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Hierarchical-distributed optimized coordination
of intersection traffic
Pavankumar Tallapragada Jorge Cortés

Abstract—This paper considers the problem of coordinating
vehicular traffic at an intersection and on the branches leading
to it in order to minimize a combination of total travel time and
energy consumption. We propose a provably safe hierarchical-
distributed solution to balance computational complexity and
optimality of the system operation. In our design, a central inter-
section manager communicates with vehicles heading towards the
intersection, groups them into clusters (termed bubbles) as they
appear, and determines an optimal schedule of passage through
the intersection for each bubble. The vehicles in each bubble
receive their schedule and implement local distributed control to
ensure system-wide inter-vehicular safety while respecting speed
and acceleration limits, conforming to the assigned schedule, and
seeking to optimize their individual trajectories. Our analysis
rigorously establishes that the different aspects of the hierarchical
design operate in concert and that the safety specifications are
satisfied. We illustrate its execution through a suite of simulations
and compare its performance against optimized signal-based
coordination over a wide range of system parameters.

Index Terms—Intelligent transportation systems, hierarchical
and distributed control, optimized operation and scheduling,
state-based intersection management, networked vehicles

I. INTRODUCTION

With rapidly growing urbanization and mobility needs of
people across the world, existing transportation systems are
in critical need of transformation. Apart from increased travel
times, current burdened transportation systems have the side
effects of increased pollution, increased energy consumption,
and degradation of people’s health, all of which have an
immeasurable cost on society. The complexity of the chal-
lenge requires a multi-pronged approach, one of which is the
development of new technologies. Emerging technologies such
as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, and computer-controlled vehicles offer the
opportunity to radically redesign our transportation systems,
eliminating road accidents and traffic collisions and positively
impacting safety, traveling ease, travel time, and energy con-
sumption.

A particularly useful application of these technologies is the
coordination of traffic at and near intersections for a smoother
(with reduced stop-and-go) and fuel-efficient traffic flow. An
intersection manager with knowledge of the state of the traffic
could schedule the intersection crossings of the vehicles.
With the assigned schedule, individual vehicles could further
optimize their travel to the intersection in a fuel-efficient way.

A preliminary version of this work appeared as [1] at the 5th IFAC
Workshop on Distributed Estimation and Control in Networked Systems.
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In contrast to traditional intersection management, networked
vehicle technologies allow us to coordinate the traffic not just
within the intersection, but also by controlling the vehicles’
behavior much before they arrive at the intersection. Such a
paradigm offers the possibility of significantly reduced stop
times and increased fuel efficiency, and is the subject of
this paper. This idea is not only applicable to intersection
traffic management in cities but also to traffic management
of automated vehicles/robots in warehouses, sea and airports.
Here, our focus is on a single intersection, leaving for future
work the design of efficient strategies for coordinated traffic
management in networks of intersections.

Literature review: Much of the literature in the area of
coordination-based intersection management focuses on colli-
sion avoidance of vehicles within the intersection. Supervisory
intersection management (intervention only when required
to maintain safety by avoiding collisions) is explored using
discrete event abstractions in [2], [3] and reachable set com-
putations in [4], [5]. On the other hand, [6] designs supervisory
control for safe usage of an intersection while seeking to min-
imize the deviation of the supervisory control from a human
driver’s intent, while [7] proposes a least-restrictive supervi-
sory control for multiple intersections. The works [8], [9] and
references therein describe a multiagent simulation approach
in which, upon a reservation request from a vehicle, an inter-
section manager accepts or rejects the reservation based on a
simulation. Each vehicle attempts to conform to its assigned
reservation and, if this is predicted not to be possible at any
time, the reservation is canceled. [10] also uses a reservation-
based system to schedule intersection crossing times and
provides provably safe maneuvers for vehicle following in a
lane as well as for crossing the intersection. [11], [12] use
a method based on model predictive control to coordinate
the intersection crossing by vehicles and obtain suboptimal
solutions to a linear quadratic optimal control problem. [13]
also proposes a model predictive control approach in which
collision-free intersection crossing by vehicles is achieved
through a combination of hard no-collision constraints as well
as a soft constraint in the form of a term measuring collision
risk in the cost function. [14], [15] formulate the problem
of traffic coordination in the intersection as a mixed integer
program with non-collision separation constraints. In [16], a
heuristic policy assigns priorities to the vehicles, while each
vehicle applies a priority-preserving control and legacy vehi-
cles platoon behind a computer-controlled car. In this context,
we note that the ability to efficiently coordinate diminishes as
the vehicles get closer to the intersection. This is why here
we take an expanded view of intersection management that
looks at the coordinated control of the vehicles much before
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they arrive at the intersection. The methods above are not
suited for this setup or would prove to be too computationally
costly in such scenarios. An example of the expanded view
of intersection management is [17], [18], in which a polling-
systems approach is adopted to assign schedules, and then
optimal trajectories for all vehicles are computed sequentially
in order. Such optimal trajectory computations are costly and
depend on other vehicles’ detailed plans, and hence the system
is not robust. The work [19] assumes that the order in which
the vehicles must use the intersection is given. The proposed
design first finds throughput maximizing intersection usage
times, which are then used to compute energy minimizing
control input trajectories for each vehicle in a decoupled
manner. Closer to our paper, the works [20], [21] describe
a hierarchical setup, with a central coordinator verifying and
assigning reservations, and with vehicles planning their tra-
jectories locally to platoon and to meet the assigned schedule.
The proposed solution is based on multiagent simulations and
a reservation-based scheduling (with the evolution of the vehi-
cles possibly forcing revisions to the schedule), both important
differences with respect to our approach. [22] utilizes the
ideas of classical queuing theory and explores a slot-based
intersection management - wherein the vehicles are allotted
a time slot for using the intersection and the vehicles in turn
control their speed to use the intersection only within that time
slot. [23] is a recent survey of traffic control with vehicular
networks and provides other related references.

Statement of contributions: We propose a provably safe
intersection management system aimed at optimizing a com-
bination of cumulative travel time and fuel usage for all the
vehicles. Our first contribution is the idea of coordinating the
traffic at the intersection and on the branches leading to it in
a unified, holistic way. The basic observation is that planning
and controlling the vehicles from much before they arrive at
the intersection should lead to better overall coordination and
efficiency.

Our second set of contributions is a multi-layered design
that combines hierarchical and distributed control and is ap-
plicable to a wide range of traffic conditions. Our hierarchical-
distributed approach offers a balance between computational
complexity of the solution and optimal operation. The pro-
posed system is composed of three main elements: (i) clus-
tering to identify vehicles that platoon before arriving at the
intersection. We refer to such clusters of vehicles as bubbles.
We use the term bubble, rather than platoon, to emphasize
the dynamic, time-varying nature of the cohesiveness of the
group of vehicles as they travel towards the intersection.
With this terminology, a bubble becomes a cohesive group
(i.e., a platoon) by the time it crosses the intersection; (ii) a
branch-and-bound scheduling algorithm that, using aggregate
information about the bubbles, allows a central intersection
manager to find the optimal schedule of bubble passage; and
(iii) a distributed control algorithm for the vehicles at the local
level. This control policy ensures that the vehicles of each
bubble platoon into a cohesive group when they cross the
intersection and that each bubble conforms to the schedule
prescribed by the intersection manager, while guaranteeing
system-wide safety subject to speed limits and acceleration sat-

uration. Additionally, each vehicle seeks to optimally control
its trajectory whenever safety is not immediately threatened.
The first two aspects are contributions of this paper while the
aspect of local vehicular control incorporates the algorithmic
solution from our previous work [24].

Our third and final contribution is the technical analysis
leading to the provable safety of our design. In contrast to
computationally intensive multiagent simulation-based meth-
ods, we provide analytical guarantees on correctness, safety,
and performance. Further, the results provide good intuition
and fundamental and reliable principles for future designs. We
do acknowledge that the development of analytical guarantees
comes at the cost of some conservatism in the design. We have
performed a suite of simulations comparing our approach to
optimized signal-based coordination that show a significant
improvement in the cumulative energy consumption for a
wide range of traffic densities and a more socially equitable
distribution of cost. As a final note for the reader’s sake,
we have made every effort in the presentation to make the
components of the paper understandable even if the proofs of
the technical results are skipped in a first reading1.

