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Abstract— We consider a scenario where a swarm of arbi-
trary unmanned vehicles (UxVs) are used to satisfy a multitude
of diverse, spatially distributed objectives. The UxVs strive
to determine an efficient schedule of tasks to service the
objectives while operating as a swarm. We focus on developing
autonomous high-level planning, where low-level controls are
leveraged from previous work in distributed motion, target
tracking, localization, and communication algorithms. We take
a Markov decision processes (MDP) approach to develop a
multi-agent framework that can extend to multi-objective opti-
mization and human-interaction for swarm robotics. Utilizing
state and action abstractions, we introduce a hierarchical
algorithm, Dynamic domain reduction for multi-agent planning,
to enable multi-agent planning for large multi-objective envi-
ronments. Simulated results show significant improvement over
using a standard Monte Carlo tree search in an environment
with large state and action spaces.

I. INTRODUCTION

Recent technology has enabled the deployment of UxVs
under human control in a wide range of scenarios. UxVs
have many purposes in society, such as intelligence, surveil-
lance and reconnaissance, disaster response, exploration, and
surveying for agriculture. In many scenarios, people control
these unmanned vehicles. More often than not, multiple
people are required to control and guide UxVs. Reducing
UxV dependence on human effort enhances their capability
in scenarios where communication is expensive or non-
existent as agents can make smart and safe choices on their
own. In this paper we design a framework for enabling multi-
agent autonomy within a swarm in order to satisfy arbitrary
objectives. Planning presents a challenge because as the size
of the swarm, environment, and objectives increase, deter-
mining optimal actions becomes computationally expensive.

Literature review: Recent algorithms for decentralized
methods of multi-agent deployment and path planning en-
able agents to use local information to satisfy some global
task. A variety of decentralized methods can be used for
deployment of mobile sensors with the ability to monitor
regions, see e.g., [1]–[3] and references therein. We gather
motivation from these decentralized methods because they
enable centralized goals to be realized with decentralized
computation and autonomy.

In general, these decentralized methods provide ap-
proaches for low-level autonomy in multi-agent systems, so
we look to systems research for high-level planning and
scheduling algorithms. In the traveling salesperson problem
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(TSP) [4], an agent must visit a set of nodes and return
to the origin node while traversing the minimal distance
possible. An example inspired from nature models an ant
colony system to develop a cooperative learning algorithm
[5] as a decentralized approach to the TSP. Orienteering
[6] is a variant of TSP, where an agent strives to gain
the most reward by visiting nodes constrained by some
maximum distance, closely fits the desired framework for this
problem. Although TSP/Orienteering have been well studied,
the frameworks are not directly suitable for multi-objective
optimization, or human-interaction extensions. The planning
domain definition language [7] is a language and framework
developed for artificial intelligence planning and can solve
a broad class of problems, though it cannot easily handle
probabilistic actions or the large state spaces induced by
multi-agent planning.

In machine learning research, Markov decision processes
(MDP), Semi Markov decision processes (SMDP) and
Partially-Observable MDP (POMDP) are standard frame-
works for temporal planning under uncertainty [8]–[11].
The MDP framework is conducive to constructing a policy
for optimally executing actions in an environment given
an infinite time horizon [12]. The focal point in machine
learning research is addressing the challenges imposed by
the curse of dimensionality. Many works attempt to lower the
state space through abstracting the state space [13], history
in POMDPs [14], and action space [15]. Other research
attempts to alleviate the curse of dimensionality through
hierarchical methods. The work [16] introduces an algorithm
that allows an agent to simultaneously optimize hierarchi-
cal levels, learn abstracted actions, and abstract the state
space with a chosen abstraction function. The decentralized
POMDP is a framework that incorporates joint decision
making and collaboration of multiple agents under uncertain
and high-dimensional environments. Masked Monte Carlo
Search is an algorithm proposed in [17] that determines joint
abstracted actions in a centralized way for multiple agents
that plan their trajectories in a decentralized POMDP. In
contrast, our approach performs task allocation among the
agents in a distributed fashion and does not, at the moment,
handle tasks that cannot be performed by agents individually.

Recent efforts have focused on bridging the gap between
high-level mission planning and low-level control algorithms.
Belief states are used to contract the expanding history
and curse of dimensionality found in POMDPs. Inspired
by Rapidly-Exploring Randomized Trees [18], the Belief
Roadmap [19] allows an agent to find minimum cost paths
efficiently by finding a trajectory through belief spaces. Sim-



ilarly, the algorithm in [20] creates Gaussian belief states and
exploits feedback controllers to reduce POMDPs to MDPs
for tractability in order to find a trajectory. The approach we
introduce here provides a higher-level framework for multi-
agent planning where these algorithms can be incorporated
at a lower path planning level.

