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Abstract— This paper studies the benefits of time-varying
actuator scheduling to the controllability of complex networks.
The network dynamics are described by a single-input discrete-
time linear system over an undirected graph. Taking the trace of
the controllability Gramian as the measure of network control-
lability, we identify a new notion of nodal communicability and
unveil its role in the time-varying actuator scheduling problem.
We then proceed to identify conditions on the network structure
that determine whether time-varying actuator scheduling is
better than time-invariant actuator selection. The main con-
clusion of our results is that having several and heterogeneous
central nodes (versus having a single highly central node) is
the common factor in networks where time-varying actuator
scheduling is advantageous.

I. INTRODUCTION

After its emergence in social sciences in the mid-twentieth
century, the field of complex networks has attracted extensive
research in multiple disciplines, including physics, computer
science, neuroscience, and systems theory. Given the univer-
sal ubiquity of complex networks, there is a need to develop
systematic ways to analyze their behavior, understand how
individual components affect their overall response, and char-
acterize their robustness properties. This work contributes
to this body of work by exploring the advantages of time-
varying actuator scheduling in complex networks.

Literature review: The literature on complex networks
is vast and diverse, cf. [1]–[3] and references therein. Our
work builds on the growing literature on controllability
of complex linear networks, which seeks to address two
fundamental questions: how network controllability relates
to “macroscopic” network properties such as size, degree
distribution, etc., [4]–[7], and how to choose the “best” set
of control nodes [8]–[10] to minimize actuation energy. In
addressing these questions, the use of binary controllability
measures [4], see also [5], [8], is oblivious to the “diffi-
culty” (in terms of energy cost) of steering the network in
different directions in the state space. This has motivated
the introduction of a number of controllability metrics to
quantify the control effort, including the smallest eigenvalue,
determinant, and trace of the Gramian [6], [7], [9], [10]. The
recent work [11] characterizes the (sub-)modularity prop-
erty of many Gramian-based measures. With the exception
of [10], these works build on the assumption that the set of
control nodes is fixed over time. Depending on the specific
network structure, this might impose a significant limita-
tion on its controllability, especially for large-scale systems.
Instead, [10] designs various algorithms for time-varying
actuator scheduling to optimize the smallest eigenvalue of
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the Gramian as a metric of the worst-case energy required
to steer the network to a desired state. However, this work
does not study the fundamental network properties that make
time-varying actuation selection beneficial. Here we seek to
address this question using the trace of the Gramian as a
metric for the average energy required to steer the network
in all directions in the state space.

Statement of contributions: We consider complex net-
works whose dynamics are described by a single-input
discrete-time linear system over an undirected graph. As
measure of network controllability, we consider the trace of
the Gramian and examine the extent to which time-varying
actuation selection is beneficial. Our first contribution is
the introduction of a new notion of nodal communicability,
termed 2k-communicability. We show how the optimal time-
varying actuator scheduling problem can be fully encoded in
terms of this notion: at each time index, the input should
be actuated at the node with largest communicability. We
also provide an upper bound on the number of control node
switches as the time index grows. Our second contribution
identifies three types of conditions on the network structure
guaranteeing that time-invariant actuator selection is optimal.
The common factor in these conditions is the existence
of a highly distinct authority in the network, i.e., a single
node with distinctly higher influence on the dynamics. We
show that uniform line, ring, and star networks without self-
loops as well as Barabási-Albert scale-free random networks
(with high probability) belong to this group of networks.
In contrast, our third contribution establishes conditions on
the network structure under which time-varying actuator
scheduling is indeed optimal. Our results show that the
determining factor in making time-varying actuation ben-
eficial is the existence of multiple heterogeneous central
nodes in the network. We show that networks with small but
“powerful” (in terms of link weights) subnetworks as well as
Watts-Strogatz small-world networks (with high probability)
belong to this group of networks, whereas Erdös-Rényi
random networks do not (with high probability). Due to
space constraints, proofs are omitted and available at [12].

II. PRELIMINARIES

This section introduces the notation and reviews basic
concepts on graph theory and network centrality.