II. PROBLEM STATEMENT

Consider an intersection with eight incoming traffic lanes, or
branches, labeled by {1, . . . , 8}, cf. Figure 1. There are two

Fig. 1. Traffic near an intersection. ∆S is the length of the intersection, which
must be covered by the vehicles going straight while the vehicles turning left
must travel along a curve of length ∆T . The numbers {1, . . . , 8} are labels
for the incoming lanes, or branches. Black dots represent individual vehicles,
which are clustered and contained within bubbles, represented by grey boxes.

branches in each incoming direction, one for going straight
and the other for turning left. We implicitly assume that the
vehicles that need to turn right do so during the time interval in
which the vehicles from the branch also go straight. This is a

1Throughout the paper, we use the following notation. We let R, R≥0, Z,
N, and N0 denote the set of real, nonnegative real, integer, positive integer,
and nonnegative integer numbers, respectively. For a non-empty ordered list
S = {j1, . . . , js}, we let |S| denote the cardinality of S. Further, S(i)
denotes the ith element ji of S. Thus, S(|S|) denotes the last element of S.
For convenience, we also use the notation j ∈ S (j /∈ S) to denote that j is (is
not) an element of S. For two ordered lists S1 and S2, we let S1 \S2 denote
the ordered list of elements that belong to S1 but not to S2, while preserving
the same order of S1. Given um ≤ uM , [u]uM

um
denotes the number u

lower and upper saturated by um and uM respectively, i.e., [u]uM
um

= um if
u ≤ um, [u]uM

um
= u if u ∈ [um, uM ], and [u]uM

um
= uM if u ≥ uM .
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reasonable assumption since the time to turn right is typically
smaller than the time to cross the intersection. For simplicity,
we assume that (i) all vehicles are identical with length L, (ii)
vehicles do not change lanes along the portion of the branches
we consider, and (iii) there are no sources or sinks for vehicles
along the branches (all new traffic appears at the beginning
of the branches and must cross the intersection). We discuss
later in Remark III.1 the extent to which these assumptions
can be relaxed in our algorithmic solution. The intersection
is a square with a side length of ∆S . The vehicles turning
left at the intersection traverse along a curve of length ∆T .
We say a pair of incoming branches are compatible branches
if the vehicles coming from them can use the intersection
simultaneously with guaranteed safety. Every other pair of
branches are non-compatible. Vehicles from non-compatible
branches may not use the intersection simultaneously. It is
easy to see that the set of compatible branches is the set of
unordered pairs

B , {{1, 3}, {2, 4}, {1, 5}, {2, 6},
{3, 7}, {4, 8}, {5, 7}, {6, 8}}. (1)

The dynamics of each vehicle k is a fully actuated second-
order system,

ẋvk(t) = vvk(t), (2a)
v̇vk(t) = uvk(t), (2b)

where xvk, vvk ∈ R are the position (negative of the dis-
tance from the front of the vehicle to the beginning of the
intersection) and velocity of the vehicle, respectively and
uvk(t) ∈ [um, uM ], with um ≤ 0 ≤ uM , is the input
acceleration. We use the superscript v to emphasize that the
state and control variables refer to individual vehicles. We
assume that each branch has a maximum speed limit that the
vehicles must respect. For the sake of easing the notation, we
assume that the speed limit on all branches is the same and
equals vM . Thus, for each vehicle k, vvk(t) must belong to the
interval [0, vM ] for all time t that the vehicle is in the system.

Each vehicle is equipped with vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication capabili-
ties. With V2I communication, the vehicles inform a central
intersection manager (IM) about their positions and velocities
and receive from it commands such as prescribed time of
arrival at the intersection. We assume the IM has the necessary
communication and computing capabilities. We seek a design
solution that aims to minimize a cost function that models
a combination of cumulative travel time and cumulative fuel
cost of the form ∑

k

∫ T exit
k

tspawn
k

(WT + |uvk|)dt, (3)

where k is the vehicle index, tspawn
k is the time at which

vehicle k ‘spawns’ into the problem domain and T exit
k is

the time at which the vehicle exits the intersection, i.e.,
xvk(T exit

k ) = ∆S + L or xvk(T exit
k ) = ∆T + L depending on

whether vehicle k goes straight or turns left at the intersection.
The weight WT sets the relative importance of travel time

versus fuel cost. Note that here we are using acceleration
as a stand-in for fuel consumption, when in reality vehicle
fuel consumption depends on many factors, including idling,
accessory power draw, and engine efficiency. The vehicles
over which the cost is summed may be chosen in different
ways - for example it may be over all vehicles that cross the
intersection in a time period or it may be over a fixed number
of vehicles. The constraints in the problem arise from the
speed limit, bounds on vehicle acceleration and deceleration,
and the safety requirements - which require scheduling the
intersection crossing of the vehicles and maintenance of safe
distance between the vehicles. Solving this problem at the level
of individual vehicles is computationally expensive and not
scalable. Thus, we aim to synthesize a solution that makes
this problem tractable to solve in real time and is applicable
to a wide range of traffic scenarios.

III. OVERVIEW OF HIERARCHICAL DISTRIBUTED
SOLUTION

This section gives an outline of our hierarchical distributed
solution to the problem stated in Section II. Our algorith-
mic solution combines optimized planning and scheduling of
groups of vehicles with local distributed control to ensure
safety and execute the plans. Its three distinct aspects are:

(i) grouping the vehicles into clusters,
(ii) scheduling the passage of the clusters through the inter-

section,
(iii) local vehicular control to achieve and maintain cluster

cohesion, avoid collisions, and ensure the clusters meet
the prescribed schedule.

Each of these aspects is coupled with the other two. Moreover,
an overarching theme is the dynamic nature of the problem
due to the arrival and departure of vehicles. Any complete
or partial solution has to be computed as new vehicles come
in (event based) or at regular time intervals (time based). In
what follows, we provide a general description of the main
ingredients of each aspect. At any given time t, we let ts be
the latest time prior to t at which the IM samples the state of
traffic and solves the corresponding static scheduling problem.

Aspect 1 – generation of bubbles: The primary motivation
to cluster vehicles is to reduce the number of independent
entities that need to be considered in the (computationally
expensive) schedule optimization problem. For instance, the
maximum number of clusters can be fixed according to the
available computational resources so that the scheduling prob-
lem remains tractable. At time ts, the vehicles present in the
incoming branches are grouped into N clusters. We let Np
denote the number of clusters on branch p. Given the position
information of the vehicles at ts, we use n-means clustering on
each branch individually to identify the clusters. The relative
positions of the vehicles of a cluster may vary significantly
over the course of their travel and the vehicles may not be
in the form of a well-defined platoon at all times. Hence, we
refer to a cluster of vehicles as a bubble (shown as grey boxes
in Figure 1). The defining characteristic of a bubble is that all
the vehicles of a bubble cross the intersection together. The
state of the ith bubble is given by the tuple

ξi = (xi, vi,mi, τ̄
occ
i , Ii) ∈ R4 × {1, . . . , 8},
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where xi, vi and mi are, respectively, the position of the lead
vehicle in the bubble, the velocity of the lead vehicle in the
bubble, and the number of vehicles in the bubble. We denote
by τocci , the occupancy time of bubble i, which is the time
duration for which the intersection is occupied by bubble i.
The quantity τ̄occi is an upper bound on the occupancy time
that can be guaranteed a priori, and is a function of the bubble
size mi and various other system parameters. The quantity Ii
denotes which of the incoming branches the bubble is on.
Within each branch, we require the order of the bubbles to
remain constant during the bubbles’ travel (i.e., there is no
passing allowed). To capture the ordering constraints on the
bubbles, we define the function R,

R(i, j) ,


1, if Ii = Ij , xj(ts) < xi(ts),

−1, if Ii = Ij , xi(ts) < xj(ts),

2, if {Ii, Ij} ∈ B,
0, if Ii 6= Ij , {Ii, Ij} /∈ B.

According to this definition, R(i, j) = 1 if and only if bubbles
i and j are on the same branch and bubble j follows bubble i.
Similarly, R(i, j) = −1 if and only if bubbles i and j are on
the same branch and bubble j precedes bubble i. Additionally,
R(i, j) = 2 (respectivelyR(i, j) = 0) if and only if the pair of
bubbles {i, j} belong to compatible (resp. non-identical non-
compatible) branches. As a short-hand, we say bubbles i and
j are compatible (resp. non-compatible) if R(i, j) = 2 (resp.
R(i, j) 6= 2).

