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Abstract—This paper is concerned with the distributed control
of vehicle platoons. The dynamics of each vehicle are nonlinear
and heterogeneous. The control objective is to regulate vehicles
to travel at a common speed while maintaining desired inter-
vehicle gaps. The information flow topology dictates the pattern of
communication between vehicles in the platoon. This information
is essential to effective platoon control, and therefore plays a
central role in affecting the design and performance of platoon
control strategies. Our key contribution is a unified distributed
control framework that explicitly incorporates and supports a
diversity of information flow topologies. Specifically, we propose
a distributed sliding mode control (DSMC) framework for a
class of generic topologies. The DSMC constructs the topological
sliding surface and reaching law via a so-called “topologically
structured function”. The control law obtained by matching
the topological sliding surface and topological reaching law is
naturally distributed. The Lyapunov stability analysis is carried
out for the closed-loop system in the sense of Filippov to cope with
the discontinuity originated from switching terms. Moreover, a
trade-off between tracking precision and chattering elimination
is discussed with a continuous approximation of the switching
control law. The effectiveness of the DSMC for platoons is verified
under four different topologies through numerical simulation.

I. INTRODUCTION

The platooning of connected and automated vehicles is
attracting increasing attention due to its potential in increasing
traffic throughput and infrastructure utilization, enhancing
driving safety, and reducing fuel consumption. The objective
of the platoon control system is to regulate vehicles to travel at
a common speed while maintaining desired inter-vehicle gaps
[1], [2].

A. Related Work

Platooning was first proposed in the well-known PATH
project [3], where linear control strategies were designed and
implemented based on linearized vehicle models. Importantly,
this work focused on a fixed communication topology of in-
formation exchange between vehicles. Following this, diverse
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Fig. 1. Common topologies: (a) predecessor following topology, (b)
leader-predecessor following topology, (c) bidirectional topology, (d) leader-
bidirectional topology.

aspects of platoon control have been explored, including con-
trol architecture, platoon modeling, spacing policy, controller
synthesis, and performance requirements. Some representative
examples of research include selection of spacing policies [4],
string stability [5], scalability [6], direct consideration of pow-
ertrain dynamics [7], dynamic homogeneity and heterogeneity
[8]. A recent review on platoon control can be found in [9].

The information exchange topology plays a key role in
the design of platoon control systems [9]. Much of the
early research on platoon control focused on radar-based
sensing systems, where information topologies were limited
to predecessor following topology [10], [11]. The topology is
shown in Figure 1 (a), where directed links denote information
exchange. With the rapid adoption of vehicle-to-vehicle (V2V)
communications [12], a variety of new information topologies
can be supported, which offer the promise of high performance
and robust platoon control. These include leader-predecessor
following topology [5], bidirectional topology [13] and leader-
bidirectional topologies (see Figure 1).

Under this diversity of possible information topologies,
new control challenges emerge, particular when systematically
considering nonlinear vehicle dynamics, communication delay
and topology switching. As a result, it is advantageous to view
the vehicle platoon as a multi-agent system, and to employ a
networked control perspective to design distributed controllers
[6]. This has led to new advanced control methods for platoon
control. For instance, a mistuning-based control method is
introduced to improve stability margin of vehicle platoons



[14]; H∞ controllers are developed to satisfy string stability
explicitly [15]; general linear control method is proposed for
both fixed and switching topologies [16].

Sliding mode control (SMC) is a promising method to han-
dle nonlinear dynamics, actuator constraints, and information
topology diversity. The pioneering work of SMC research
on platoon control was conducted by Swaroop and Hedrick
(1996) under a fixed leader-predecessor following topology.
Here, each following vehicle can access the position, velocity
and acceleration information of both the lead vehicle and the
preceding vehicle [5]. This work was the first to introduce and
analyze the key notion of string stability of interconnected
nonlinear systems. Under this information topology, Liu et
al. (2001) explore the effects of network communication
delays on the stability of the sliding-mode-controlled platoon
system [17]. This research studies the effects of preceding-
vehicle information delay and lead-vehicle information delay
on string stability. Lee and Kim (2002) used fuzzy-sliding
mode control for platoons with leader-predecessor following
topology to address nonlinear vehicle dynamics and time-
varying parametric uncertainty [18]. The fuzzy SMC controller
generate throttle and brake commands without requiring high-
fidelity vehicle models. For the predecessor-following topol-
ogy, Ferrara (2009) designed a sliding mode controller for
each vehicle in a platoon to track its preceding vehicle under
a constant time-headway spacing policy [11]. Kwon and Chwa
(2014) extended coupled sliding mode control to bidirectional
topology where the preceding vehicle information is used in
the sliding surface design [13]. Similar controller structures
were used in [19] to integrate tracking errors into the sliding
surface design, and to overcome bounded disturbances under
different kinds of spacing policies.

The main shortcoming of existing research on SMC for
vehicle platoons is that they are dedicated to fixed information
topologies: leader-predecessor following topology in [5], [20],
[17], and [18]; predecessor following topology in [10] and
[11]; bidirectional topology in [13] and [19]. However, in a
practical context, information topologies can vary as platoons
are formed, or can change as topologies switch. This paper
focuses on sliding mode control design for vehicle platoons
that is agnostic to the dynamic nature of the information
topology.