Statement of contributions: Our goal is to synthesize a
multi-agent algorithm that enables agents to abstract and
plan over large, complex environments taking advantage of
the benefits resulting from coordinating their actions. We
determine meaningful ways to represent the environment and
develop an algorithm that reduces the computational burden
on an agent to determine a plan. We introduce methods of
generalizing positions of agents, and objectives with respect
to proximity. We introduce sub-environments, which are
subsets of the environment with respect to proximity-based
generalizations. We use high-level actions, with the help of
low-level controllers, designed to reduce the action space
and to plan in the sub-environments. The main contribution
of the paper is an algorithm for splitting the work of an
agent between dynamically constructing and evaluating sub-
environments and learning how to best act in that sub-
environment. Finally, we introduce modifications that en-
able multi-agent deployment by allowing agents to interact
with other agents’ plans. We illustrate the effectiveness of
dynamically constructing sub-environments for planning in
environments with large state spaces through simulation and
compare against Monte Carlo tree search techniques.

Organization: The paper is organized as follows. Sec-
tion II presents preliminaries on Markov decision processes.
Section III introduces the problem of interest. Section IV
describes our approach to abstract states and actions with
respect to spatial proximity, and Section V builds on this to
design our dynamic domain reduction algorithm. We gather
our conclusions and ideas for future work in Section VI.

Notation: We use Z, Z≥1, R, and R>0 to denote integers,
positive integers, real numbers, and positive real numbers
respectively. We use |Y | to denote the cardinality of any ar-
bitrary set Y . We employ object-oriented notation throughout
the paper; b.c, means that c belongs to b, for arbitrary objects
b and c. For reference, Table I presents a list of the most
commonly used symbols throughout the paper.

II. PRELIMINARIES

We follow the exposition from [16] to describe a Markov
decision process as a tuple 〈S,A, Prs, R〉. S and A are
the state and action spaces, respectively. Prs(s′|a, s) is a
transition function that returns the probability that state s ∈ S
becomes state s′ after taking action a ∈ A. R(s, a, s′) is the
reward that an agent gets after taking action a from state s
to reach state s′. A policy is a feedback control that maps
a state to an action, π : s → a, ∀s. The value of a state
under a given policy is

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Prs(s′|π(s), s)V π(s′),

where γ ∈ (0, 1) is a discount factor, which makes the value
function converge with infinite steps. The solution to the
MDP is an optimal policy that maximizes the value function,
π∗(s) = argmaxπ V π(s) for all s. The value of taking an
action at a given state under a given policy is

Q(s, a) = R(s, a) + γ
∑
s′∈S

Prs(s′|a, s)V π(s′)

Usual methods for obtaining π∗ require a tree search of
the possible states that can be reached by taking a series
of actions. The rate at which the tree of states grow is the
branching factor, which is a challenge for solving MDPs with
large state spaces and actions with low-likelihood probabilis-
tic state transitions. A technique often used to decrease the
state space is called state abstraction, where a collection of
states are clustered into one in a meaningful way. Generally,
an abstraction function φs : s→ sφ, is used to determine an
abstracted state. Similarly, actions can be abstracted with φa :
a → aφ. Abstracting actions is used to decrease the action
space, which can make π∗ easier to calculate. In MDPs,
actions take one time step per action, however abstracted
actions may take a probabilistic amount of time to complete,
Prt(t|aφ, s). When considering the problem using abstracted
actions aφ ∈ Aφ in 〈S,Aφ, P rs, R〉, the process becomes
a semi-Markov Decision Process (SMDP), which allows for
probabilistic time per abstracted action. The loss of precision
in the abstracted actions means that an optimal policy for
an SMDP with abstracted modifications may not be optimal
with respect to the original MDP. Determining π∗ often
involves constructing a tree of reachable MDP/SMDP states
determined through simulating actions from an initial state.
Dynamic programming is commonly used for approximating
π∗ by using a Monte Carlo tree search to explore the MDP
for the initial state. The action with the maximum upper
confidence bound (UCB) [21] of the approximated expected
value for taking the action at a given state,

argmaxa∈A
{
Q(s, a) + C

√
ln(Ns)

Ns,a

}
,

is often used to efficiently explore the MDP. Here, Ns is the
number of times a state has been visited, Ns,a is the number
of times that action a has been taken at state s and C is
a constant. Taking this action allows for a combination of
both exploring the reachable states from an initial state and
receiving high expected reward.