We describe in detail the generation of bubbles and the
algorithm to select the bubbles to schedule in Section IV
below. We impose a limit on the number of bubbles that are
scheduled at any given time to N̄ , even if the actual number
of bubbles in the system were greater, so as to keep the
computational cost manageable. However, in the algorithm we
describe in the sequel, each bubble is scheduled at least once
and some bubbles may be scheduled more than once. We let
tsi denote the latest time prior to t at which bubble i was
scheduled.

We index the vehicles in bubble i as (i, 1), . . . , (i,mi),
where (i, 1) refers to the lead vehicle in bubble i and so
on until (i,mi), the last vehicle in the bubble. We also find
it convenient for the label (i, 0) to represent the last vehicle
(i′,mi′) of the bubble i′ that precedes bubble i on the same
branch or, if such bubble does not exist, we let (i, 0) be an
imaginary vehicle located at∞. We drop the index i whenever
there is no ambiguity with regard to the bubble.

Aspect 2 – scheduling of bubbles: The job of the scheduler
is to prescribe to each bubble an approach time τi - the
time at which the ith bubble is to reach the beginning of
the intersection, i.e., xi(τi) = 0, so that no two different
bubbles collide. In solving this problem, the scheduler has
to respect the order of bubbles on the same branch and take
into account no-collision constraints between bubbles on two
different branches that are not compatible. The preservation of
the order of intersection crossing by the bubbles on the same
branch takes the form,

τj ≥ τi + τ̄occi , if R(i, j) = 1, (4a)

for i, j ∈ {1, . . . , N}. Note that these constraints only ensure
that the passage of bubbles on a branch through the intersec-
tion occurs in the same order as they have arrived, but they
do not necessarily exclude collisions for the entire travel time.
The intra-branch collisions are avoided at a local level and
we accept the resulting sub-optimality. On the other hand, the
no-collision constraint between bubbles on two different non-
compatible branches takes the form,

τi ≥ τj + τ̄occj OR τj ≥ τi + τ̄occi , if R(i, j) = 0, (4b)

for i, j ∈ {1, . . . , N}. Note that there are no scheduling con-
straints for pairs of bubbles belonging to compatible branches.

The constraints (4b) make the scheduling problem combina-
torial in nature because of the need to determine whether i or
j goes first. Since the order on each branch is to be preserved,
the number of sub-problems is upper bounded by the number
of permutations of the multiset {Ip}Np=1, i.e.,

N !∏8
p=1Np!

=

(∑8
p=1Np

)
!∏8

p=1Np!
,

where recall that Np is the number of bubbles on branch p
and N is the total number of bubbles. This upper bound is
obtained by ignoring the possibility of simultaneous use of
the intersection by compatible bubbles. The precise number
of sub-problems depends on the initial conditions as well as
on the specific choices of the approach times τi. We describe
in detail the algorithm for optimal scheduling of bubbles in
Section V.

Aspect 3 – local vehicular control: The local vehicular
control has various equally relevant goals. The first goal is
to avoid collisions within each bubble and among different
bubbles in the same branch. The second goal is for the local
vehicular control to ensure that the bubble approaches the
intersection at the prescribed time τi and that the occupancy
time of the bubble, τocci , is no more than τ̄occi . The scheduler
requires the quantity τ̄occi and other quantities such as earliest
and latest times of approach at the intersection for the bubble
that are functions of the initial conditions. All these quantities
may be computed by the bubble and passed on to the IM or,
instead, the state of each car may be passed to the IM. We
assume that the control law at the vehicle level ensures that a
vehicle does not change bubbles during the course of its travel
time. Thus, as far as the scheduling aspect is concerned, mi

may be assumed constant in time. We describe in detail the
local vehicular control component in Section VI below.

Remark III.1. (Relaxation of assumptions). We discuss here
the extent to which the assumptions made in Section II can
be relaxed in our proposed design. We make assumption (i)
only for the sake of simpler notation and ease of exposition.
Our algorithm can handle non-identical vehicles with differing
dimensions and differing acceleration limits, though those
quantities need to be known. We can relax assumption (iii) if
the sources or sinks are not close to the intersection with minor
changes in our algorithm for bubble generation. The relaxation
of assumption (ii) about lane changing is more challenging
and we hope to address it in future. Finally, we assume
that vehicles/bubbles from non-compatible branches must not
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occupy the intersection simultaneously. However, this could
be relaxed by imposing the constraint that vehicles from each
pair of non-compatible branches do not occupy a small region
(determined based on the dimensions and properties of the
vehicles) around the intersection point of the geometric paths
from that pair of branches. We have made our assumption
to avoid additional notation and simplify the exposition given
that the conceptual loss is not significant. •

IV. DYNAMIC VEHICLE CLUSTERING

The primary motivation for clustering vehicles into bub-
bles is to reduce the computational burden on the scheduler.
Consequently, we impose the upper bound N̄ on the number
of bubbles that the scheduler needs to consider at any given
instance. Further, as new vehicles arrive, they need to be as-
signed to new bubbles. In order to balance both requirements,
we divide each branch into three zones, as shown in Figure 2:
staging zone (of length Ls), mid zone (of length Lm) and
exit zone (of length Le). For each branch p ∈ {1, . . . , 8}, we
let Zsp , Zmp and Zep be the set of positions on the branch p
corresponding to the staging, mid and exit zones, respectively.

Fig. 2. Division of an incoming branch into zones.

The clustering into bubbles algorithm is executed
every Tcs units of time. At each clustering instance ts = sTcs,
s ∈ N0, the vehicles in the staging zone that do not already
belong to a bubble are clustered. Thus, the choice Tcs < Ls

vM
,

where recall that vM is the max speed limit, ensures that
every vehicle belongs to a bubble before it leaves the staging
zone and enters the mid zone. We impose an upper bound
N̄p on the number of new bubbles that may be created on
branch p at any clustering instance. At a clustering instance
ts = sTcs, let nuap denote the number of vehicles to be
clustered in the staging zone of branch p (the superscript ua
stands for “unassigned”). Then, the nuap vehicles are clustered
based on their position using the Mp-means algorithm, with
Mp = min{nuap , N̄p}, see e.g., [25]. Thus, the nuap vehicles
on branch p are partitioned into Mp number of clusters or
bubbles such that the sum of squares of the distances from
each car to the center of its bubble is minimized. The clustering
component in our design is modular and hence any alternative
clustering algorithm may be used.

We make the assumption that N̄ ≥
∑
p N̄p. This allows

for the possibility that, at each scheduling time instant, some
of the previously scheduled bubbles may be scheduled again.
The algorithm makes sure that no more than N̄ bubbles are
passed to the IM manager for scheduling at any instance. This
is achieved using two observations. First, previously scheduled
bubbles that have already entered the exit zone of their branch
are no longer fed to the IM for scheduling (i.e., its schedule
is not modified any further). Second, if the number of newly

created bubbles and the previously created bubbles yet to enter
the exit zone exceeds N̄ , then the algorithm pops out the
required number of bubbles from the top of the list of bubbles
previously scheduled (corresponding to the ones closer to their
respective exit zones). We present the precise description of
the clustering into bubbles algorithm in Algorithm 1.

Algorithm 1 : clustering into bubbles at sTcs

Input: L0, τmin
0

{Ordered list of bubbles scheduled at (s− 1)Tcs and
earliest approach time used in scheduling them}

1: L ← L0 \ {j ∈ L : Ij = p ∧ xj /∈ Zs
p ∪Zm

p }
{remove bubbles that are not completely within

the staging and the mid zones}
2: for p = 1 to 8 do
3: N̄p {max new bubbles on branch p}
4: Mp ← min{nua

p , N̄p} {# new bubbles on branch p}
5: Cluster new vehicles on branch p using Mp-means algorithm
6: end for

7: M←
8∑

p=1

Mp

8: if M+ |L| > N̄ then
9: Remove first M+ |L| − N̄ bubbles from L {Ensure only N̄

bubbles provided to scheduler by dropping the
earliest bubbles in previous schedule}

10: end if
11: Append new bubbles to L
12: τmin ← max

(
{τmin

0 }∪{τi + τ̄occi : i ∈ L0 \ L}
)

{earliest approach time for the bubbles in L}
Output: L, τmin

The algorithm takes in the list of bubbles L0 scheduled
on the last iteration and an earliest approach time τmin

0 used
when scheduling it. The output is a list of bubbles L to be
scheduled and the earliest approach time τmin for them. Note
from step 12 of Algorithm 1 that τmin is an upper bound
on the time by which all the bubbles not in the L list are
guaranteed to cross the intersection. Thus, when scheduling
L, the scheduler imposes the constraint that the bubbles in L
approach the intersection no earlier than τmin.