1) Notation: We use R, Z, Z≥0, N, and E to denote the
set of reals, integers, non-negative integers, positive integers,
and positive even integers, respectively. For a, b ∈ Z, a |b
denotes that a divides b. The n-vector of all ones is denoted
by 1n and {ei}ni=1 stands for the standard basis of Rn. Given
x ∈ Rn, xi and (x)i refer to its ith component. Similarly,
aij and (A)ij refer to the (i, j)’th entry of a matrix A. For
λ ∈ Rn and ` ∈ Z≥0, λ` , [λ`1 · · · λ`n]T . We use bold-face
letters for finite sequences of the form uK , (u(k))K−1k=0



and use the notation ‖uK‖F for
(∑K−1

j=0 u(k)2
)1/2

. Given
a matrix M ∈ Rn×n, its trace, determinant, rank, and its
eigenvalue with smallest magnitude are denoted by tr(M),
|M |, rank(M), and λmin(M), respectively. For two functions
f, g : N → R, f(n) is O(g(n)) if there exist C ≥ 0 and
N ∈ N such that f(n) ≤ Cg(n) for n ≥ N . A matrix V is
orthogonal if V −1 = V T . A nonnegative matrix is doubly-
stochastic if all of its rows and columns sum up to one.

2) Graph Theory: An undirected graph G = (V,E)
consists of a set V = {1, . . . , n} of nodes and a set
E = {{i, j} | i is connected to j} of edges. A weighted
undirected graph G = (V,E,A) also includes an adjacency
matrix A ∈ Rn×n≥0 where for any i, j ∈ V , aij ≥ 0 is
the weight of the edge between nodes i and j (including
self-loops). A path in G from node i to j is a finite
sequence `0, `1, . . . , `p of nodes where `0 = i, `p = j, and
{`m−1, `m} ∈ E for ` ∈ {1, . . . , p}. A cycle is a path with
`0 = `p. For k ≥ 1, (Ak)ij gives the (weighted) number of
paths of length k between nodes i and j.

3) Network Centrality: Consider a network of size n
represented by a graph G = (V,E,A). In this network, some
nodes may have a large influence on the rest of the network,
while others are mostly “followers”. Centrality notions [13]–
[16] are ways of quantifying the different roles, in terms of
influence, among the nodes. Here, we briefly review three
centrality measures with spectral characterizations.

a) Eigenvector Centrality: Let v ∈ Rn≥0 be the vector
of centrality values of all nodes. Eigenvector centrality [15],
[17] is based on the idea that the influential nodes are the
ones that are connected to other influential nodes. A vector
(and usually the only vector) v that satisfies this condition is
the eigenvector corresponding to the largest eigenvalue of A,
which is thus defined as the vector of eigenvector centralities.
Throughout the paper, unless otherwise noted, “centrality”
refers to eigenvector centrality.

b) Exponential and Resolvent Communicability: Dif-
ferent notions of communicability have been proposed for
complex networks. For a given node i, these include the
exponential communicability (eβA)ii and the resolvent com-
municability ((I − βA)−1)ii, respectively, where β > 0 is a
parameter. Having the power series of eβA and (I−βA)−1 in
mind, it follows that the exponential and resolvent communi-
cabilities count the total number of cycles that path through
node i, weighting the “importance” of cycles of length k
by βk/k! and βk, respectively. Therefore, the role of β is to
determine how local or global these measures are: increasing
β increases the weights of longer cycles. One can show [14]
that in the extreme cases of β →∞ for the exponential and
β → 1

λmax(A) in the resolvent case, both notions result in the
same rankings of the nodes as eigenvector centrality.

c) Degree Centrality: The degree centrality of a node
i is the sum of the i’th row (or column) of A.

III. PROBLEM STATEMENT

We consider a network of n nodes that communicate, in
discrete time, over an undirected graph G with adjacency
matrix A. We assume each node has linear and time-invariant
dynamics and that at each time, one node can be controlled

exogenously, resulting in the overall network dynamics

x(k + 1) = Ax(k) + b(k)u(k), k ∈ Z≥0. (1)

Here, xi(k) ∈ R is the state of node i for i ∈ {1, . . . , n},
u(k) ∈ R is the control input, and b(k) is the time-varying
input matrix, all at time k. Since we can always normalize
b(k) and include its magnitude in u(k), we assume ‖b(k)‖ =
1 so b(k) ∈ {ei}ni=1.