III. PROBLEM STATEMENT

Consider a set of agents, α ∈ A. For simplicity of
exposition we assume agents are able to communicate with
each other and have access to the location of each other. We
leave scenarios with constrained communication for future
treatment of our algorithm and framework. An agent, α,
occupies a point in Zd, and has computational, communi-
cation, and mobile capabilities. Let o ∈ Zd be a waypoint
that an agent must visit in order to serve an objective. Every



waypoint belongs to an objective, Ob =
{
o1, . . . , o|Ob |

}
.

Agents are able to satisfy objectives when waypoints are
visited such that o ∈ Ob is removed from Ob. An agent
receives a reward, ro ∈ R, for servicing a sub-objective, o ∈
Ob. Define the set of objectives to be O =

{
O1, . . . ,O|O|

}
,

and assume agents are only able to service one Ob ∈ O at a
time. We consider the environment to be E = O×A, which
contains information about all objectives and agents. The
state size of E increases exponentially with respect to |O|,
|Ob|, and |A|. We strive to design a decentralized algorithm
that allows agents in A to individually compute a policy, π∗,
that optimally services objectives in O in scenarios where E
is very large. We determine abstraction strategies that reduce
the stochastic branching factor in order to find a good policy
in the environment. To tackle this, the paper is structured as
follows: we begin by spatially abstracting objectives in an en-
vironment into regions and we design high-level actions that
the agents take. We dynamically create and search subsets of
the environment to reduce dimensions of the state that agents
reason over. Then we structure a plan of high-level actions
with respect to the subset of the environment. Next, we
make modifications necessary for multi-agent planning and
finally introduce the Dynamic domain reduction for multi-
agent planning (DDRMAP) algorithm to approximate the
optimal policy.

IV. ABSTRACTIONS

In order to leverage dynamic programming solutions to
approximate a good policy, we reduce the state space and
action space. We begin by introducing methods of abstraction
for states and actions with respect to spatial proximity.

A. Single-agent abstractions

The number of unique states grows exponentially with re-
spect to the number of dimensions that exist (|O|, |Ob| for all
b, and |A|). First, we cluster waypoints and agent locations
with respect to regions in the Cartesian product, which we
call region abstraction, then we construct abstracted actions
that agents are allowed to execute with respect to the region
abstractions.

Region abstraction: We define a region to be a convex
set x ⊆ Rd and consider a set of X all regions such
that all x ∈ X are disjoint. For simplicity, we consider
regions to be equal in size, shape, and orientation, so that
the set of regions creates a tessellation of the environment.
We leave non-regular/repeating regions as future extensions
to our formulation. Furthermore, let the set of waypoints
of objective, Ob, in region xi be denoted Oxib such that
Oxib ⊆ xi. We use an abstraction function, φ : Oxib → sbi , to
get the abstracted objective state, sbi , which enables us to
generalize the states of an objective in a region. In general,
the abstraction function is designed by a human user that
distinguishes importance of an objective in a region. We
define a regional state, Sxi = (s1

i , . . . , s
|O|
i ), to be the

Cartesian product of sbi for all objectives, Ob ∈ O, with
respect to xi.

Action abstraction: We assume that low-level feedback
controllers are available, allowing for servicing of waypoints.
We describe how we utilize low-level controllers as com-
ponents of a task to reason over. We define a task to be
τ =

〈
sbi , s

′b
i , xi, xj ,Ob

〉
, where sbi , and s′bi are abstracted

objective states of xi, xj is a target region, and Ob is a
target objective. We assume that low-level controllers exists
that can satisfy the following requirements.

• Objective transition: low-level controllers executing τ ,
will drive the state transition, τ.sbi → τ.s′bi .

• Regional transition: low-level controller executing, τ ,
drives the agent’s location to xj after the objective
transition is complete.

Candidates of low-level controllers include policies deter-
mined by using [16] and [21] after setting up the region as
a MDP, modified traveling salesperson [6], or path planning
based algorithms interfaced with the dynamics of the agent.
Agents that start a task are required to continue working
on the task until requirements are met. Because the tasks
are dependent on abstracted objectives states, the agent
completes a task in a probabilistic time, given by Prt(t|τ),
that is determined heuristically. An agent can only choose to
start a task if the task is in the feasible task set. The feasible
task set, τ ∈ Γ, includes all possible tasks that are feasible
to an agent. We consider τ to be feasible if the following
are possible:

• τ.sbi is the abstracted objective state of τ.Ob at region
τ.xi at the time of starting τ .