B. Our Contributions

This paper presents a distributed sliding mode control
(DSMC) design framework for nonlinear heterogeneous ve-
hicular platoons with a class of generic topologies. Taking
a multi-agent perspective, we propose a new “topologically
structured function” that is used to construct the topological
sliding surface and reaching law. This design results naturally
in a distributed control architecture. The distributed control
law is obtained by properly matching the topological sliding
surface and topological reaching law. The closed-loop stability
is proved in the sense of Filippov to cope with the disconti-
nuity originated from switching terms.

The remainder of this paper is organized as follows. The
platoon control problem is formulated in Section II, design of
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Fig. 2. Platoon : (a) vehicle dynamics, (b) information flow topology, (c)
distributed controller, (d) geometry formation [6]

DSMC is explored in Section III, stability results are presented
in Section IV, robust performance of DSMC is analyzed in
Section V and simulation studies are offered in Section VI.
We draw conclusions and suggest future research problems in
Section VII.

C. Notation

For a set M , its closure is written M . The smallest convex
set containing M (i.e., its convex hull) is denoted by coM .
Equivalently, coM is the set of all convex combination of
points drawn from M . The set of positive real numbers is
denoted as R+. For a function f , define f(M) to be the image
of M under f . For the affine function f(x) = Ax+ b, where
A ∈ Rm×n, we write f(M) = AM + b. If M is closed and
bounded (i.e., compact), co(AM + b) = AcoM + b.

For a symmetric matrix A, the maximum and minimum
eigenvalues are denoted by λmax(A) and λmin(A), respec-
tively. If A is positive definite, the square root of the matrix is
denoted by A

1
2 , which is also symmetric and positive definite.

For a vector x = [x1, x2, · · · , xn]> ∈ Rn, define sgn(x) as

sgn(x) =[sgn(x1), sgn(x2), · · · , sgn(xn)]>,

where

sgn(xi) =

 −1, xi < 0,
0, xi = 0,
1, xi > 0.

for i ∈ {1, · · · , n}.

II. PLATOON CONTROL PROBLEM FORMULATION

A vehicle platoon is a multi-agent system as shown in
Fig. 2. We refer to the vehicles that comprise the platoon
as nodes. From a network control perspective, a platoon has
four main components: node dynamics, distributed controllers,
information flow topology, and formation geometry [9]. The
node dynamics describe the behavior of each vehicle; the infor-
mation flow topology defines how nodes exchange information
with each other; the distributed controller implements feedback
control algorithms for each vehicle; and the formation geom-
etry defines the desired distance between any two successive
vehicles.



The platoon contains a virtual leader, denoted by 0, and N
following vehicles, denoted by i ∈ N , {1, . . . , N}. The
displacement and velocity of the virtual leader are denoted
by x0 and v0, respectively. We assume only a subset of
vehicles have access to the leader’s information. The stability
analyses are carried out under two cases: (a) v̇0 is zero (Section
IV), and (b) v̇0 = δ0(t) is nonzero, unknown and bounded
(Section V). The convergence to the equilibrium is analyzed
in case (a) in the sense of Lyapunov stability, and the Input-
to-State stability (ISS) is used in case (b) to demonstrate the
disturbance attenuation performance of the platoon system.

The desired distance between two neighboring vehicles is
assumed to be a constant d ∈ R+. The desired position for
vehicle i is then

xi,des(t) = x0(t)− i · d.

The purpose of platoon control is to ensure all the vehicles
run at a harmonized speed while maintaining the desired inter-
vehicle spaces.

A. Model for Information Flow Topology

The information exchange between the followers is assumed
to be bidirectional, and its topology is described by an
undirected graph G = {V, E}, in which V is the node
set, and E ⊆ V × V is the edge set. The connectivity of
graph G is represented by its adjacency matrix A defined as
A = [aij ] ∈ RN×N and{

aij = 1, (j, i) ∈ E,
aij = 0, (j, i) /∈ E, i, j ∈ N

where (j, i) ∈ E means there is a edge from node j to node
i, i.e., node i receives the information of j. It is assumed that
there are no self-loops, i.e., aii = 0, i ∈ N . The Laplacian
matrix L = [lij ] ∈ RN×N is then defined as:

lij =


−aij , i 6= j,

N∑
k=1, k 6=i

aik, i = j,
i, j ∈ N .

Since G is undirected, both A and L are symmetric. The
neighbor set of node i is denoted by Ni = {j|aij = 1, j ∈ N}.
G is connected if there is a path between any two vertices,
otherwise, G is disconnected. A tree is an undirected graph in
which any two vertices are connected by exactly one path. A
spanning tree T of an undirected graph G is subgraph of G
which is a tree and includes all of the vertices of G. If all of
the edges of G are also edges of a spanning tree T of G, then
G is a tree, identical to T .

We assume the leader can only send information, the
connectivity between the leader and followers are directed,
thus represented by directed edges. The pinning matrix P
represents the direct connectivity between nodes and the
leader. It is defined as

P = diag{p1, p2, . . . , pN},

where pi = 1 if there is an edge from leader to node i, and
pi = 0 otherwise.

Assumption 1: (Positive definite assumption) We assume
that G contains a spanning tree, and there exists at least one
edge from the leader to one of the followers.

Lemma 1: If the information flow topology of a platoon
system satisfies Assumption 1, L+ P is positive definite.

Proof: See appendix B.