The controllability of the system (1) at time K ∈ N is
defined as the ability to steer the state of the network from
any initial condition x(0) to any desired state x(K) at time
K. It is well-known [18] that (1) is controllable at time K
if and only if the controllability Gramian, namely,

WK ,
K−1∑
k=0

Akb(K−1−k)b(K−1−k)T (AT )k, (2)

is nonsingular. Since the network is undirected, AT = A. It
is also well-known [18] that if (1) is controllable at time K,
among all the controls uK , (u(k))K−1k=0 that can steer the
network from the origin to an arbitrary xf ∈ Rn at time K,
the one with minimum energy ‖uK‖F is given by

u∗(k) = b(k)T (AT )K−1−kW−1K xf , k ∈ {0, . . . ,K − 1}.

It is immediate to verify that ‖u∗K‖2F = xTfW
−1
K xf . It is

thus desirable to haveW−1K as “small” as possible, or equiv-
alently, WK as “large” as possible. To quantify how large
the Gramian is, several spectral measures have been proposed
in the literature [7], [11], [19], including λmin(WK), |WK |,
tr(W−1K ), tr(WK), and rank(WK). While each metric has
advantages and disadvantages, we focus here on tr(WK) due
to its linearity and tractability. This metric is inversely related
to the average energy required to steer the network in all
directions in the state space, thus characterizing the average
controllability of the network.

Accordingly, we are interested in the solution of the
following optimization problem:

b∗K = arg max
bK∈Ftv

tr(WK), (3)

where Ftv = {e1, . . . , en}K is the feasible set of time-
varying input matrices. Using the definition (2) and the
invariance of trace under cyclic permutations, we can write

tr(WK) =

K−1∑
k=0

b(K−1−k)TA2kb(K−1−k).

Therefore, since b(K−1−k)TA2kb(K−1−k) = (A2k)ii where
i is the index of the node to which u(K−1−k) is applied,
the optimization at each time K−1−k boils down to finding
the largest diagonal element of A2k.

Note that the computation of the exact solution to (3) is
feasible (with polynomial time complexity) for large net-
works since the optimization in (3) is completely decoupled
over time. This is because the tr(WK) is a modular set
function, while the other measures mentioned above are sub-
modular, for which greedy algorithms are usually employed.



If we constrain the actuator scheduling sequence bK to be
time invariant, then instead of (3) we have

b∗K = arg max
bK∈Fti

tr(WK),

Fti =
{
bK ∈ Ftv | b(1) = b(2) = · · · = b(K − 1)

}
.

Since Fti ⊂ Ftv , it is clear that in general the solution
of this problem will be sub-optimal with respect to (3)
and average controllability will be worse. However, a time-
varying actuator scheduling is more difficult and/or expensive
to implement in practice as it requires an actuator to be
connected to more than one (ideally every) node in the
network and a new optimization problem to be solved at
each time instance. Therefore, it is important to determine
under what conditions and for which networks, the optimal
time-varying actuator scheduling will outperform the optimal
time-invariant one. This problem is the focus of our work.
The main message is that, in general, networks with a
single distinct authority (central node) will not benefit from
time-varying actuator schedules while networks with many
comparable, yet heterogeneous authorities will.

IV. 2k-COMMUNICABILITY

In this section, we introduce the notion of 2k-
communicability and explain its connection with the optimal
actuator scheduling problem. We also discuss its similarities
and differences with the existing notions of communicability
as well as its limiting scenarios where k = 1 and k →∞.