• τ.s′bi exists, and can be transitioned to from τ.sbi .
• Agent resides in τ.xi at the time of starting τ .
• τ.xj exists, and the agent can transition to it from τ.xi.

Sub-environments: In order to further alleviate the curse of
dimensionality, we introduce sub-environments, a subset of
the environment, in an effort to only utilize relevant regions.
Let the size of the sub-environment be Nε ∈ Z≥1. Let
−→x = [−→x 1, . . . ,

−→x Nε ] be an ordered list of regions, such
that −→x k ∈ X . We consider S−→x 1

= Sxi if −→x 1 = xi. In
order to simulate the sub-environment, the agent must know
if there are repeated regions in −→x . Let ξ(k,−→x ), return the
first index of −→x , h, such that −→x h = −→x k, or 0 if there
is no match. Define the repeated region list to be ξ−→x =
[ξ(1,−→x ), . . . , ξ(Nε,

−→x )]. Let φt(xi, xj) : xi, xj → Z, be an
abstracted amount of time it takes for an agent to move from
xi to xj , or∞ if no path exists. Let S = [S−→x 1

, . . . ,S−→x Nε ]×
ξ−→x×[φt(

−→x 1,
−→x 2), . . . , φt(

−→x Nε−1,,
−→x Nε)], be the abstracted

state for a chosen −→x . A sub-environment, ε = 〈−→x , S〉, is
valid if and only if the following are satisfied.

• No elements of [φt(
−→x 1,
−→x 2)), . . . , φt(

−→x Nε−1,
−→x Nε)]

are ∞.
• The agent begins in the initial region, −→x 1.

In general, we allow a sub-environment to contain any
region that is reachable in finite time. However, in practice,
we only allow agents to choose sub-environments that they
can traverse within some reasonable time in order to reduce
the number of possible sub-environments and save onboard



memory.
Task trajectory: We also define an ordered list of tasks

that the agents execute with respect to a sub-environment ε.
Let −→τ = [−→τ 1, . . . ,

−→τ Nε−1] be an ordered list of feasible
tasks such that −→τ k.xi = ε.−→x k, and −→τ k.xj = ε.−→x k+1 for
all k ∈ {1, . . . , Nε − 1}. Agents generate this ordered list of
tasks assuming that they will execute each of them in order.
The probability distribution on the time of completing the
kth task in −→τ (after completing all previous tasks in −→τ ) is
given by

−−→
Prtk. We define

−−→
Prt = [

−−→
Prt1, . . . ,

−−→
PrtNε−1] to

be the ordered list of probability distributions. We construct
the task trajectory to be ϑ =

〈−→τ ,−−→Prt〉, which is used to
determine the finite time reward for a sub-environment.

Abstracted rewards: The exact reward that an agent would
receive when acting on the environment, R(E ′, a, E) is a
function of O and O′, the objective set before and after being
serviced respectively. Because we have abstracted states and
actions, we must determine the reward an agent receives for
completing τ as a probabilistic function that is determined
heuristically. Let Prr(r|τ) be the probability that an agent
receives r reward after completing τ . We determine the total
reward an agent receives for executing a trajectory as

rε =

Nε−1∑
k=1

∞∑
t=0

∑
r∈R>0

−−→
Prtk(t)Prr(r|−→τ k)γtr. (1)

We strive to determine the optimal policy π∗ε : ε → ϑ that
satisfies

π∗ε = argmax
πε

rε, (2)

for any valid ε. We approximate this optimal policy with
Algorithm 1 introduced in Section V.

B. Multi-agent abstractions

Due to the large environment induced by the action cou-
pling of multi-agent joint planning, determining the optimal
policy is computationally infeasible. To reduce computa-
tional burden on an agent, we restrict the number of coupled
interactions. In this section, we modify the sub-environment,
task trajectory, and rewards to allow for multi-agent coupled
interactions. The following equations and algorithms are
taken from the perspective of an arbitrary agent α in the
swarm, where other agents are indexed with β ∈ A.