B. Nonlinear Model for Node Dynamics

The vehicle longitudinal dynamics are nonlinear, which are
composed of engine, drive line, brake systems, aerodynamics
drag, tire friction, rolling resistance, gravitational forces, etc.
To strike a balance between accuracy and conciseness, we
assume that: (1) the vehicle body is rigid and left-right
symmetric, the vehicle length is assumed to be zero; (2) the
platoon is on a flat and dry-asphalt road, and the tire slip
in the longitudinal direction is neglected; (3) the driving and
braking torques are integrated into one control input [21]. For
a heterogeneous vehicle platoon, the i-th node dynamics are
described by a nonlinear model:

ẋi(t) =vi(t), (1)

v̇i(t) =
1

mi

(
ηi
Ti(t)

Ri
− CA,iv2i (t)

)
− gf, (2)

where xi(t) and vi(t) are position and velocity, respectively;
Ti(t) is the control input, representing the driving/braking
torque; mi is the mass of vehicle; ηi is the mechanical
efficiency of the driveline; Ri is the radius of wheel; CA,i
is the coefficient of aerodynamic drag; g is the acceleration
due to gravity; and f is the coefficient of rolling resistance.

III. DSMC FOR NONLINEAR HETEROGENEOUS PLATOON

Our Distributed Sliding Mode Control design is composed
of two parts: (a) the topological sliding surface selection,
and (b) the topological reaching law design. Both the sliding
surface and reaching law share a common structure defined by
the topological structured function, which we introduce next.

Definition 1: (Topologically structured function) The topo-
logical structured functionfTSi : RN→R for node i is defined
as

fTSi (Z) ,
N∑

j=1,j 6=i

aij(zi − zj) + pizi,

where Z = [z1, z2, . . . , zN ]> ∈ RN , aij is the (i, j)th entry
of the adjacency matrix, and pi is the i-th element of the
pinning matrix. In vector form, FTS : RN → RN ,

FTS(Z) ,[fTS1 (Z), fTS2 (Z), . . . , fTSN (Z)]>

=(L+ P)Z.

A. Design of topological sliding surface

The tracking error of i-th vehicle is defined as

ei , xi − xi,des.

Define an intermediate error ∆i,

∆i , ėi + ρei, (3)



where ρ ∈ R+ is a tuning parameter. This parameter deter-
mines the converging rate of tracking error once the interme-
diate error equals zero. The intermediate error vector is defined
as

∆ , [∆1, ∆2, . . . ,∆N ]>.

We define the individual sliding variable for node i as

si , fTSi (∆).

The sliding variable array of the platoon is then

S =


s1
s2
...
sN

 = (L+ P)∆. (4)

The topological sliding surface for the platoon is defined by
S(t) = 0.

Remark 1: Each sliding variable si depends on local node
states, i.e., states of vehicle i as well as states of neighboring
vehicles as constrained by the information topology. Note that
∆i −∆j does not depend on leader states since

∆i −∆j =vi − vj + ρ(xi − xj + d(i− j)).

Remark 2: The sliding variable S is a bijective linear
function of ∆̄ defined in (4) because L+ P is invertible (see
Lemma 1).

B. Design of topological reaching law

To design the DSMC controller, the reaching law has to
conform with the associated sliding surface. The topological
reaching law for node i is

ṡi =− ψfSTi (S)− φfSTi (sgn(S))

where ψ, φ ∈ R+ are tuning parameters. Combining these for
all nodes, we arrive at the compact form array

Ṡ =− (L+ P)(ψS + φ sgn(S)). (5)

We observe that

(L+ P)∆̇ =− (L+ P)(ψS + φ sgn(S)).

Since L+ P is invertible, we obtain

∆̇ =− (ψS + φ sgn(S)). (6)

Invertibility of L + P is critical in designing a distributed
SMC suitable for a broad range of topologies. Component i
of the vector-valued equation (6) is then

∆̇i = −ψsi − φ sgn(si). (7)

Differentiating (3) and equating the result to (7) provides
an expression for v̇i. Substituting this in (2) yields the control
law for node i:

Ti =
Ri
ηi

(mifg + CA,iv
2
i )− miRiρ

ηi
(vi − v0)

− miRi
ηi

(ψsi + φ sgn(si)).

(8)

Remark 3: The control law (8) is not quite distributed
because of its possible dependence on the leader velocity v0.
We therefore need to design a distributed observer for v0 to
derive a truly distributed control law. This is done in the next
subsection.

C. Design of topologically structured velocity observer

Let v̂0,i denote the estimation of v0 produced by the i-th
vehicle. The observer of i-th vehicle for the virtual leader’s
velocity is

˙̂v0,i = −ksi. (9)

Since si is computed in a distributed fashion with (4), the
observer is distributed (i.e., compatible with the underlying
information topology). Using the estimated leader velocity v̂0,i
from the observer, the control law (8) becomes:

Ti =
Ri
ηi

(mifg + CA,iv
2
i )− miRiρ

ηi
(vi − v̂0,i)

− miRi
ηi

(ψsi + φ sgn(si)).

(10)

Remark 4: For simplicity, we have used second-order
nonlinear node dynamics. Our approach easily generalizes to
higher-order nonlinear dynamics. A regulation example with
more complex vehicle dynamics is offered in our previous
work [22].

IV. MAIN STABILITY RESULT

The stability analysis of DSMC is divided into two phases,
i.e., the reaching phase and the sliding phase. The stability of
the reaching phase is analyzed by Lyapunov method, while
that of the sliding phase follows traditional SMC analysis.