Let A = V ΛV T be the eigen-decomposition of A where
V = [vij ]n×n is orthogonal and Λ is diagonal. Let λi be the
i’th diagonal entry of Λ where |λ1| ≥ |λ2| ≥ · · · ≥ |λn|
and define λ = [λ1 · · · λn]T . Let W = [wij ]n×n be the
doubly stochastic matrix given by wij = v2ij for all i, j ∈
{1, . . . , n}. After some algebraic manipulations, it follows
that (A2k)ii = (Wλ2k)i =

∑n
j=1 v

2
ijλ

2k
j , and the optimal

input matrix can be written as

b∗(K−1−k) = eargmax1≤i≤n(A
2k)ii , (4)

for all k ∈ {0, . . . ,K−1}. For each i ∈ {1, . . . , n}, (A2k)ii
is a convex sum of n exponential functions. The one function
among (A2k)11, . . . , (A

2k)nn which is on top at time k
determines b∗(K−1−k). Therefore, all we need to know
is the number of times that the maximum of these n sums
of n exponential functions change over {0, . . . ,K−1}. If the
maximum does not change, a time-varying input allocation
is not beneficial and vice versa.

As described in Section II, exponential and resolvent
communicabilities count a weighted number of the total
number of cycles of all lengths that pass through each node
in the network. In the following, we define a similar notion
that accounts for the paths of finite length.

Definition IV.1. (2k-communicability). Consider a dynamic
network of n nodes defined by the adjacency matrix A.
For any k ∈ N, the 2k-communicability of each node
i ∈ {1, . . . , n} is Ri(k) = (A2k)ii. �

The 2k-communicability of any node i counts the
(weighted) number of cycles of exact length 2k that pass
through node i. The advantage of this notion is its direct

connection with optimal actuator placement in discrete-time
networks, as (4) shows. Interestingly, the same role is played
by the notion of exponential communicability in continuous-
time networks (where β plays the “time” role of k). Also, a
different but related notion of centrality is proposed in [9].

To study the number of changes in maxiRi(k), it is
sometimes convenient to extend the domain of {Ri}ni=1 to
R≥0. For consistency, define Ri(t) = (Wλ2t)i for t ∈ R≥0
and i ∈ {1, . . . , n}. The following result, whose proof is
straightforward, summarizes a few properties of this function.

Lemma IV.2. (Basic properties of Ri). For i ∈ {1, . . . , n},
Ri : R≥0 → R≥0 is smooth and strictly convex, satisfies
Ri(0) = 1, and is monotonically decreasing if λ1 ≤ 1.

Figure 1 shows a small network of n = 6 nodes (without
self-loops) as well as the evolutions of {Ri(t)}ni=1, where
the optimal control node switches n− 2 = 4 times.
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Fig. 1: Network of n = 6 nodes with n−2 changes in the optimal
control node over time. (a) Network topology. The thickness of
the edges is proportional to their weights. (b) The evolution of
the functions {Ri}ni=1 (top) and a logarithmic function of them
that preserves the order (bottom) – to better illustrate the switches
between the curves (σ : R→ R is a sigmoidal function).

For general networks, the following result provides an
upper bound on the possible number of switches of
arg maxiRi(t).

Lemma IV.3. (Bound on the number of control node
switches). The maximum possible number of switches in
arg max1≤i≤nRi(t) over t ∈ R≥0 is O(n3), where n is
the network dimension.

Lemma IV.3 rules out the possibility of an arbitrarily large
number of control node switches (however, as Examples V.3
and VI.2 show later, the bound O(n3) is conservative). This
result highlights how the optimal actuator scheduling is deter-



mined by the dependence of the nodes’ 2k-communicability
on the time index k. For small k, this notion depends on
the local network structure, and incorporates more global
information as k grows. In particular,

(i) The 2-communicability of a node is related to its
(weighted) degree centrality. To see this, note that Ri(1) =
(A2)ii =

∑n
j=1 a

2
ij , so Ri(1) is equal to the degree in

unweighted networks. In the case of weighted networks, the
2-communicability and degree centrality become more dif-
ferent as the network weights become more heterogeneous.

(ii) The ∞-communicability of a node, i.e., (A2k)ii as
k → ∞, results in the same ordering of the nodes as the
square of the eigenvector centrality (assuming that |λ1| >
|λ2|). This follows from limk→∞A2k = v1v

T
1 , where v1 is

the vector of centralities if λ1 = 1. If λ1 6= 1, we can either
take k large enough or normalize A by λ1 and then take the
limit limk→∞A2k (which does not affect the node order).