Sub-environment modifications: Agents may choose to
interact other agents in the interaction set, β ∈ Iα ⊆ A,
while executing −→τ α. The interaction set is constructed as a
parameter of the sub-environment and indicates to the agent
which tasks should be avoided based on the other agents’
trajectories. Let N be the maximum number of agents that
an agent can interact (hence |Iα| ≤ N ). The interaction set
is constructed by adding another agent and their interaction
set, Iα = Iα ∪ {β} ∪ Iβ . If |Iα ∪ {β} ∪ Iβ | > N , then
we consider β to be an invalid candidate for interaction.
Adding β’s interaction set is necessary because tasks that
affect ϑβ , may also affect all agents in Iβ . Constraining the
maximum interaction set size reduces the large state size that

occurs when agents’ actions are coupled. In order to avoid
interacting with agents not in the interaction set, we create a
set of waypoints that are off-limits when creating a trajectory.

We define a claimed regional objective as θ = 〈Ob, xi〉.
The agent creates a set of claimed region objectives, Θα =
{θ1, . . . , θNε−1} that contains a claimed region objective for
every task in an agent’s trajectory and describes a waypoint
in Ob in a region that the agent is planning to service.
We define the global claimed objective set to be ΘA ={

Θ1, . . . ,Θ|A|
}

, which contains the claimed region objective
set for all agents. Lastly, let Θ′α = ΘA \

{⋃
β∈Iα Θβ

}
,

which contains the complete set of claimed objectives an
agent must avoid when planning a trajectory. The agent uses
Θ′α to modify its perception of the environment. As shown
in the following function, the agent sets the state of claimed
objectives in Θ′α to 0, removing appropriate tasks from the
feasible task set.

sbΘ′α,
−→x k =

{
0 if 〈Ob, εα.−→x k〉 ∈ Θ′α,

sb−→x k otherwise.
(3)

Let
−→
S Θ′α,

−→x =
−→
S Θ′α,

−→x 1
× . . . ×

−→
S Θ′α,

−→x Nε , where
−→
S Θ′α,

−→x k = (sO1

Θ′α,
−→x k
, . . . , s

O|O|
Θ′α,
−→x k

). In addition to the
modified sub-environment state, we include the partial
trajectories of other agents being interacted with. Con-
sider β’s trajectory, ϑβ , and an arbitrary εα. Let ϑpβ,k =〈
ϑβ .
−→τ k.sbi , ϑβ .

−→τ k.Ob
〉
. The partial trajectory, ϑpβ =

[ϑpβ,1, . . . , ϑ
p
β,|ϑβ |] describes β’s trajectory with respect to

εα.
−→x . Let ξ(k, εα, εβ) return the first index of εα.−→x , h,

such that εβ .−→x h = εα.
−→x k, or 0 if there is no match. Each

agent in the interaction set creates a matrix, Ξ, of elements,
ξ(k, εα, εβ), for k ∈ {1, . . . , Nε} and β ∈ {1, . . . , |Iα|}.
We finally determine the complete multi-agent state,
S =

−→
S Θ′α,

−→x ×
{
〈ϑp1,Ξ1〉 , . . . , 〈ϑp|Iα|,Ξ|Iα|〉

}
×

[φt(
−→x 1,
−→x 2), . . . , φt(

−→x Nε−1,
−→x Nε)]. With modifications to

the sub-environment abstracted state, we redefine the sub-
environment as εα = 〈−→x , S, Iα〉.

Multi-agent abstracted actions: We consider the effect
that an agent has on another agent β ∈ A when executing
a task that affects sbi in β’s trajectory. Some tasks will be
completed sooner with two or more agents working on them,
for instance. For all β ∈ Iα, let tβ be the time that β
begins a task that transitions sbi → s′bi . If agent β does not
contain such a task in its trajectory, then tβ =∞. Let TAIα =
[t1, . . . , t|Iα|]. We now define the probability that τ is com-
pleted at exactly time t if other agents work on transitioning
sbi → s′bi , as PrtIα(t|τ, TAIα). In Section IV-A, we defined

−−→
Prt

to be a set of Prt that returned the probability that τ will be
completed at time t given previous tasks are also completed.
We redefine here

−−→
Prt = [

−−→
Prt1,Iα , . . . ,

−−→
PrtNε−1,Iα ], which

is the probability time set of a modified by other agents
trajectories. Furthermore, if an agent chooses a task that
modifies agent, a’s trajectory, we define the probability time
set to be

−−→
Prt′ = [

−−→
Prt′1,Iα , . . . ,

−−→
Prt′Nε−1,Iα ]. With these

modifications, we redefine the task trajectory to be ϑ =



〈−→τ ,−−→Prt〉.