A. Reaching Phase

We state our first main result:
Theorem 1: Consider a platoon with nonlinear node dynam-

ics (1) and (2) with information topology under Assumption 1.
Under the distributed control law (10) and tuning parameters
ψ, φ, ρ, k ∈ R+, the sliding variable S in (4) and the
observer error ε , [v̂0,1 − v0, . . . , v̂0,N − v0]> converge to 0
asymptotically.

Proof: With the sliding variable (4), velocity observer (9)
and control law (10), the dynamics of (S, ε) becomes

Ṡ =(L+ P)(−ψS − φ sgn(S) + ρε),

ε̇ =− kS.
(11)

The first equation of (11) is obtained by differentiating both
sides of (4), and substituting (3), agent dynamics (1), (2), and
control law (10) to the right-hand side of the equation.

For simpler presentation, define

x ,

[
S
ε

]
,

f(x) ,

[
(L+ P)(−ψS − φ sgn(S) + ρε)

−kS

]
. (12)

To discuss the existence and stability of solution of a
discontinuous system (11), we take the concepts of differential



inclusion and Filippov set-valued map from [23]. Since f is
measurable and essentially locally bounded, then the associ-
ated Filippov set-valued map satisfies all the conditions of
Lemma 2 (see appendix A), this guarantees the existence of
Filippov solution.

The Filippov set-valued map associated with (12) is

F [f ](x) =

[
(L+ P)(ρε− ψS)

−kS

]
−
[

(L+ P)φW
0

]
,

where W is the set defined by

W = co{S̄ = [s̄1, · · · , s̄N ]> | s̄i = sgn(si), if si 6= 0;

s̄i = {−1, 1}, if si = 0}. (13)

We choose a Lyapunov candidate for the networked system,

V1(x) =
1

2
x>
[

(L+ P)−1 0
0 ρ

k IN

]
x, (14)

where IN is the N dimensional identity matrix. The gradient
of (14) is

∇V1(x) =

[
(L+ P)−1S

ρ
k ε

]
.

Taking the Lie derivative of the Lyapunov candidate,

L̃F [f ]V1(x) ={∇V1(x)>v | v ∈ F [f ](x)}
=∇V1(x)>F [f ](x)

=− ψS>S − φS>W.

(15)

The second term of (15) is

−φS>W ={−φS>w |w ∈ W}

={−φ
N∑
i=1

siwi |w ∈ W},

where wi is the i-th element of w. Using the definition of W
in (13), each siwi is

siwi =

{
0, if si = 0,

si sgn(si), if si 6= 0.

Hence,

−S>φW = {−φ
N∑
i=1

si sgn(si)} = {−φ‖S‖1}.

The Lie derivative L̃F [f ]V1(x) is therefore a singleton,

L̃F [f ]V1(x) = {−ψ‖S‖22 − φ‖S‖1}. (16)

We check the three conditions of Lemma 4 (see appendix
A): i. V1(x) is continuously differentiable; ii. V1(x) > 0
for x ∈ R2N \ {0}; iii. By (16), max L̃F [f ]V1(x) ≤ 0.
We conclude closed-loop system is stable in the sense of
Lyapunov.

The next step is to prove asymptotic stability. For any initial
condition x(0), choose a constant c ≥ V1(x(0)), define Ωc to
be the level set of V1(x),

Ωc = {x =

[
S
ε

]
|V1(x) ≤ c}. (17)

From (16), Ωc is positively invariant for all c > 0. Define

ZF,V1 ,{x ∈ R2N | 0 ∈ L̃F [f ]V1(x)}
={x |S = 0}.

(18)

Then we have

Ωc ∩ ZF,V1
= {x |S = 0,

ρ

k
‖ε‖22 ≤ 2c}.

From (15), the largest weakly invariant set M in Ωc ∩ ZF,V1

is M = {x |x = 0}. Since the Lyapunov function V1(x) is
radially unbounded, we can use Lemma 5 (see appendix A)
to conclude global asymptotic stability.

Next, we offer a sufficient condition for finite-time conver-
gence to the topological sliding surface S = 0.

Theorem 2: Consider again the assumptions and parameter
settings of Theorem 1, with the set Ωc and ZF,V1

defined
in (17) and (18). For all c ∈ {cf |0 < cf < φ2

2kρ}, the set
ZF,V1

∩ Ωc = {(S, ε)|S = 0, ‖ε‖2 ≤
√

2ck/ρ} is positively
invariant; and any solution x(t) = [S(t), ε(t)]> of system (11)
with initial condition x(0) ∈ Ωc reaches ZF,V1 ∩ Ωc in finite
time.

Proof: To discuss the topological sliding surface dynam-
ics, let us choose the Lyapunov candidate

V2(S) =
1

2
S>(L+ P)−1S. (19)

The Lie derivative of (19) is

L̃F [f ]V2(S) =− ψS>S − φS>W + ρε>S

={−ψ‖S‖22 − φ‖S‖1 + ρε>S}.
(20)

Since we have already proved that the set Ωc from (17) is
positively invariant for any c > 0, if x(0) ∈ Ωc, then

‖ε(t)‖2 ≤
√

2ck

ρ
, ∀t ∈ [0, +∞).

With the condition c < φ2

2kρ , we derive the upper bound of
(20),

max L̃F [f ]V2(S) ≤− ψ‖S‖22 − (φ−
√

2ckρ)‖S‖1
<0.

(21)

We can conclude that {x |S = 0} ∩Ωc is a positive-invariant
set.

Next, we show finite-time convergence to S. Instead of
proving the finite-time convergence of S directly, we prove
that
√

2V2 = ‖(L+ P)−
1
2S‖2 converges to 0 in finite time.

