φ(t) > εstop do
3: if the victim j is detected and j is not visited then
4: if j is a new victim then
5: N ← N + 1
6: end if
7: update (gµjt ,

gΣj
t ) from (3)

8: end if
9: if N = 0 then

10: α← 0
11: else
12: α← 1
13: Compute ε(t+ h) in (12)
14: end if
15: Compute xt+1:t+h by solving (11)
16: Move to xt+1

17: if ‖xt+1 − gµjt‖ < εvisited then
18: Mark j as visited
19: N ← N − 1
20: end if
21: t← t+ 1

22: end while

alone. The solution of this optimization problem provides an
optimal trajectory xt+1:t+h to minimize the gap between ρ
and ck. If N > 0, the weight α becomes 1 and the ε value
for the dynamic ε-constraint method is computed from (12).
The optimal trajectory xt+1:t+h is then calculated by solving
this ε-constraint optimization problem.

If the robot arrives at the location of the victim j, which
is determined by the condition ‖xt+1−gµj

t‖ < εvisited with a
given tolerance value εvisited, the index j is marked as visited
and N is updated by N ← N − 1. Once the robot has
visited all locations of currently detected victims, N becomes
0 and α is set to be 0 again. During the ergodic metric
computation, the previous trajectory x0:t−1 along which the
robot has moved is taken into account by the term ck(t) in
(9) and, hence, the optimal trajectory obtained by minimizing
F3 provides the solution to make the robot move to areas
which are not explored yet. The robot follows this strategy
until the ergodic metric φ(t) satisfies the terminal condition
φ(t) ≤ εstop, where εstop is a value provided by the decision
maker. covered by the robot.

V. SIMULATIONS

In this section, we present simulations to validate the
effectiveness of the proposed multi-objective optimization
approach in searching and rescuing victims. The parameter
specifications for these two scenarios are given as follows:

1) the measurement range limit: 10 m,
2) the maximum moving robot distance per step: 1 m,
3) the horizon length: 2,
4) the domain size: [0, 80]× [0, 80] m2

5) the number of victims: 40
6) the sensor noise covariance:

Σobs
t =

[
22 0
0 0.32

]
7) uncertainty tolerance: δ = 0.1, ∀j = 1, 2, . . . , 40.

Throughout simulations, it is assumed that the robot com-
pletes its service (e.g., guide and rescue the victim) when
the robot arrives at the victim location.

Although the proposed algorithm can be applied to any
distributions for ρ(x), we consider that no partial informa-
tion about the disaster site is given initially and thus, the
distribution ρ(x) is assumed to be uniform. Starting from
the initial position [0, 0]T , depicted by the cross symbol in
Fig. 2 (a), the location of the robot and the sensing range
are described by a triangle symbol and a disk, respectively.
The square symbols show a found victim. According to the
general framework (Algorithm 1), the robot explores the
domain uniformly by solving (11) with α = 0, since no
victims are detected initially.

Whenever the robot detects a possible location of the
victim, the weight α changes to 1 and the optimal trajectory
is obtained with the dynamic ε-constraint. For example, Fig.
2 (b)-(f) show the trajectory along which the robot has moved
in the region A of Fig. 2 (a) at different time steps. In these
figures, the solid line with circle symbols denotes the planned
trajectory up to the given receding horizon length and Arabic
numbers represent the detected victims in order. The ellipse
describes the uncertainty about the location of the victim. In
Fig. 2 (c), the robot detected a new victim (victim #3) while it
was approaching the victim #2. This resulted in an increase
of F2 and ε(t + h) was updated by (12) accordingly. The
optimizer provides a new trajectory as shown in Fig 2 (d),
which detours around the victim #3, in order to satisfy the
given constraint for F2. Fig. 2 (d) presents the same behavior
when the robot detected the victim #4. It is interesting to
see that in Fig. 2 (d) the robot was heading straight for the
victim #1. However, the victim #2 becomes closer and less
uncertain as well than any other detected victims while the
robot took a detour around the victim #4 after detecting the
victim #4 and thus, the robot visited the victim #2 first as
shown in Fig. 2 (e). When the robot arrived at the location of
the victim #4, no further victims are detected and the weight
α becomes 0 again according to Algorithm 1. This strategy
is maintained throughout the simulation, which explains the
roundabout trajectory of the robot.

VI. CONCLUSIONS

This paper studies a multi-objective optimization prob-
lem for disaster response scenarios consisting of objective
functions defined by performance, uncertainty about victim
locations, and environment uncertainty. Our multi-objective
optimization problem formulation combines the weighted-
sum and ε-constraint method. We adopt a receding-horizon-
based algorithm to include new measurement updates at each
time step. To deal with the feasibility of the ε constraint, we
study the optimality of the uncertainty of victims’ location
along robot trajectories. A formal algorithm is then provided
to implement the developed multi-objective optimization
approach in the search and rescue task. Future research will
focus on the analysis of the Pareto front to take advantage of
synergies that arise during the execution for different objec-
tives and scenarios with multiple robots with the assignment



(a) The trajectory of the robot (b) Zoom-in for the window A at t = 8 (c) Zoom-in for the window A at t = 20

(d) Zoom-in for the window A at t = 28 (e) Zoom-in for the window A at t = 43 (f) Zoom-in for the window A at t = 49

Fig. 2: Simulation results for a search and rescue mission in a disaster response scenario with uniform distribution ρ(x).

of subareas and multiple victims to different agents.
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[24] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena,
vol. 240, no. 4, pp. 432–442, 2011.

[25] P. J. Davis, W. Gautschi, and A. Iserles, Spirals: From Theodorus To
Chaos. AK Peters Ltd, 1993.


	Introduction
	Problem Description
	Formulation of Multiple Objective Functions
	Robot Measurement Model

	Multi-Objective Optimization Over a Finite-Time Horizon
	Objective Function for Quantifying Performance
	Objective Function for Quantifying Uncertainty About the Victim Locations
	Objective Function for Quantifying Uncertainty About the Environment

	Algorithmic Approach
	Dynamic -constraint method
	Planning via Multi-Objective Optimization

	Simulations
	Conclusions
	References