In the remainder of the paper, we assume for simplicity
that the largest element of the first column of W is w11, i.e.,

w11 = max
1≤i≤n

wi1. (5)

This assumption can always be realized by a permutation of
the rows of W , which corresponds to (re-)labeling the node
with the highest eigenvector centrality as node 1.

V. NETWORKS WHERE THE OPTIMAL ACTUATOR
SCHEDULE IS TIME-INVARIANT

Here, we give conditions and examples of networks that
do not benefit from time-varying actuator scheduling. The
following result characterizes three such cases.

Theorem V.1. (Networks with a single extreme authority).
If any of the following conditions holds:

(i) 1−w11

w11
≤ |λ1|−|λ2|
|λ1|−|λn| ,

(ii) w11 + w12 = 1,
(iii) the network has three or fewer nonzero eigenvalues

with different absolute values and 1 ∈ arg maxiRi(1),
then, for all k ∈ {0, . . . ,K − 1}, 1 ∈ arg max1≤i≤nRi(k).

We next interpret the conditions in Theorem V.1:
• (i) holds for networks where there is a sufficiently

distinct authority, in the sense of eigenvector centrality, and
the network dynamics is dominated by the largest eigenvalue.
Note that an extreme case of such networks is a totally dis-
connected network where W = I and the highest authority
is the node with the largest self-loop.
• (ii) holds for networks where the centrality of all nodes

is determined by the weight of the link to the most central
node. To see this, note that we have w1j = 0 for j ≥ 3,
implying v1j = 0 for j ≥ 3. Since the rows of V are
orthogonal, we deduce vi2 = αvi1 for all i ≥ 2, where
α = −v11/v12 is constant. Using A = V ΛV T , we have

a1i = λ1v11vi1 + λ2v12vi2 = (v11λ1 + αv12λ2)vi1,

so vi1 ∝ a1i for all i ≥ 2. The extreme case of such networks
(as Example V.2 below shows) is the star network with no
(or small-weight) self-loops.

• Regarding (iii), the most well-known families of net-
works with three distinct eigenvalues are the complete bi-
partite networks and connected strongly regular networks.
Moreover, cones on (n, k, λ, µ)-strongly regular graphs sat-
isfying λmin(A)(λmin(A) − k) = n are also known to
have three distinct eigenvalues [20]. The other condition
1 ∈ arg maxiRi(1) holds when the most (EV) central
node has the largest 2-communicability (cf. the correlation
between 2-communicability and degree in Section IV). The
simplest example of a network with these properties is the
star network (with no or equal self-loops for every node).

Example V.2. (Uniform line, ring, and star, networks). In
the case of uniform line, ring, and star networks, cf. Figure 2,
the values of Ri(k) can be computed analytically, as given
in Propositions I.1-I.3 in Appendix I. In all cases, we assume
uniform edge and self-loop weights across the network (but
the edge and self-loop weights need not be equal).

Line networks: the value of Ri(k) increases with i until
i = dn2 e (i.e., the middle node) for k ≤ dn2 e − 1 (this
can be observed from the expression (7)). For general k,
it can be shown that the value of the sum in (6) for Ri(k)
is strongly dominated by the summand corresponding to the
index p = 0, which increases with i until i = dn2 e and
decreases afterwards. Thus, the optimal actuator scheduling
is always to (one of) the center node(s), i.e., b∗(k) = edn2 e
for all k. If nodes have uniform self-loops, Ri(k) can no
longer be computed analytically but simulations show the
exact same behavior as above.

Ring networks: the value of Ri(k) does not depend on
i (as shown by (8)), so the optimal actuator scheduling is
arbitrary for all k. Similar result can be proved analytically
if the nodes have uniform self-loops.

Star networks: if all self-loop weights are the same (lc =
lp in (9)), then R1(1) > Ri(1) for all i ≥ 2 from (10).
Therefore Theorem V.1(iii) implies that the center node is
the optimal control node at all times. �
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Fig. 2: Networks in Example V.2: (a) line network, (b) ring
network, and (c) star network.