In the region {x|x ∈ Ωc, s 6= 0}, the set-valued Lie
derivative of

√
2V2 is

L̃F [f ]

√
2V2 =

1

‖(L+ P)
− 1

2S‖2
L̃F [f ]V2. (22)

From (21), we have

max L̃F [f ]V2(S)

≤− ψ‖S‖22 − (φ−
√

2ckρ)‖S‖1
≤− ψ‖S‖22 −

1√
N

(φ−
√

2ckρ)‖S‖2.
(23)



By Reyleigh’s quotient, we have

‖(L+ P)−
1
2S‖2 ≤

1√
λmin(L+ P)

‖S‖2. (24)

From (22), (23) and (24), one can establish

max L̃F [f ]

√
2V2 ≤−

√
λmin(L+ P)

N
(φ−

√
2ckρ),

for all {x |x ∈ Ωc, S 6= 0}.
From Lemma 3 (see Appendix A), we have

d
dt
‖(L+ P)

− 1
2S(t)‖2 ∈ L̃F [f ]

√
2V2 (25)

for almost every t ∈ [0,+∞). We have

‖(L+ P)
− 1

2S(tf )‖2 =‖(L+ P)
− 1

2S(0)‖2

+

∫ tf

0

d
dτ
‖(L+ P)

− 1
2S(τ)‖2dτ.

(26)

With (25) and (26), in the region {x|x ∈ Ωc, S 6= 0} we have

‖(L+ P)
− 1

2S(tf )‖2 ≤ ‖(L+ P)
− 1

2S(0)‖2

−tf (φ−
√

2ckρ)

√
λmin(L+ P)

N
.

(27)

We argue that there must exist tf such that S(tf ) = 0.
Otherwise, ‖(L+ P)

− 1
2S(tf )‖2 → −∞ as tf → +∞.

Remark 5: The above result establishes that every trajectory
starting in Ωc approaches {(S, ε)|S = 0, ‖ε‖2 ≤

√
2ck/ρ} in

finite time. By choosing c sufficiently large, any compact set in
R2N will fall inside Ωc. As a result, φ2

2kρ can be made arbitrary
large, and Theorem 2 offers a sufficient semi-global condition
for finite-time convergence to the sliding surface.

B. Sliding Phase

Theorem 3: Consider a vehicle platoon with nonlinear
dynamics described by (1) and (2) and information topology
under Assumption 1. During the sliding phase where S = 0,
the tracking error for each vehicle ei → 0 as t→∞ .

Proof: In the sliding surface S = 0, with the definition
of sliding error, we have

S = (L+ P)∆ = 0.

With L+ P being positive definite, we have

∆ = [∆1, ∆2, . . . ,∆N ]> = 0.

For each ∆i,
∆i = ėi + ρei = 0, (28)

where ρ > 0. Hence (28) is a stable differential equation,
ei → 0 as t→∞.

Due to practical realities of switching devices, the control
law (10) can cause chattering. The following result assures
that asymptotic stability of (11) is preserved with a smooth
control law by setting φ = 0.

Corollary 1: Consider again the set-up and assumptions of
Theorem 1 with tuning parameter ψ, k ∈ R+ and φ = 0. Then,
the closed-loop system (11) is asymptotic stable.

Proof: By setting φ = 0, the closed-loop system (11)
becomes linear

ẋ(t) = Ax(t), (29)

where A is defined as

A ,

[
−ψ(L+ P) ρ(L+ P)
−kIN 0

]
. (30)

Let

P ,

[
k
ψ (L+ P)−1 + ρ

ψ IN −IN
−IN ρ

ψ IN + ( ρ
2

ψk + ψ
k )(L+ P)

]
.

Using the characterization of positive definite matrices with
Schur complements [24] to prove matrix P is positive definite,
two conditions have to be satisfied:

i. The first diagonal block is positive definite

k

ψ
(L+ P)−1 +

ρ

ψ
IN � 0.

ii. The Schur complements is positive definite

ρ

ψ
IN + (

ρ2

ψk
+
ψ

k
)(L+ P)

−(
k

ψ
(L+ P)−1 +

ρ

ψ
IN )−1 � 0.

One can check easily that the first condition holds since
L+ P is positive definite. The second part is proved by using
the matrix inversion lemma (Woodbury matrix identity) [25].
Since the algebraic process is simple, we omit this part for
brevity.

Next, choose a Lyapunov candidate V3(x) = 1
2x
>Px. The

derivative of V3(x) with respect to system (29) is

V̇3(x) =
1

2
x>(A>P + PA)x

=− x>Qx < 0,
(31)

where matrix Q is defined as the positive definite matrix

Q , ρ

[
(L+ P) 0

0 (L+ P)

]
� 0.

We conclude matrix A is Hurwitz.
Remark 6: By eliminating the switching term, the asymp-

totic stability result of Theorem 1 is preserved, however, the
finite-time convergence property from Theorem 2 is compro-
mised. As is done with traditional SMC, a suitable trade-off
between tracking precision and finite-time convergence can be
arranged by introducing a thin boundary layer neighboring the
topological sliding surface, {S | ‖S‖2 ≤ ε}. Using the negative
definiteness condition (31), one can prove that the boundary
layer is invariant and can be reached in finite time. Within the
boundary layer, the tracking error for each vehicle remains
bounded.