Remark IV.1. (Effect of zone lengths on clustering and
scheduling). The lengths of the three zones illustrated in
Figure 2 directly affect the resulting traffic coordination.
Although we do not pursue here a systematic design of these
zone lengths, we can identify some basic observations of their
effect on clustering and scheduling. We envision these zone
lengths to be of the order of several tens of meters. The length
Ls of the staging zone has a direct effect on the time step of
the periodic execution of clustering and scheduling as well
as on the number of vehicles per bubble. The length Lm of
the mid zone has an effect on the likelihood of scheduling a
bubble more than once. Finally, the length Le of the exit zone
has an effect on the feasibility of the scheduling problem,
which we guarantee by assuming that Le is large enough for
a vehicle to come to a complete stop from a maximum speed
of vM in under a distance Le. Feasibility of the scheduling
problem does not affect liveness of our algorithm but rather
affects guarantees on safety. If Le was not large enough, then
vehicles may not be able to come to a complete stop before
the intersection, which in turn would impose finite interval
constraints on the time duration during which the bubble could
safely use the intersection. •
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Remark IV.2. (Re-clustering). The clustering into

bubbles algorithm is just one method of defining bubbles and
selecting which ones to schedule. In this algorithm, a vehicle
is assigned to a bubble only once and the vehicle is part of that
bubble throughout its travel. However, one could implement a
strategy which re-clusters all vehicles in the staging and mid
zones so that vehicles may be reassigned to a different bubble,
bubbles may be merged or split as needed, and so on. Such an
algorithm would also allow sources and sinks on the branch
such as smaller streets, homes, and retail. •

V. SCHEDULING OF BUBBLES

This section describes the scheduling algorithm employed
by the intersection manager (IM) to decide the order of
passage, through the intersection, of the bubbles in L, which
is provided by the clustering algorithm. The scheduling algo-
rithm is also executed every Tcs units of time. In this section,
we let L be the set {1, . . . , N}, where N = |L|, without loss
of generality.

A. Cost function and constraints

In our approach, the IM schedules bubbles as a whole using
an abstraction of the vehicle dynamics and the cost function.
First, regarding the vehicle dynamics, we note that the inter-
vehicle approach times at the intersection and the resulting
occupancy time of a bubble is a degree of freedom. However,
we have made the alternative choice of not considering it
as such in the scheduling algorithm, and instead only use
an upper bound on the occupancy time τ̄occi (that the local
vehicular control component can guarantee) appearing in the
constraints (4). Second, regarding the cost function, we ab-
stract the fuel cost for the vehicles in a bubble i into a single
function Fi that depends only on the average velocity of the
bubble i (lead vehicle in the bubble) for t ∈ [ts, ts + τi],
where ts = sTcs is the time at which the scheduling algorithm
is executed. We allow for the possibility of the function Fi
depending on the initial conditions of the vehicles in bubble
i. Thus, the scheduling algorithm minimizes the following
simplified cost function CL, where CL for a given list of
bubbles L is

CL ,
∑
i∈L

mi(WT τi + Fi(v̄i))

=
∑
i∈L

mi

(
WT

di
v̄i

+ Fi(v̄i)
)
,
∑
i∈L

φi(v̄i). (5)

Here, v̄i is the average velocity of the lead vehicle in bubble
i for t ∈ [ts, ts + τi], i.e., v̄i = di

τi
, where di , −xi(ts). The

optimization variables are v̄i for each bubble i ∈ L.
Note that in the cost function CL, the functions Fi could, in

general, depend on initial conditions modeled as parameters
(such as the distance di to reach the intersection). The cost
function (5) models a combination of cumulative travel time
and total fuel usage. Motivated by the fact that fuel efficiency
is typically an increasing function of vehicle speed for speeds
under the limits enforced on most roads with intersections, we
make the assumption that, for each i ∈ L, Fi : [0, vM ] 7→ R>0

is monotonically decreasing.

Remark V.1. (Simplified cost function). Note that (5) is a
much simplified version of the original cost function (3).
Here the aim is to come up with a cost function for a
bubble as a whole. In general, the total cost incurred by
the vehicles of a given bubble in the sense of (3) has quite
a complicated dependence on the interactions among the
vehicles of the bubble as well as those of other bubbles
on the same branch and other branches. However, capturing
this complicated relationship accurately may not sufficiently
reduce, if at all, the complexity (in terms of optimization
variables) compared to (3). Thus, we have used the heuristic
that longer travel times (equivalently lower average velocities)
mean idling for longer and lower fuel efficiency for the same
distance, which hence must incur more cost. Nevertheless,
we allow for the functions Fi to potentially depend on the
initial conditions or any other relevant data. The task of
systematically fine-tuning the functions Fi based on available
data and quantifying the suboptimality is challenging, and we
leave such analysis for future work. However, we would like
to point out that even without any data-based customization of
Fi, our simulations (cf. Figure 4 in Section VIII, which uses
the actual cost function) show that the proposed algorithm in
general outperforms signal-based traffic management in terms
of fuel efficiency over a wide range of traffic flow rates. •

Regarding the constraints, conditions on the travel times can
be re-expressed as conditions on average velocities as

τi ≥ τj + τ̄occj ⇐⇒ di
v̄i
≥ dj
v̄j

+ τ̄occj

⇐⇒ v̄j ≥ cjiv̄i + bjiv̄j v̄i, cji =
dj
di
, bji =

τ̄occj

di
. (6)

Thus, we re-express the no-collision constraints (4) as

v̄i ≥ cij v̄j + bij v̄iv̄j , if R(i, j) = 1, (7a)
v̄j ≥ cjiv̄i + bjiv̄j v̄i OR v̄i ≥ cij v̄j + bij v̄iv̄j , if R(i, j) = 0.

(7b)

In addition, we also need to ensure that the scheduling at
instance sTcs of the bubbles in L does not conflict with
the ones that have been previously scheduled. Formally, this
corresponds to having the time τi to reach the intersection for
bubble i be no less than τmin (cf. step 12 of Algorithm 1).
Equivalently, we require

v̄i ≤
di
τmin . (7c)

Note that the scheduling problem is combinatorial in nature
due to the no-collision constraints (7b). Thus, even though
the cost function CL is simple and the optimization variables
are the average velocities v̄i, we believe this formulation pro-
vides a good balance between usefulness and computational
tractability. Further, the local vehicular control we present in
Section VI seeks an optimal control profile to achieve the
prescribed average velocity for the bubble, which justifies the
restriction to v̄i as the optimization variables in the scheduling
aspect. Thus our proposed solution, although sub-optimal, is
still principled.

We next describe our solution to the scheduling problem
consisting of minimizing CL in (5) under the constraints (7)
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and v̄i ∈ [v̄mi , v̄
M
i ]. The lower v̄mi ≥ 0 and upper v̄Mi ≤ vM

limits on the average velocity depend on the initial conditions
of the vehicles and desired speed limits. The quantities v̄mi
and v̄Mi are inversely related to the latest time of approach and
the earliest time of approach at the intersection for bubble i,
respectively. The computation of these quantities is described
in Section VI-A. Similarly, the upper bound τ̄occi on the
occupancy times may be computed as in Section VI-B. In
the first part of our solution to the scheduling problem, we
determine the optimal schedule and optimal cost given a fixed
partial order of bubble passage through the intersection. In
the second part, we use a branch-and-bound algorithm to find
the optimal order and schedule.

B. Optimal bubble average velocity for fixed partial order of
passage

Given a desired partial order (which is also a list) of bubble
passage through the intersection, here we address the problem
of determining the optimal average velocities of the bubbles
and the associated optimal cost. For this purpose, define a
partial order of the approach times of the bubbles as a list, P ,
of the integers from 1 to |P | ≤ N . We use P (i) to denote the
ith element in the list and we use σP (i) to denote the position
of bubble i in the list P . Each partial order P encodes one
out of all the sub-problems that are induced by the scheduling
constraints (4b) (or equivalently (7b)). In particular, a partial
order P refers to the sub-problem with the constraints

τ(P (i)) ≥ τ(P (j)) + τ̄occ(P (j)),

for all i ∈ {1, . . . , |P |} and for all j ∈ {1, . . . , i − 1 :
R(P (i), P (j)) 6= 2}. In other words, P encodes the sub-
problem in which each bubble P (i) enters the intersection
only after all the non-compatible bubbles P (j) that appear
before P (i) in the list P have passed through the intersection
completely. Note that more than one list can refer to the same
sub-problem. For example, assuming the bubbles 1 and 2 are
compatible, then the lists {1, 2} and {2, 1} each refer to the
same sub-problem. In the sequel, we consider only those lists
that respect the intra-branch orders, that is σP (i) < σP (j) if
R(i, j) = 1. Given P that respects the intra-branch orders,
the bubble velocity optimization algorithm, formally
described in Algorithm 2, finds a solution to the optimization
of CP (which is same as in (5) but with i ranging over the set
P rather than L) under the constraints (7), v̄i ∈ [v̄mi , v̄

M
i ], and

with partial order P .
The following result shows that, for a partial order that

respects the intra-branch order, the algorithm finds the average
velocities that optimize the cost function CP .