Example V.3. (Role of leader multiplicity and heterogene-
ity: Barabási-Albert scale-free networks). The takeaway
message of Theorem V.1 is that time-invariant actuator
scheduling is optimal for networks with clear distinct au-
thorities. By construction, scale-free networks generated by
the preferential attachment in [21] have this property with
high probability, so we expect that they also have a time-
invariant optimal actuator scheduling with high probability.
Let pTV be the probability of having at least one change
in arg maxiRi(k). Figure 3 shows a heat map of pTV as a
function of the network size n and the number of links m



added at each stage of the algorithm. For linear preferential
attachment (m = 1), pTV is almost zero irrespective of n,
confirming the intuition above. For larger m, we observe
a slow increase of pTV as the network size grows. This is
because for m ≥ 2, more than one node receive a new link at
each stage of the network growth, helping with the formation
of multiple central nodes. This, however, does not automat-
ically imply that these nodes will also be heterogeneous,
which is why pTV does not grow significantly. �

Fig. 3: The heat map of the probability of having at least one
switch in argmaxiRi(k) as a function of network size n and link
attachment rate m for Barabási-Albert scale-free networks.

VI. NETWORKS WHERE THE OPTIMAL ACTUATOR
SCHEDULE IS TIME-VARYING

In this section, we give results and examples of the
networks where the optimal actuator scheduling involves at
least one change in the control node. The following result
parallels Theorem V.1 and characterizes a class of networks
where time-invariant actuator scheduling is not optimal.

Theorem VI.1. (Networks with heterogeneous authorities).
If |λ1| > |λ2| and Ri(1) > R1(1) for some i ∈ {2, . . . , n}
that has vi1 < v11, then the optimal actuator scheduling
involves more than one node when K is sufficiently large.

The condition |λ1| > |λ2| is not restrictive as it holds,
by the Perron-Frobenius theorem, for all connected and
aperiodic networks (recall that aperiodicity is in particular
satisfied by the existence of any self-loops), cf. [22]. As we
mentioned in Section V, the 2-communicability of a node is
closely related to the degree centrality if the weights are all
in the same range. For such networks, the condition Ri(1) >
R1(1) requires that the nodes with highest eigenvector and
degree centralities do not coincide, preventing the existence
of extreme network authorities. This is, for instance, the case
in the network of Figure 1(a).

An important take-away message from Theorem VI.1 is
that for a change to occur in arg maxiRi(k), besides the
existence of multiple leaders, heterogeneity of leaders is
also necessary (a property that, e.g., a uniform ring network
lack). In other words, for time-varying actuator scheduling
to be beneficial, some node(s) should have the most local
significance (to maximize Ri(k) for small k) while different
node(s) have global centrality (to maximize Ri(k) for large
k). The following example illustrates this point.

Example VI.2. (Role of leader multiplicity and hetero-
geneity, cont’d: Erdös-Rényi and Watts-Strogatz networks).
Figure 4 shows a heat map of the probability pTV of having
at least one change in arg maxiRi(k) for E.R. random and

W.S. small world networks (the latter with mean degree 4),
as a function of size n and the (re-)wiring probability (p for
E.R. and β for W.S.). By construction, all the nodes in an
E.R. random network are treated uniformly and randomly,
resulting in a low probability that the network has a single
distinct authority (unlike the B.A. networks considered in
Example V.3). However, there is most often no significant
difference between the nodes, and this lack of heterogeneity
prevents pTV to grow beyond ∼ 0.2. On the contrary, the
W.S. small-world networks [23] have both leader multiplicity
and heterogeneity when the network size is large and the
rewiring probability β ∼ 0.3. For smaller or larger β, the
network approaches a ring or an E.R. network, respectively,
which we know have low pTV . With β ∼ 0.3, there is a
sufficiently high probability of rewiring multiple nodes but
there is a low probability of rewiring them all alike, resulting
in multiplicity and heterogeneity of leaders. �

Fig. 4: The heat map of the probability of having at least one switch
in argmaxiRi(k) as a function of network size n and, (top) wiring
probability p for Erdös-Rényi random networks, (bottom) re-wiring
probability β for Watts-Strogatz small-world networks.