Fig. 3. Types of bidirectional information flow topology used in this paper:
(a) nearest-neighbor (NN); (b) nearest-neighbor with leader paths (NNL); (c)
two-nearest-neighbor (2NN).

Brake Sys.

aF
fF
iF

Engine CVTthrD
eT

eZ

dT

Body

bTbrkP

a

wZ

CVT Controller

gi v

Fig. 4. Sketch of vehicle longitudinal dynamics.

V. ROBUST PERFORMANCE OF DSMC

In this section, we analyze the performance of DSMC under
external disturbance. For theoretical simplicity, we assume
tuning parameter φ = 0.

Assume all vehicles are subject to persistent external dis-
turbances δi:

ẋi(t) =vi(t),

v̇i(t) =
1

mi

(
ηi
Ti(t)

Ri
− CA,iv2i (t)

)
− gf + δi(t),

and the acceleration of the virtual leader is non-zero v̇0 =
δ0(t). The acceleration of the virtual leader is unknown.

The closed-loop dynamics (11) with external disturbances
becomes

ẋ(t) = Ax(t) +Bd(t), (32)

where x = [S, ε]>, A is defined in (30), B and d(t) is defined
as

B ,

[
L+ P

0

]
and d ,

 δ1 − δ0
...

δN − δ0

 .
The Hurwitz A matrix implies the Input-to-State Stability

(ISS) of system (32):

x(t) =eAtx(0) +

∫ t

0

eA(t−τ)Bd(τ)dτ,

|x(t)| ≤‖eAt‖|x(0)|+
∫ t

0

‖eA(t−τ)‖‖B‖|d(τ)|dτ

≤κe−αt|x(0)|+ ‖B‖ sup
τ∈[0,t]

|d(τ)|
∫ t

0

κe−αtdτ

≤κe−αt|x(0)|+ κ

α
‖B‖ sup

τ∈[0,t]
|d(τ)|, (33)
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where |·| denotes vector norm (e.g 1, 2,∞ norm) in Euclidean
space, ‖·‖ denotes the corresponding matrix norm, κ, α ∈ R+

and max Re{λ(A)} < −α. We further define:

β(|x(0)|, t) ,κe−αt|x(0)|,
γ( sup
τ∈[0,t]

|d(τ)|) ,κ
α
‖B‖ sup

τ∈[0,t]
|d(τ)|.

We can easily check function β is class-KL and γ is class-K,
then conclude ISS.

Remark 7: The disturbance attenuation effect is closely
related to max Re{λ(A)}. For a smaller max Re{λ(A)}, the
error bound of x(t) will be smaller. From (30), we observe
that the eigenvalues of A are affected by the information flow
topology L+ P and the tuning parameters ψ, ρ.

Remark 8: The inequality (33) is related to collision avoid-
ance. The sliding variable S is bounded due to the boundness
of x(t). Sliding variable S and ∆ are isomorphic (4). Each
∆i and tracking error ei are related through a stable linear
system (3):

∆i 1
s+ρ

ei

We can conclude tracking error ei is bounded. Then we
can guarantee collision avoidance for finite length platoon
if properly selecting spacing policy, tuning parameter and
information flow topology [26].

Remark 9: Since system (32) is ISS, if δi(t) = 0 for all
i ∈ N , and δ0 eventually converges to 0, then the tracking
error ei → 0 as t→ 0.

VI. SIMULATION RESULTS

We now illustrate the effectiveness of proposed DSMC
through numerical simulations. A heterogeneous platoon with
1 leader and 8 followers is simulated under 3 different infor-
mation flow topologies. These topologies are nearest-neighbor
(NN), nearest-neighbor with leader paths (NNL), and two-
nearest-neighbor (2NN), as shown in Fig. 3. With the NNL
topology, all the vehicles have access to the leader. This will
allow us to demonstrate effect of the leader information on
the performance of the platoon.
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Fig. 6. Simulation result in ramp speed profile under NN, NNL, and 2NN topologies. 1st, 3rd, 5th, and 7th vehicle are denoted by ( ), ( ), ( ),
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The distributed control law (10) was designed based on a
nonlinear vehicle dynamics (1)-(2) for simplicity and elegance.
In the simulation, we applied the control law to platoon
with high-fidelity vehicle model to validate the performance
of DSMC under modeling uncertainty. Each vehicle is a
passenger car with a gasoline engine, a torque converter,
a continuous variable transmission (CVT), two driving and
two driven wheels, as well as a hydraulic braking system.
Fig. 4 sketches the powertrain dynamics. The inputs are the
throttle angle (αthr) and the braking pressure (Pbrk). In realistic
driving modes, a driver can not simultaneously engage the
throttle and brake pedals. Therefore, in this study we use
an inverse model to allocate the driving commands (Ti) to
either throttle angle or braking pressure. Interested readers can
refer to [27] for further information. The outputs include the
longitudinal acceleration (a), vehicle velocity (v), as well as

other measurable variables in the powertrain. When driving,
the engine torque is amplified by the torque converter, CVT,
and final gearing and acts on the two front driving wheels.
When braking, the braking torque acts on all four wheels
to dissipate the kinetic energy of the vehicle body. Fig. 5
shows the nonlinear engine torque map: engine torque (Te)
is a nonlinear monotonically increasing function of engine
speed (ωe) and throttle angle (αthr). The vehicle parameters are
offered in Table I, in which the heterogeneity is represented
by the difference in vehicle mass (mi) and wheel radius (Ri).
In addition, parameter uncertainties are added in mechanical
efficiency (ηi), coefficient of aerodynamic drag (CA,i), and
coefficient of rolling resistance (f ). In this study, the parameter
heterogeneities are known while the parameter uncertainties
are unknown.