Lemma V.2. (bubble velocity optimization algorithm
optimizes the schedule given a partial order that respects
the intra-branch orders). For each i ∈ {1, . . . , N}, assume
the fuel cost function Fi is monotonically decreasing. Let P ,
with |P | ≤ N , be a partial order respecting the intra-branch
orders and denote by v̄P = (v̄P1 , . . . , v̄

P
N ) and C the output of

Algorithm 2. Then, v̄P and C are, respectively, a minimizer
and the minimum cost of the optimization problem with the cost
function as CP (5) under the constraints (7), v̄i ∈ [v̄mi , v̄

M
i ].

Algorithm 2 : bubble velocity optimization

Input: Order P
1: C ← 0
2: for h = 1 to |P | do
3: i← P (h) {bubble i is in position h in P}
4: if h = 1 then
5: v̄Pi ← v̄Mi
6: else
7: R ← {r ∈ {P (1), . . . , P (h − 1)} : R(i, r) 6= 2}

{set of bubbles in P up to position h − 1 that
are non-compatible with bubble i}

8: v̄Pi ← min
r∈R
{v̄Mi ,

v̄Pr
cri + briv̄Pr

}

9: end if {v̄Pi is the optimizer for bubble i}
10: C ← C + φi(v̄

P
i ) {update cost}

11: end for

Proof: Given the order P , the constraints (7) reduce to
v̄j

cji + bjiv̄j
≥ v̄i

where j = P (h − 1), i = P (h) and h ∈ {2, . . . , N}. The
left-hand side of the inequality is an increasing function of v̄j .
Since Fi is a monotonically decreasing function for each i, v̄Pi
takes the maximum possible value. The algorithm computes
the components of v̄P iteratively and the result follows.

C. Optimal ordering via branch-and-bound

We propose a branch-and-bound algorithm to solve the
optimal scheduling problem. We start by providing an informal
description.

Informal description: A branch-and-bound algorithm
consists of a systematic enumeration of the set of
candidate solutions as a rooted tree2, with the full set
at the root. The algorithm explores branches of the
tree, which represent subsets of the set of candidate
solutions. Before evaluating the candidate solutions
of a branch, the branch is checked against upper
bounds on the optimal solution, and is discarded if it
is determined that it cannot produce a better solution
than the best one found so far.

We formally specify each of the components in this descrip-
tion next, starting with the rooted tree. We let P denote any
partial order of up to length N , with non-repeating numbers
drawn from {1, . . . , N}, and preserving the individual branch
orders. With this notation, the empty list P = ∅ denotes the
root of the tree, representing all feasible orders. Similarly,
P = (i1, . . . , ih) denotes the subtree of all the feasible
partial orders in which bubbles i1 through ih each enter

2We make use of basic notions from graph theory, cf. [26], [27]. A digraph
of order n is a pair G = (V,E), where V is a set with n elements called
nodes and E is a set of ordered pair of nodes called edges. A directed path is
an ordered sequence of nodes such that any ordered pair of nodes appearing
consecutively is an edge. A cycle is a directed path that starts and ends at the
same node and contains no repeated node except for the initial and the final
one. A digraph is acyclic if it has no cycles. A directed (or rooted) tree is
an acyclic digraph with a node, called root, such that any other node can be
reached by one and only one directed path starting at the root. If (i, j) is an
edge of a tree, i is the parent of j, and j is the child of i. A node j is called
a descendant of a node i if there is a directed path from i to j. Given a tree,
a subtree rooted at i is the tree that has i as its root and is composed by all
its descendants in the original tree.
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the intersection only after all the non-compatible bubbles
preceding each of them, respectively, in the list has completely
crossed the intersection. The order of the remaining bubbles
is undetermined.

Our next step is to provide a way to determine a lower
bound on the achievable optimal value of any given branch.
This follows from the observation that (i) the execution of
the bubble velocity optimization algorithm finds the
optimal value of the average velocity of a bubble given the
partial order of all the bubbles preceding it, but (ii) one can
compute an lower bound for the optimal value even if only
part of the order of bubbles preceding it is known. The de-
scription in Algorithm 3 of this procedure, termed bounding

optimal bubble velocity algorithm, relies on eight or-
dered lists, termed queues, one for each branch. The queue
for branch p, Qp = (ip,1, . . . , ip,Np

), is initialized to the list
of all the bubbles on branch p in their order of arrival (thus
R(ip,s, ip,s+1) = 1 for all s ∈ {1, . . . , Np − 1}). We denote
by HP

i the upper bound on the average velocity v̄i of bubble i
obtained by Algorithm 3 given that a non-empty P precedes it.
This allows us to lower bound the optimal cost for any partial
order in the subtree P in terms of v̄Pi and HP

i as follows,

CP ,
∑
i∈P

φi(v̄
P
i ) +

∑
i∈L\P

φi(H
P
i ). (8)

This lower bound is precisely what is required to implement a
branch-and-bound algorithm to find the optimal schedule for
the bubbles.

Algorithm 3 : bounding optimal bubble velocity

1: Compute {v̄P
P (1)

, . . . , v̄P
P (|P |)} using bubble velocity

optimization with input P
2: for p = 1 to 8 do
3: Qp ← Qp \ P {pop-out P from Qp}
4: if Qp 6= ∅ then
5: i← Qp(1) {i is first of remaining bubbles in

Qp}
6: R← {r ∈ P : R(i, r) 6= 2} {set of bubbles in P

that are non-compatible with bubble i}

7: HP
i ← min

r∈R
{v̄Mi ,

v̄Pr
cri + briv̄Pr

}

8: for s = 2 to |Qp| do
9: i← Qp(s)

10: j ← Qp(s− 1)

11: HP
i ← min{v̄Mi ,

HP
j

cji+bjiH
P
j

}
12: end for
13: end if
14: end for

Specifically, the branch-and-bound algorithm starts by pick-
ing an arbitrary candidate order and computing the cost for it,
using the bubble velocity optimization algorithm, and
storing the two as the current best solution and cost. Then,
starting at the root node of the tree of all feasible orders,
the algorithm searches (e.g., using depth-first or breadth-first
search) for an optimal solution. If at any time a leaf node,
which corresponds to a fully determined order, is reached
and its cost is better than the current best, then the current
best solution and cost are updated. For any other node P
in the tree, (8) provides a lower bound CP on the cost of
all the orders represented by the node P . If CP is greater

than the current best known cost, then the subtree P is
discarded. This process continues until the algorithm finds the
optimal solution. We refer to this process as the schedule

optimization algorithm.

VI. LOCAL VEHICULAR CONTROL

The local vehicular control component of our hierarchical-
distributed coordination approach involves two main tasks:
(i) compute, for each bubble i, the lower v̄mi and upper
v̄Mi average velocity bounds, and the upper bound on the
intersection occupancy time τ̄occi that are provided to the
scheduler; and (ii) control the vehicles ensuring safety and so
that all the vehicles of bubble i cross the intersection within
the time interval [τi, τi + τ̄occi ] prescribed by the scheduler.
The successful execution of each of these tasks requires an
understanding of the vehicle dynamics and the desired safety
constraints and the effect of each on the other. Due to the
modular nature of the different aspects of our hierarchical-
distributed solution, any distributed algorithm that meets the
above two requirements can be used for the local vehicular
control. As an example, we invoke the controller design from
our previous work [24] on vehicle strings under finite-time and
safety specifications. For the sake of completeness, we review
here the main elements and performance guarantees of this
design as needed by the hierarchical-distributed approach.