Another class of networks for which the optimal actuator
scheduling scheme is time-varying is those where the nodes
with small (global) centrality have strong local connections
within a subnetwork. The next result formalizes this state-
ment by ensuring that increasing only the local weights of
can turn them into the (globally) optimal control node(s).

Theorem VI.3. (Empowerment of subnetworks). Given a
network of n nodes with adjacency matrix A0 ∈ Rn×n, let
E ∈ Rn×n be a symmetric nonnegative matrix of the form

E =

[
0 0

0 ?

]}
n−n1}
n1

{n−n1 {n1

,

corresponding to a subnetwork involving the last n1 < n
nodes (this is without loss of generality, since nodes can
be renumbered). Let i∗ ∈ {n − n1 + 1, . . . , n} be the most
central node in E and consider the network described by



A = A0+αE, with α > 0. Then, there exists α > 0 such that
for α > α, Ri∗(k) > Ri(k), for i ∈ {1, . . . , n1} and k ≥ 1.

The significance of Theorem VI.3 is twofold. First, it en-
sures that locally central nodes can overcome the (globally)
central ones in terms of 2k-communicability, provided that
their local subnetwork becomes sufficiently strong (i.e., as
α > α). This might be at first counter-intuitive for large
k, as in this case the value of 2k-communicability tends
towards the global node centralities. Second, it suggests that
for some 0 < α < α, the 2k-communicabilities of nodes i∗

and 1 are comparable, potentially leading to a time-varying
arg maxiRi(k).

VII. CONCLUSIONS AND FUTURE WORK

We have studied the optimality of time-varying actuator
scheduling for maximizing the average controllability of
single-input discrete-time linear networks. We have intro-
duced the concept of 2k-communicability and established
that the trace of the controllability Gramian over some time
horizon K is maximized by applying the input to the node
with the largest 2k-communicability at each time K−1−k.
We have also identified several classes of networks for which
time-invariant and time-varying actuator scheduling is benefi-
cial. Our main conclusion is that, the more balanced (in terms
of node centralities) and heterogeneous a network is, the
more it will benefit from time-varying actuator scheduling.
Numerous questions remain open for future work. Among
these, we highlight the analysis of other controllability
metrics beyond the trace of the Gramian, the generalization
of our results to directed graphs, the development of tighter
bounds on the number of optimal control node switches, the
study of multiple-input networks and dynamic topologies.
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APPENDIX I
2k-COMMUNICABILITIES OF SIMPLE NETWORKS

Proposition I.1. (2k-communicabilities of line networks).
Consider a line network of n nodes with uniform link
weights a (and no self-loops). For i ∈ {1, . . . , n} and k ∈ N,

Ri(k)=a2k
∑
p∈I

[(
2k

k+p(n+1)

)
−
(

2k

k+p(n+1)−i

)]
, (6)

where I = {−d k
n+1e, . . . , d

k
n+1e} and

(
n
k

)
, 0 if k /∈

{0, . . . , n}. In particular, if i ≤ dn2 e and k ≤ dn2 e − 1,

Ri(k) = a2k
[(

2k

k

)
−
(

2k

k − i

)]
. (7)

Proposition I.2. (2k-communicabilities of ring networks).
Consider a ring network with n nodes and uniform link
weights a (with no self-loops). For i ∈ {1, . . . , n} and k ∈ N,

Ri(k) =
(2a)2k

n

[
1 + 2

dn2 e−1∑
j=1

cos2k
(2jπ

n

)
+ δE

n

]
, (8)

where δE
n equals one if n is even and zero otherwise. �

Proposition I.3. (2-communicability of star networks).
Consider a star network given by

A =

[
lc aT

a lpIn−1

]
, (9)

where a ∈ Rn−1 contains the link weights between the center
node and peripheral nodes. A has three distinct eigenvalues

and, for i ∈ {2, . . . , n}, v11vi1 =
lc−lp+

√
(lc−lp)2+4‖a‖2
2ai−1

, and

R1(1)−Ri(1) = l2c − l2p + ‖a‖2 − a2i−1. (10)