0 1,000 2,000
5

15

25

t [s]

v
[m

/s
]

Fig. 8. The velocity profile of leading vehicle when running EPA74 standard
driving cycle.

Parameter Value Uncertainty
mi (1445 + i× 50) kg 0%
ηi 0.85 ±10%
CA,i 0.43 kg/ m ±10%
Ri (0.28 + i× 0.005)m 0%
f 0.02 ±10%

TABLE I
SIMULATION PARAMETERS

The simulation includes 2 scenarios distinguished by the
speed profile of leading vehicle: constant speed ramp and mod-
ified EPA74 profile. In the former, the leading vehicle ramps
from 15m/s to 20m/s in 3 seconds with constant acceleration,
for the purpose of examine the stability of the distributed
control law. In the latter, the leading vehicle follows a mod-
ified EPA74 speed profile to allow comparison of platooning
performance under different communication topologies.

A. Simulation of Leader’s Ramp Speed Profile

The simulation results of the 3 topologies, i.e., NN, NNL,
and 2NN, are shown in Fig. 6 (a)-(c) respectively. In each
figure, there are 4 subplots from top to bottom, including dis-
tance error between 2 consecutive vehicles (∆di = ei−ei−1),
vehicle velocity (vi), vehicle acceleration (ai), and throttle an-
gle (αthr,i). One can observe that the tracking error converges
to zero asymptotically for both non-zero initial condition and
time-varying leader velocity. The velocity estimation of NN
and 2NN topology is shown in Fig. 7.

B. Simulation of modified EPA74 speed profile

The simulation results are shown in Fig. 9. The used
speed profile, shown in Fig 8, is modified from the standard
EPA74 by multiplying 0.8 and then adding 5m/s point-wise.
Three performance indices – tracking index (TI), acceleration
standard deviation (ASD), and fuel economy (Fuel) – are used
to assess the performance. The tracking index for i-th vehicle
is calculated by

TIi =
1

T

∫ T

0

(|ėi(t) · SV E|+ |∆di(t) · SDE|) dt,

where T is the simulation length, SV E = 10 denotes
sensitivity of velocity error, and SDE = 1 denotes sensitivity
to distance error [28]. The ASD for i-th vehicle is calculated
by

ASDi = std(ai(t)),
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Fig. 9. Simulation result under EPA74 scenario. From top to bottom,
each subplot shows tracking index, acceleration standard deviation and fuel
consumption for each vehicle. The NN, NNL, and 2NN are denoted by ( ),
( ), and ( ).
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Fig. 10. Performance analysis of 3 different topologies. Each subplot shows
average performance indexes.

where std denotes standard deviation in t ∈ [0, T ]. The fuel
economy for i-th vehicle is calculated with

Fueli =

∫ T
0
Qi(t)dt
xi(T )

,

where Qi denotes the engine fuel injecting rate and xi(t) is
the traveling distance.



We observe from Fig. 9 that 2NN has superior tracking
performance compared to NN, due to access to more in-
formation from neighboring nodes, in combination with the
constant-distance spacing policy. The topology with full leader
access (NNL), have significantly improved tracking ability
compared with other topologies. These results confirm our
intuitive analysis. The topological selection has less influence
on the acceleration noise. In addition it is found that 2NN has
the worse fuel economy than NN. This phenomenon is caused
by more aggressive control inputs, which come from a tighter
information connection with other neighboring vehicles. More
neighbor information is then beneficial to the tracking capa-
bility but unfavorable to the fuel economy. Fortunately, more
leading information contributes to both tracking capability and
fuel economy. Similar conclusions can be drawn from Fig. 10.

Remark 10: We used a high-fidelity model in this section.
The simulation result (tracking performance, velocity profile
and acceleration) of the design model (1)-(2) is similar to the
result presented in this section.

VII. CONCLUSION

We have proposed a distributed SMC for nonlinear hetero-
geneous vehicular platoons with positive definite topologies.
The DSMC is able to deal with information topology diversity
by introducing a novel topologically structured function to
design the sliding surface and reaching law. Our design relies
on the assumption that the information flow topology among
the followers is bi-directional connected and that the leader is
connected to at least one follower to arrive at a sliding mode
controller that is distributed. The stability of the discontinuous
closed-loop system is proved in the sense of Filippov and
verified via numerical simulation.

The performance of our DSMC method can be enhanced
by incorporating other nonlinear control methods into our
basic framework. For example, the intermediate error ∆i,
which is designed with a linear stable differential function,
can be formulated with backstepping control for higher-order
systems, multiple surface sliding control (MSSC) for dynamics
with mismatched uncertainty and dynamic surface control
(DSC) to mitigate the “explosion of terms” phenomenon.
From a broader view, we see the potential of this DSMC
framework for general multi-agent consensus problem and
synchronization of complex networks that can deal with dy-
namical nonlinearity, heterogeneity, and topology variety.
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APPENDIX A
DISCONTINUOUS SYSTEMS

Sliding mode control is used to stabilize a platoon by inten-
tionally introducing discontinuities in the feedback loop [29].

The closed-loop dynamics with discontinuity do not satisfy
the traditional Lipschitz conditions that assure the existence
and the uniqueness of continuous differentiable solutions.
Solutions of discontinuous ordinary differential equations can
be analyzed using Filippov methods [30]. Our exposition here
follows [23].