A. Bounds on average bubble velocity

Recall that v̄i is the average velocity of the lead vehicle of
bubble i from ts and until the lead vehicle is supposed to reach
the beginning of the intersection at τi. Thus, it may seem that
computing lower and upper bounds on the achievable average
velocity of the lead vehicle in the bubble is sufficient to
determine v̄Mi and v̄mi . However, ignoring the initial conditions
of the other vehicles in the bubble in the computation of v̄Mi
and v̄mi poses the risk of lengthening the guaranteed upper
bound τ̄occi on the occupancy time. The reasoning for this is
better explained in terms of earliest times of approach of the
vehicles at the intersection.

In bubble i, we let τei,k be the earliest time vehicle (i, k)
can reach the intersection ignoring the other vehicles on the
branch. Letting tsi = siTcs be the time at which bubble i was
last scheduled, the quantity τei,k − tsi is then the time it takes
xvi,k to reach 0 from xvi,k(tsi) for the trajectory with maximum
acceleration until vvi,k = vM and zero acceleration thereafter.
Thus, we see that if τei,k for some k > 1 is significantly greater
than τei,1 then the vehicle (i, 1) has to slow down to approach
the intersection at a time later than τei,1 so that the guaranteed
upper bound τ̄occi on the occupancy time is small enough.
Thus, we propose an alternative solution. To do so, we first
introduce the notion of safe-following distance.

Definition VI.1. (Safe-following distance). The maximum
braking maneuver (MBM) of a vehicle is a control action that
sets its acceleration to um until the vehicle comes to a stop,
at which point its acceleration is set to 0 thereafter. Let k− 1
and k be the indices of two vehicles on the same branch, with
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vehicle k immediately following k − 1, and define

D(vvk−1(t), vvk(t)) ,

L+ max
{

0,
1

−2um

(
(vvk(t))2 − (vvk−1(t))2

)}
. (9)

The quantity D(vvk−1(t), vvk(t)) is a safe-following distance at
time t for the pair of vehicles k−1 and k because if xvk−1(t)−
xvk(t) ≥ D(vvk−1(t), vvk(t)) and, if each of the two vehicles
were to perform the MBM, then the two vehicles would be
safely separated, xvk−1 − L ≥ xvk until they come to a stop. •

We let νnom
S

and νnom
T

be the nominal speeds for vehicles
when entering the intersection, depending on whether the
bubbles they belong to go straight or take a turn. Since vehicles
typically need to turn at a lower speed than when going straight
νnom
T
≤ νnom

S
. We define Dnom

S
, D(νnom

S
, vM ) for bubbles

that go straight and Dnom
T

, D(νnom
T

, vM ) for those that take
a turn at the intersection. When no distinction needs to be
made between the bubbles or when it is clear from the context
which of the two variants is being referred to, we drop the
qualifying subscript. In each case, Dnom has the connotation
of a safe inter-vehicle distance given a vehicle is traveling at
the maximum allowed speed vM and the vehicle preceding it
traveling at a speed greater than or equal to νnom. Then, we
also define T nom , Dnom/νnom as the nominal inter-vehicle
approach time. In the design of the local vehicular control,
we require each vehicle to enter the intersection with a speed
of at least νnom. Then, as we shall see in the sequel, T nom

determines the bound on the inter-approach time of any two
consecutive vehicles in a bubble.

With this notation in place, we see that the earliest time of
approach for vehicle (i, k) forces the earliest time of approach
of bubble i, i.e. vehicle (i, 1), to be no less than τei,k − (k −
1)T nom. Hence, we define the earliest time of approach for
the bubble i, τei as

τei , max{τei,k − (k − 1)wT nom : k ∈ {1, . . . ,mi}}, (10)

where w ∈ [0, 1] is the prescribed approach times tuning pa-
rameter. Then, we let v̄Mi = −xi(ts)

τe
i

. Analogous computations
with maximum deceleration yield the latest time of approach
τ li of bubble i, possibly with τ li =∞, and the corresponding
lower bound v̄mi ≥ 0 for the average velocity. Hence, the
values we obtain in this way for v̄mi and v̄Mi are, respectively,
larger and smaller than the ones we would have obtained if
we only took into account the lead vehicle of the bubble.

We refer to a schedule as feasible if it satisfies the con-
straints (4), or equivalently (7), which ensures non-collision
between bubbles on two different non-compatible branches.
For a given upper bound on the occupancy time and the sets
of v̄mi and v̄Mi for i ∈ L, a feasible schedule may not always
exist. Thus, to guarantee the feasibility of the scheduling
problem in a simple fashion, we assume that the exit zone
length Le is large enough.

Lemma VI.2. (Existence of a feasible schedule). If the exit

zone length, Le ≥
(vM )2

−2um
+

max{(νnom
S

)2, (νnom
T

)2}
2uM

, then

there always exists a feasible schedule, in which each vehicle

is able to enter the intersection with a speed of at least
max{νnom

S
, νnom

T
}.

Proof: Recall, that a schedule is assigned to a bubble
when all the vehicles in the bubble are still in the staging or
the mid zones. Clearly, the condition on Le implies that any
vehicle in the staging zone or the mid zone (xvk ≤ −Le) can
come to a complete stop and then accelerate to a speed of at
least max{νnom

S
, νnom

T
} before arriving at the beginning of the

intersection (xvk = 0).
Note that, under the assumptions of Lemma VI.2, the result-

ing schedule can handle any vehicle inflow, in the sense that
all vehicles can go through the intersection without collisions
in the intersection. Essentially, this is because each vehicle has
the possibility to safely come to a stop before the intersection.
As a result, if necessary, vehicles can stop for an arbitrarily
long time before the intersection prior to using it.

B. local vehicular controller and bound on guaranteed
occupancy time

Here, we present the structure of the local vehicle controller,
the complete details of which appear in [24]. In particular, this
controller is a switched controller that has two modes - the
uncoupled mode and the safe-following mode. When the state
is in these modes, an uncoupled controller guc and a safe-
following controller gsf , respectively is active. Essentially, a
vehicle is in the uncoupled mode if the vehicle immediately
preceding it is sufficiently far away and in the safe-following
mode otherwise. To make precise whether two vehicles are
sufficiently far from each other, we introduce the coupling set
V defined by

V , {(v1, v2, σ) : v2 ≥ v1 and σ ∈ [1, σ0]}, (11)

with v1 and v2 being the velocities of the leading vehicle and
the following vehicle, respectively; σ0 > 1 a design parameter
and σ is the safety ratio between two consecutive vehicles on
the same branch. To be precise, we define the safety ratio
between vehicle k and vehicle k − 1 as

σk(t) ,
xvk−1(t)− xvk(t)

D(vvk−1(t), vvk(t))
,

Thus, the safety ratio is the ratio of the actual inter-vehicle
distance to the safe-following distance. The vehicles are at a
safe following distance as long as σ > 1. Intuitively, if ζk ∈ V ,
then vehicle k is going at least as fast as the vehicle in front
of it, and their safety ratio is close to 1. With this in mind,
we define the local vehicular controller for vehicle k,

uvk(t) =


guc, if ζk /∈ V, vvk < vM ,

[guc]
0
um
, if ζk /∈ V, vvk = vM ,

gsf , if ζk ∈ V, vvk < vM ,

[gsf ]0um
, if ζk ∈ V, vvk = vM .

(12)

This controller has the vehicle use the safe-following con-
troller when in the coupling set, and the uncoupled controller
otherwise.

The last element of the design is the upper bound on the
guaranteed occupancy time for a bubble. To obtain this, we
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first upper bound the inter-approach times of vehicles in a
given bubble at the beginning of the intersection.

Proposition VI.3. (Upper bound on the inter-approach times
of vehicles in a bubble at the intersection [24]). For any bubble
i and any vehicle k ∈ {2, . . . ,mi}, if vvi,k−1(T ai,k−1) ≥ νnom,
then vvi,k(T ai,k) ≥ νnom and T ai,k −T ai,k−1 is upper bounded by

T iat ,

{
σ0T

nom, if vv ≥ νnom,

max{σ0T nom, T fol(vv)}, if vv < νnom,

where vv , −umv
M

−um+σ0uM
and

T fol(v) ,
(νnom)2 − v2

2uMvM
+
σ0D(v, vM )

vM
+
νnom − v
uM

.

Using this result, one can guarantee the following upper
bound on the intersection occupancy time of a bubble under
the local vehicular controller.