Multi-agent reward abstractions: We modify (2) so that
the objective is for an agent to approximate the optimal
policy, while taking into account agents that it may interact
with. We redefine the total reward as

rεα =

Nε−1∑
k=0

∞∑
t=0

∑
r∈R>0

−−→
Prtk,Iα(t)Prr(r|−→τ k)γtr, (4)

where PrtIα replaces Prt. Furthermore, if the agent’s trajec-
tory is being interacted with from another agent, we use the
reward rϑβ . We introduce the interaction reward function,
which returns a reward based on whether the agent executes
a task that interacts with one or more other agents as

rφ(ε, τ) =


∑
β∈Iα

(rε
′

β − rεβ) if τ ∈ ϑpβ for any β,∑
r∈R>0

Prr(r|τ)r otherwise.
(5)

In this equation, we quantify the effect that an interacting
task has on an existing task. If a task helps another agent
trajectory in an impactful way, the agent may choose a task
that aids the global expected reward amongst the agents.
Finally, we rewrite (2) with the inclusion of (5),

max
π∗ε

Nε−1∑
k=0

∞∑
t=0

−−→
Prtk(t)γtrφ(ε, τ) (6)

s.t. π∗ε : ε→ ϑ.

We approximate this optimal policy with Algorithm 1 intro-
duced in Section V.

V. DYNAMIC DOMAIN REDUCTION FOR MA PLANNING

In this section we introduce our algorithm to approximate
the optimal policy π∗ε. Our algorithm consists of three main
functions, DDRMAP, TaskSearch, and SubEnvSearch1.
Algorithm 1 presents a formal description of the deployment
algorithm in the multi-agent case. The deployment algorithm
for the case of a single agent simply corresponds to taking
N = 0 (implying that I and Θ′ are empty) in Algorithm 1.

A. Algorithm and function overview

First, we describe necessary variables and parameters, then
we discuss each of the main functions and the role of the sup-
port functions. In our algorithm, we allow agents to switch
trajectories based on a polling time, T ∈ Z≥1, as a design
parameter. We consider the size of the sub-environments, Nε
and the polling time, T , to be global constants in the swarm.
Let N , NOb , and Nk

E be global variables in the swarm, which
mature as the agent accrues more data. The variables Q, N ,
and NOb correspond, respectively, to the expected discounted
value of choosing a task when the state is ε.S under the
current policy, the number of times the agent has visited ε.S,
and the number of times the agent has simulated choosing Ob
in ε.S. Let εk be a sub-environment of length k < Nε. Let

1pseudocode of functions denoted with † is omitted for space reasons

QkE and Nk
E be the estimation of Q, given that εk ∈ ε, and the

number of times the agent has simulated εk.S respectively.
Let Wε and Wεk , be sets of ε, and εk respectively that contain
possible sub-environment subsets of E at some future time.

Algorithm 1 : Dynamic domain reduction for MA planning
T ∈ Z≥1

DDRMAP ():
t = T , Wεk → ε0, Wε → ∅
repeat forever:
E ← current environment
E ′ ← EstimateEnv† (E , ε, ϑ, t)
ΘA ←

⋃
Θβ , ∀β ∈ A

Wεk ,Wε ← ValidSubEnvSets† (Wεk ,Wε, E)
while run time < step time:

εk ← max
εk∈Wεk

{
QkE[εk.S] +

c σkE [εk.S]√
NkE [εk.S]

}
ε←SubEnvSearch (εk, E ′,ΘA)
r ← TaskSearch (ε, 0)
Wε .add(ε, ϑ, r)

if t ≤ 0:
ϑ←MaxTrajectory (Wε)
k ← 0, t← T , Wεk ← ε0 , Wε ← ∅
Θ← CreateClaimedObjSet (ε, ϑ)

if −→τ k is satisfied:
k = k + 1

Step† (−→τ k)
t = t− 1

TaskSearch (ε, d)
Γ← GenerateFeasibleTaskSet† (ε)

τ ← max
τ∈Γ

{
Q[ε.S][τ.Ob] + 2Cp

√
lnN [ε.S]

NOb [ε.S][τ.Ob]

}
t← Sample† Prt(t|τ, ε)
if d+ t > T , return 0
ε′ ← EvolveSubEnv† (ε)
r = γt(GetReward (τ, ε) + TaskSearch (ε′, d+ t))
TaskValueUpdate (ε.S, τ.Ob, r)
SubEnvValueUpdate (ε, r)
return r

SubEnvSearch (εk, E ′)
W+
εk ← GetFeasibleSubEnvironments† (εk, E ′)

Wεk .add(W+
εk )