Consider the vector-valued ordinary differential equation

ẋ(t) = f(x(t)). (34)

Here, x(t) ∈ Rn, f : Rn→Rn, and f is discontinuous. Let
B(Rn) be the collection of all subsets of Rn. The Filippov set-
valued map F [f ] : Rn→B(Rn) associated with f is defined
as

F [f ](x) ,
⋂
δ>0

⋂
µ(H)=0

co{f(B(x, δ) \H)}, x ∈ Rn,

where B(x, δ) is a open ball of radius δ > 0 centered at x, and
the intersection is taken over all sets H with zero Lebesgue
measure.

An absolutely continuous function x(t) : [0, T ]→Rn is said
to be a solution of (34) in the sense of Filippov if for almost
all t ∈ [0, T ],

ẋ(t) ∈ F [f ](x(t)). (35)

The point xe is an equilibrium of the differential inclusion
(35) if 0 ∈ F [f ](xe).

Lemma 2: [23] (Existence of Filippov solution) Let f :
Rn→Rn be measurable and locally essentially bounded, i.e.,
bounded on a bounded neighborhood of every point, excluding
sets of measure zero. Then for all x0 ∈ Rn, there exists a
Filippov solution of (34) with initial condition x(0) = x0.

Filippov solutions for discontinuous system are not neces-
sary unique for each initial condition. Therefore, when con-
sidering properties such as stability in the sense of Lyapunov,
asymptotic stability and invariance, we must specify whether
attention is being paid to a particular solution starting from an
initial condition (“weak”) or to all the solutions starting from
an initial condition (“strong”). For example, “weakly stable
equilibrium point” means that at least one solution starting
close to the equilibrium point remains close to it, whereas
“strongly stable equilibrium point” means that all solutions
starting close to the equilibrium point remain close to it.
Detailed definitions can be found in [30], [23].

The Lie derivative of a set-valued map is defined as follows.
Given a locally Lipschitz function V : Rn → R and a set-
valued map F : Rn → B(Rn), the set-valued Lie derivative
L̃FV : Rn → B(Rn) of V with respect to F at x is defined
as
L̃FV (x) ,{a ∈ R : there exists v ∈ F(x), such that

ξ>v = a for all ξ ∈ ∂V (x)},
where ∂V (x) denotes the generalized gradient [31]. If the
function V (x) is continuously differentiable, the generalized
Lie derivative takes the following form:

L̃FV (x) ,
{
∇V (x)>v : v ∈ F(x)

}
.

Lemma 3: Let x : [0, t1] → Rn be a solution of the
differentiable inclusion (35), and let V : Rn → R be locally
Lipschitz and regular. Then,



i. The composition t 7→ V (x(t)) is differentiable at almost
all t ∈ [0, t1].

ii. The derivative of t 7→ V (x(t)) satisfies

d
dt

(V (x(t))) ∈ L̃FV (x(t)) for a.e. t ∈ [0, t1].

Lemma 4: [23] (Discontinuous Lyapunov theorem) Let f :
Rn → Rn satisfy the hypotheses of Lemma 2, and F [f ] :
Rn → B(Rn) be the set-valued map corresponding to f . Let
xe be an equilibrium of the differential inclusion (35), and
let D ⊂ Rn be an open and connected set with xe ∈ D.
Furthermore, let V : Rn → R be such that the following
holds:

i. V is locally Lipschitz and regular on D.
ii. V (xe) = 0, and V (x) > 0 for x ∈ D \ {xe}.

iii. max L̃FV (x) ≤ 0 for each x ∈ D.
Then xe is a strongly stable equilibrium of (35). Note that
a continuously differentiable function is automatically locally
Lipschitz and regular, and hence one can invoke Lemma 4 for
such functions.

Lemma 5: [23] (Discontinuous Lasalle’s invariance princi-
ple) Let f : Rn → Rn satisfy the hypotheses of Lemma 2, and
let F [f ] : Rn → B(Rn) be the set-valued map corresponding
to f . Let Ω ⊂ Rn be compact and strongly invariant for (35),
and assume max L̃FV (x) ≤ 0 for each x ∈ Ω. Then, all
solutions x : [0,∞) → Rn of (35) starting at Ω converge to
the largest weakly invariant set M contained in

Ω ∩ ZF,V ,

where ZF,V = {x ∈ Rn : 0 ∈ L̃FV (x)}.

APPENDIX B
PROOFS OF LEMMAS

A. Proof of Lemma 1

Proof: When G is undirected and connected, L is positive
semi-definite, and the algebraic multiplicity of the zero eigen-
value is one. The eigenvector corresponding to zero eigenvalue
is 1 , [1, 1, . . . , 1]> ∈ RN [32]. Define eigenvalues of L
to be λ1 = 0 < λ2 ≤ . . . ≤ λN , and the corresponding
eigenvectors are η1, η2, . . . , ηN , where η1 = 1. Since L is
symmetric, it can be diagonalized by a orthogonal matrix
composed of N linearly independent eigenvectors, so any
vector x ∈ RN can be written as a linear combination of the
eigenvectors, x =

∑N
i=1 ciηi, where ci, i ∈ N are constants.

Since G contains a spanning tree, P 6= 0, and η>1 Pη1 > 0.
For any x 6= 0, there is

x>(L+ P)x =

N∑
i=2

λic
2
i η
>
i ηi + x>Px > 0.
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