Corollary VI.4. (Guaranteed upper bound on occupancy time
of a bubble [24]). For any bubble i, its occupancy time τocci

is upper bounded as τocci ≤ τ̄occi , where

τ̄occi = (mi − 1)T iat + max

{
L+ ∆

νnom , T iat

}
. (13)

Remark VI.5. (Generic notation). In Proposition VI.3 and in
Corollary VI.4, νnom and ∆ are used generically. With νnom =
νnom
S

and ∆ = ∆S , we get an upper bound on the occupancy
time for bubbles going straight while with νnom = νnom

T
and

∆ = ∆T , we get an upper bound on the occupancy time for
bubbles turning left. •

VII. PROVABLY SAFE OPTIMIZED TRAFFIC COORDINATION

This section brings together the discussion above on the
individual aspects (dynamic vehicle clustering into bubbles,
optimized planning and scheduling of the bubbles, and local
distributed control for safety and execution of plans) of our
hierarchical-distributed coordination approach to intersection
traffic. The following result shows that the design ensures
vehicle safety and satisfies the prescribed schedule.

Theorem VII.1. (Provably safe optimized traffic coordina-
tion). Consider a traffic intersection with eight incoming
branches operating under Assumptions (i)-(v) in Section II,
where the vehicle dynamics are given by (2) under the local

vehicular controller from [24]. Assume the exit zone length
satisfies Le ≥ −(vM )2/2um + (νnom)2/2uM and that, at
initial time t0 = 0, vehicles on each branch p ∈ {1, . . . , 8}
are within the staging zone. Furthermore, suppose that at each
ts = sTcs for each s ∈ N0, the vehicles in the staging zone that
are clustered by the clustering into bubbles algorithm
are in a safe configuration (σk(ts) ≥ 1 for each new vehicle
k). Then,

(i) each vehicle belongs to some cluster, each bubble is
scheduled by the schedule optimization algorithm
at least once. Moreover, at each ts, this strategy op-
timizes the schedule of the bubbles L given by the
clustering into bubbles algorithm by minimizing
the simplified cost function CL,

(ii) the schedule assigned to the bubbles respects the non-
collision constraints (4), with the occupancy time of each
bubble i upper bounded by τ̄occi as given in (13),

(iii) inter-vehicle safety is ensured (σk ≥ 1) for all vehicles
and for all time subsequent to t0, and

(iv) the first vehicle (i, 1) of each bubble i approaches the
intersection at τi, the bubble uses the intersection only
within its allotted time interval [τi, τi + τ̄occi ], and each
vehicle travels with a velocity of at least νnom after
approaching the intersection.

Proof: (i) This claim follows from the clustering

into bubbles and the schedule optimization algo-
rithms. Claim (ii) is ensured by the inclusion of the non-
collision constraints (4) in the schedule optimization

algorithm and the feasibility of the scheduling problem guar-
anteed by Lemma VI.2. Claim (iii) on inter-vehicular safety
is a consequence of [24, Lemma IV.1]: for σk ∈ [1, σ0], if
ζk ∈ V , then σk either stays constant or increases; if on the
other hand ζk /∈ V , then it means vvk < vvk−1 and xvk−1 − xvk
increases while D(vvk−1, v

v
k) stays constant at L and thus σk

increases. Thus σk(t) ≥ 1 is guaranteed for all vehicles k and
for all t ≥ ts.

Finally, to show claim (iv), we reason as follows. If no bub-
ble precedes bubble i on its branch, then the vehicle (i, 1) ap-
proaches the intersection at its designated time τi,1 = τi, with
at least a velocity of νnom. Then, by applying Proposition VI.3
inductively, we see that the last vehicle (i,mi) of bubble i
approaches the intersection with a velocity of at least νnom and
T ai,mi

≤ T ai,1+(mi−1)T iat and it takes at most (L+∆)/νnom

amount of time to go past the intersection. Thus from (13),
we see that claim (iv) is satisfied in this case. We again use
νnom and ∆ generically as mentioned in Remark VI.5. Now
suppose bubble j precedes bubble i on its branch and suppose
claim (iv) is true for bubble j. From our reasoning above,
T aj,mj

≤ T aj,1 + (mj − 1)T iat = τj + (mj − 1)T iat. Then,
from (4) and (13), we have

τi ≥ τj + τ̄occj ≥ τj + (mj − 1)T iat + T iat ≥ T aj,mj
+ T iat,

where in obtaining the second inequality we have used (13).
Thus, from [24, Theorem IV.6], we conclude that vehicle
(i, 1) approaches the intersection at its assigned time τi with
a velocity of at least νnom. Hence, by using induction over
all vehicles in bubble i and over all bubbles i themselves we
conclude that claim (iv) holds.

Theorem VII.1 does not guarantee the optimal operation
of the system at the level of individual vehicles under the
proposed hierarchical-distributed coordination approach. How-
ever, this result guarantees the optimality at the level of
bubbles, on each time ts = sTcs, for the bubbles scheduled
at ts. We believe this is a good compromise in balancing the
trade-off between optimal vehicle operation and complexity of
planning and control.

Remark VII.2. (Intersection management without traffic sig-
nals). The results and the algorithms presented in this paper
culminate in a system for intersection management that does
not require the traditional traffic signals. In particular, each
bubble of vehicles is allotted a time interval during which it
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can utilize the intersection. The scheduling algorithm explicitly
has the constraints that no two bubbles occupy the intersection
at the same time. Once the schedule for the bubbles is
assigned, the vehicles in the bubbles, with the local vehicular
control, automatically ensure that they respect the assigned
schedule. As a result, no further traffic signaling is required.
Thus, signal switching overhead (yellow/amber period) and
vehicle startup delays are avoided. •

VIII. SIMULATIONS

This section presents simulations of our proposed
hierarchical-distributed design and comparisons with an opti-
mized signal-based traffic coordination approach under differ-
ent traffic conditions. Table I specifies the system parameters
that we keep fixed across all the simulations presented here.
The parameters T nom and T iat are computed parameters, while

TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value
General parameters

Car length L 4m
Intersection length (straight) ∆S 24m
Intersection length (turn) ∆T 23.65m
Staging zone length Ls 70m
Mid zone length Lm 70m
Exit zone length Le 70m
Max. speed limit vM 60km/h
Max. accel. uM 3m/s2

Min. accel. um −4m/s2

HD algorithm parameters
Nominal speed of crossing (straight) νnom

S 48km/h
Nominal speed of crossing (turn) νnom

T 38.4km/h
Parameter in vehicle controller σ0 1.2
Prescribed approach times tuning parameter w 0
Nominal inter-vehicle approach time (straight) T nom

S ≈ 1.23s
Nominal inter-vehicle approach time (turn) T nom

T ≈ 2.29s
Upper-bound on inter-veh. appr. time (straight) T iat

S ≈ 1.58s
Upper-bound on inter-vehicle approach time (turn) T iat

T ≈ 2.75s
Time period for execution of Algorithm 1 Tcs 3.77s
Max. # new bubbles on branch p N̄p 1
Max. # bubbles scheduled N̄ 10

Signal-based algorithm parameters
Yellow-time (straight) 4.33s
Yellow-time (turn) 4.3s

the remaining ones in the table are design choices.

A. Dynamic traffic generation

In order to simulate dynamically generated traffic, we spawn
new vehicles every Tcs units of time according to a Poisson
arrival process [28]. The mean rate of spawning new vehicles
on branch p is λp. Thus, the greater the value of λp, the
greater is the volume of the traffic generated on branch p.
New vehicles spawn at the beginning of the staging zone of
each branch. The initial velocity of each vehicle is randomly
selected (uniformly) between 0 and vM . However, in order
to ensure safe following, a vehicle enters the staging zone
possibly at a time later than its spawning time.

To be precise, let ts = sTcs be the time at which vehicle
k spawns, with velocity vvk(ts). Then, the vehicle k enters
the staging zone at time t ≥ ts, which is the first time
instant after ts such that vehicle k is at a safe distance

from the vehicle preceding it on its branch. If there is no
previously defined vehicle on the branch, then the position of
the vehicle preceding vehicle k is assumed to be ∞. Recall
from Section IV that if Tcs < Ls

vM
, then vehicles entering

the problem domain during the time interval [ts − Tcs, ts] are
within the staging zone at ts.