Wεk .remove(εk)
ε∗k+1 = max

εk+1∈W
+
εk

QkE[εk+1]

if |ε∗k+1| = |Nε|, return InitSubEnv (ε∗k+1, E ′)
return SubEnvSearch (ε∗k+1, E ′)

The main function, DDRMAP, interfaces the real environ-
ment to the simulated environment and learning algorithms.
At every time step, the agent observes the current environ-
ment. The agent chooses a new trajectory when t = 0, so the
agent estimates what the environment will look like, E →
E ′, using EstimateEnv†. ValidSubEnvSets† takes the
current Wεk and Wε and removes all sub-environments
which become non-feasible in E in t given the current state of
the environment. Until the allocated time runs out, the agent
finds a suitable sub-environment, ε, in SubEnvSearch.
The chosen ε is used in TaskSearch, which returns an
expected reward and trajectory, which are added to Wε. This



process repeats for an allocated amount of time per step.
Every T time steps, the agent chooses the feasible trajectory
with the maximum expected reward with MaxTrajectory.
Variables are reset and the set of claimed regional objectives
Θ is created with CreateClaimedObjSet. Θ is available
to the rest of the agents once created. The agent uses the
new trajectory to act on the environment with Step†, and
switches to a task when the previous one is completed.
TaskSearch takes a given sub-environment and uses a
process similar to the UCT algorithm [21], which utilizes
the upper confidence bound when searching the state space
of a MDP, to approximate an optimal trajectory for that sub-
environment. Initially, the agent determines what tasks are
feasible given ε by using GenerateFeasibleTaskSet†,
which makes sure that state transitions of a particular ob-
jective are possible. The agent chooses a task to take by
using the upper confidence bound on Q, and pulls t from
the probability time of completion Prt(t|τ). We evolve
ε→ ε′, in order to correctly model the simulation. We get the
reward of taking τ by using GetReward, which executes
the process in (5) by estimating the total effect that an agent
has on another’s trajectory if they intersect, else the amount
of reward an agent gets on its own. This process is recursive
and continues until d+ t ≥ T , where d+ t is the simulated
time steps.

We employ SubEnvSearch to find the value of
the sub-environment ε to be used by TaskSearch.
SubEnvSearch is a algorithm that efficiently re-
turns a sub-environment by searching the set of pos-
sible sub-environments available to the agent. It takes
the sub-environment in Wεk with the highest up-
per confidence bound. The set of feasible extensions
of the sub-environment, W+

εk
, are determined with

GetFeasibleSubEnvironments†, and is done by
adding a region to −→x . W+

εk
is added to Wεk in order to

keep track of possible partially explored sub-environments,
and εk is removed since it is currently being explored. The
algorithm recursively looks for the best expected εk until
k = |ε|, where the state is initialized in InitSubEnv by
using GetModSubEnv† according to Equation (3).

B. Simulations and results

Here we discuss the results of two simulations of Dynamic
domain reduction for multi-agent planning. In the first sim-
ulation, displayed in Figure 1, we consider an environment
with a single agent and compare the performance of three
strategies. The first algorithm is a Monte Carlo tree search
(MCTS) [22], with the abstracted states as the regions we
have defined and abstracted states as tasks. The state an
agent uses in the MCTS algorithm is the Cartesian product
of all region objective states. The second algorithm we test
is a version of our algorithm that only uses policies learned
offline. We call this algorithm Dynamic domain reduction
planning: offline (DDRP-O). DDRP-O skips TaskSearch
and focuses on search for sub-environments and approximat-
ing their values with pre-learned policies. The final algorithm

Fig. 1. Empirical results of single-agent simulation.

Fig. 2. Empirical results of multi-agent simulation.

we test is called, Dynamic domain reduction planning:
offline+online (DDRP-OO), which includes TaskSearch
in order to refine policies and to further explore a sub-
environment’s states. In the second simulation, displayed
in Figure 2, we test the main algorithm, Dynamic domain
reduction for multi-agent planning with 10 agents using the
maximum interaction number, N , as a test parameter.

We perform 100 trials per data point in each of the two
simulations. At the beginning of each trial, the agent is given
an allocated time to think, as shown by the x-axis. The y-axis
shows the expected discounted reward that the agent finds
during its allotted time. Data is plotted to show the average
and confidence intervals of the expected discounted reward
of the agent(s) found in the allotted time. In both simulations,
the agent(s) start at location (50, 50) in an environment that
is a 100× 100 grid. The sub-environment size for both tests
is Nε = 4.

In the first simulation, the environment has |O| = 10,
where objectives have a random number of waypoints (Ob| ≤
15) placed uniformly randomly. For each of the algorithms
(MCTS, DDRP-O, DDRP-OO), the agents are given 10
seconds to train on randomized environments. We chose this



environment because of the massive state space and action
space in order to illustrate the strength of Dynamic domain
reduction for multi-agent planningin breaking it down into
components that have been previously seen. Figure 1 shows
that DDRP-O performs well with only 10 seconds of training
time on randomized environments because it is able to
search for previously found sub-environments. DDRP-OO
performs the best because it is able to continue learning
sub-environments, and prioritize sub-environments that exist
in the environment at hand. The MCTS performs poorly
for the chosen environment because of its large state space
and branching factor. Offline learning does not help in this
situation because, given the state space, the probability of
finding the same environment it has previously visited is very
low.

The second simulation uses an environment similar to the
first simulation, except with 10 agents and |O| = 3, where
objectives have a random number of waypoints (|Ob| ≤ 5)
that are placed randomly. In this simulation we do not train
the agents before trials, and Dynamic domain reduction for
multi-agent planning is used with varying N where agents
asynchronously choose trajectories. In Figure 2, we can see
the benefit of allowing agents to interact with each other.
When agents are able to take coupled actions, the expected
potential discounted reward is greater, a feature that becomes
more marked as agents are given more time to think.

VI. CONCLUSIONS

We have presented a framework for high-level multi-
agent planning leading to the design of the Dynamic do-
main reduction for multi-agent planning algorithm . We
have alleviated the curse of dimensionality by searching the
environment for sub-environments with the greatest expected
reward. We have allowed for multi-agent interaction by
allowing for the inclusion of other agents’ state in the sub-
environment search. Finally we tested in environments with
parameters that enable our algorithm to perform well. The
biggest limitation of our algorithm is related to the spatial
distribution of objectives. The algorithm performs poorly if
the environment is set up such that objectives cannot be split
well into regions. Otherwise, the hierarchical approach of
simultaneously searching for, and creating sub-environments
and macro-actions, helps alleviate the curse of dimensional-
ity. In the future, we plan on using this framework in order
to fully enable multi-agent, multi-objective optimization, and
to explore constraints on battery life and connectivity of the
network of agents. To enable multi-agent cooperation, we
plan on adding elements of predicting whether other agents
will aid in the completion of an objective. We also plan
on enabling human-swarm interactions by estimating human
intentions through multi-objective preferences.
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Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integer
Z≥1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . positive integer
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . real number
R>0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . positive real number
|Y | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cardinality of set Y
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . state
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . state space
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . action space
Prs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transition function
r,R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . reward, reward function
π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .policy
π∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . optimal policy
V π . . . . . . . . . . . . . . . . . . . . . . value of a state given policy, π
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . discount factor
α, β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .agent indices
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of agents
o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . waypoint
Ob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . objective
O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of objectives
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . environment
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . region
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of regions
Oxib . . . . . . . . . . set of waypoints of an objective in a region
sbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . abstracted objective state
Sxi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . regional state
τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . task
Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of feasible tasks
−→x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ordered list of regions
ξ−→x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeated region list
φt(xi, xj) . . . . . . . . . . . . . . . . . . . . . . time abstraction function
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sub-environment
εk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . partial sub-environment
Nε . . . . . . . . . . . . . . . . . . . . . . . . . . . . size of a sub-environment
−→τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ordered list of tasks−−→
Prt . . . . . . . . . . . . . . . ordered list of probability distributions
ϑ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . task trajectory
Iα . . . . . . . . . . . . . . . . . . . . . . . . . . . . interaction set of agent α
N . . . . . . . . . . . . . . . . . . . . . . . . . . . .max size of interaction set
θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . claimed regional objective
Θα . . . . . . . . . . . . . . . . . . . . . claimed objective set of agent α
ΘA . . . . . . . . . . . . . . . . . . . . . . . . . global claimed objective set
ϑpβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . partial trajectory
Ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . interaction matrix
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . expected discounted reward
N . . . . . . . . . . . . . . . . . . . . . . . . . number of simulations in ε.S
NOb . . . . . . . . number of simulations of an objective in ε.S
QkE . . . . . . . . estimate of Q when selecting sub-environment
Nk

E .number of simulations of sub-environment of length k
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . max polling time
Wε . . . . . . . . . . . . . set of searched feasible sub-environments
Wεk . . . . . set of searched feasible partial sub-environments
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