B. Optimized signal-based traffic coordination

The vehicle control policy in the simulations with signal-
based traffic coordination is given by (12) with the safe-
following controller gsf as in our algorithm (cf. [24]) and
with guc = uM . The traffic signaling policy is as follows. We
consider four phases for the signals. In two phases traffic from
opposite branches that go straight are given the right of away
and in the remaining two phases, opposite branches that turn
left are given the right of way. The yellow times, the time for
which signals are in yellow (transition from green to red), are
determined by the maximum amount of time required to fully
cross the intersection for those vehicles that cannot come to a
full stop before the intersection. For our parameters, the yellow
time is 4.33s for the ‘straight’ phases and 4.3s for the ‘turning’
phases. Then, the green times, the time duration for which a
phase gets a green light, for the different phases are optimized
following the Webster’s method [29] according to the rate of
arrival of incoming traffic on the different branches. The four
phases get the right of way (green signal) in a round-robin
manner.

C. Results and discussion

We present here three sets of simulations labeled Sim1,
Sim2 and Sim3. These simulations explore the algorithms un-
der varying incoming traffic rates. Sim1 and Sim2 correspond
to homogeneous traffic conditions, while Sim3 corresponds to
the inhomogeneous case. In Sim1 and Sim2, we take λp = λ
for all the branches p that go straight and λp = λ

2 for
branches p which have a turn. Then, we sweep the value of
λ over the range [0.01, 0.5]. In Sim3, we sweep λ1 through
the range [0.01, 0.5] while the remaining λp are held fixed. In
all simulations, for each set of λp’s, 10 trials are conducted
each with a simulation time equal to four times the cycle time
obtained from the Webster’s method for the corresponding
rates of arrival of new vehicles.

In Sim1, we simulate the signal-based algorithm and the
proposed hierarchical-distributed (HD) algorithm for different
values of λ and with WT = 1 in the cost function (3).
Figures 3 and 4 show the mean and variance for the cars that
cross the intersection during the simulation time (selected as
described above) over 10 trials. Figures 3(a) and 3(b) show the
average time to cross the intersection in the cases of the signal-
based algorithm and our algorithm, respectively. Figures 3(c)
and 3(d) show the average cost per car in the cases of the
signal-based algorithm and our algorithm, respectively. Finally,
Figures 4(a) and 4(b) show the average fuel cost per car for
the signal-based algorithm and our algorithm, respectively. The
main observation is that for low traffic conditions (small λ),
the proposed algorithm performs better than the signal-based
algorithm. Further, up to λ = 0.07, the average time to cross
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Fig. 3. Results of Sim1. Average time to cross the intersection (TTC) and the average cost per car (CPC), computed with WT = 1 in (3), for the cars that
cross the intersection over 10 trials. (a) and (c) are for the signal-based control and (b) and (d) plots are for the HD algorithm.
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Fig. 4. Results of Sim1. Average fuel cost per car (FCPC) for the cars that
cross the intersection over 10 trials. (a) is for the signal-based control and (b)
is for the HD algorithm.

the intersection is nearly fixed with very little dispersion. This
indicates a critical arrival rate beyond which the intersection
is saturated under the proposed algorithm. Beyond this critical
arrival rate, the average time to cross the intersection increases
very rapidly for the HD algorithm, which results in the average
cost per car also rising rapidly. Nevertheless, for up to about
λ = 0.1, the HD algorithm performs better (in terms of time
and overall cost) than the signal-based algorithm. The fuel
cost per car is in general lower for the HD algorithm. In
general, automated intersection management can mimic signal-
based control. Thus, simulations such as in Figure 3 can aid
in identifying traffic regimes in which to switch to a signal-
mimicking algorithm.

In Sim2, we perform simulations for different values of λ
and WT in the cost function (3), varied from 0.01 to 0.5
and 0.1 to 10, respectively. Figure 5 summarizes the results
of Sim2. Figure 5(a) shows the average number of cars to
cross the intersection (throughput) for the HD algorithm.
Figures 5(b) and 5(c) show the ratio (average of 10 trials) of
the number of cars that crossed for the signal-based algorithm
over the number for the HD algorithm and the ratio of the
(average over 10 trials) of the cost per car for the HD algorithm
over the signal-base algorithm, respectively. Thus, in these two
plots, the HD algorithm does better for those parameters for
which the ratios are less than 1. The throughput is consistently
better in the signal-based control except for low-density traffic
(low λ). In terms of cost, except in the cases with very high
density traffic (high λ) and high weightage to travel time in the

cost function, the HD algorithm does better than the signal-
based control.

Finally, in Sim3, we explore the case of inhomogeneous
traffic arrival. In this simulation, we keep the arrival rates on
7 of the 8 branches fixed. On the four branches that turn left,
λp is set to 0.01. For three of the branches that go straight,
λp is set to 0.05. For the remaining branch that goes straight,
λ1 = λ is swept through 0.01 to 0.5. The weight in the cost
function (3) is fixed as WT = 1. The results are presented in
Figures 6(a) and 7(a). We see that the HD algorithm performs
better than the signal-based algorithm even for large values of
λ. The performance of the two is comparable for λ = 0.5.
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Fig. 7. Simulation results for Sim3 (inhomogeneous traffic arrival). Average
fuel cost per car (FCPC) for the cars that cross the intersection over 10 trials.
(a) is for the signal-based control and (b) is for the HD algorithm.

In summary, we see that the proposed HD algorithm for
intersection management performs very well under low traffic
conditions. Beyond the saturation point, however, the algo-
rithm performs increasingly (with vehicle arrival rate) worse
than the signal-based algorithm. In a way, this is to be expected
because the HD algorithm is purely reactive based on the
instantaneous traffic scenario and is unaware of the arrival
rates of the incoming traffic, whereas the signal timing in the
signal-based method is optimized according to the arrival rate
of new vehicles. This points out to the need of incorporating
the arrival rates of new vehicle into the design of the HD
algorithm to make it capable of dealing better with high traffic
conditions. We should also note that, in all the simulations,
we have assumed that the vehicles are computer controlled,
with no communication delays and zero response time. This
in itself results in a huge improvement in efficiency compared
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Fig. 5. Results of Sim2 for various values of λ and the weight WT in the cost function (3). (a) Average (over 10 trials) number of cars that crossed the
intersection for the HD algorithm. (b) The ratio of the average (over 10 trials) number of cars that crossed for the signal-based algorithm over that in the HD
algorithm. (c) The ratio of the average (over 10 trials) cost taken for the cars that crossed the intersection for the HD algorithm over that in the signal-based
algorithm.
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Fig. 6. Simulation results for Sim3 (inhomogeneous traffic arrival). Average time to cross the intersection (TTC) and the average cost per car (CPC),
computed with WT = 1 in (3), for the cars that cross the intersection over 10 trials. (a) and (c) are for the signal-based control and (b) and (d) plots are for
the HD algorithm.

to the human-driven vehicle scenario of today (and ignores
the commonly seen, significant lost time between phases). For
example, under high traffic rate conditions, during the red
phase there is a significant accumulation of vehicles at the
intersection. Here, in contrast to present traffic behavior, there
is very little lost time between phases. This is because each
time a new green phase begins, a big group of vehicles uses
the intersection as one rigid body.

IX. CONCLUSIONS

We have studied the problem of coordinating traffic at an
intersection in order to reduce travel time and improve vehicle
energy efficiency while avoiding collisions. Our provably
correct intersection management solution relies on communi-
cation among vehicles and the infrastructure, and combines
hierarchical and distributed control to optimally schedule
the passage of vehicle bubbles through the intersection. Our
dynamic bubble-based approach has the advantage of reducing
the complexity of the computationally intensive scheduling
problem and making the solution applicable for different traffic
conditions. Simultaneously, the modular nature of the major
aspects of our design eases the possibility of improvements
in the future. Finally, since the central traffic manager at the
intersection requires only aggregate data of a bubble, this
decomposition provides a certain amount of privacy. We have
performed simulations to illustrate the performance of our

design and compared it against an optimized signal-based in-
tersection management approach. Our hierarchical-distributed
algorithm performs better than signal-based control in terms
of cost except for high traffic densities and high weightage
to travel time in the cost function. The guaranteed throughput
is, however, worse due to the conservativeness of the upper
bound on inter-approach times of the vehicles. We believe
further analysis would improve this component and yield better
throughput. Other future work will study the incorporation
of information about incoming traffic density to improve
throughput in high traffic conditions, the generalization of
the model, and the concept of bubble in particular, to also
cars driven by people, the inclusion of privacy preservation
requirements. We are also interested in studying the trade-
offs between bubble size and the suboptimality of the results.
Finally, although traffic management at isolated intersections
is useful in many scenarios, the extension to coordinated
management for networks of intersections is a non-trivial and
important problem, which we will explore in the future.
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