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Abstract— This paper develops methods to efficiently com-
pute the set of disturbances on a power network that do
not tip the frequency of each bus and the power flow in
each transmission line beyond their respective bounds. For a
linearized power network model, we propose a sampling method
to provide superset and subset approximations with a desired
accuracy of the set of feasible disturbances. We also introduce
an error metric to measure the approximation gap and design
an algorithm that is able to reduce its value without impacting
the complexity of the resulting set approximations. Simulations
on the IEEE 118-bus power network illustrate our results.

I. INTRODUCTION

The stability of electrical power networks and their ro-
bustness against voltage and frequency fluctuations is key
in the operation and management of the current power
grid. Transient stability, as the major stability problem in
power network analysis, has attracted much focus from both
industry and academia. In general, transient stability refers
to the ability of power networks to reach an acceptable
state range when subjected to disturbances while respecting
operational constraints. Due to the uncertainty and variety
of disturbances, it is challenging to characterize the dis-
turbances under which power networks can still operate
normally during transients. This is what motivates our work.

Literature review: The study of stability margins and
robustness against disturbances is critical in power networks.
There are two major methods [1], [2] for analyzing transient
stability: the time-domain method and the direct method. The
time-domain method usually refers to the numerical simula-
tion of the system behavior for some specific disturbance.
Depending on the numerical solver, this method is able to
consider almost any power network models and to precisely
depict the state trajectories, provided that the system parame-
ters are accurately known. However, the time-domain method
cannot answer question regarding how far the system is from
(in)stability and can hardly provide guidelines for control [3].
The direct method [4], [5], based on Lyapunov stability
analysis, focuses on estimating the region of attraction of the
system equilibrium using Lyapunov functions to ensure the
stability of the power networks without knowing the specific
form of the disturbances (provided the initial state lies in the
identified region). Most of the direct methods require less
simulation time than time-domain methods and, more impor-
tantly, are able to provide a stability margin and parameter
sensitivity analysis. However, due to the difficulty of finding
Lyapunov functions and the conservativeness required in
bounding their evolution, especially for large-scale power
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networks with complex dynamics, the identified regions of
attraction could be poor approximations of the real one. We
see the characterization of the transient-state feasibility set
tackled here as a building block towards the development of
metrics and methods that can serve to quantify the robustness
of power networks. If a description of a region under which
the overall system performs satisfactorily can be obtained,
a robustness metric can then be defined as the minimum
disturbance that is able to force the system move out of that
region, see e.g., [6], [7]. Such metrics are key in determining
why and how failure can happen, and preventing cascading
failures.

Statement of contributions: We consider a linearized AC
power network model with unknown amplitude and time-
varying power disturbance injected at various buses. For a
given period of time, if the frequency of each bus and the
power flow in each transmission line still remain in their
respective bounds, then we term this disturbance feasible
for the transient stability of the power network. Our main
goal is to design efficient ways of computing the transient-
state feasibility set consisting of all such disturbances. Since
this set contains infinitely many constraints, our first con-
tribution develops a sampling method to approximate it by
identifying a subset and a superset. We compute the subset
approximation by sampling and tightening the constraints at
finite discrete-time instants, and using the linear dynamics of
the network to upper and lower bound the evolution of state
signals, so as to ensure that all constraints are respected at all
times. The superset approximation comes from using only a
finite number of the constraints appearing in the exact set.
We show that the approximation sets converge to the real
transient-state feasibility set as we increase the number of
sampling points. Our second contribution consists of defining
a metric to measure the approximation conservativeness by
estimating the region difference between the approximations
and the real set. Finally, our last contribution is to design an
algorithm to optimize this metric by adjusting the positions
of the sampling points in a way that monotonically decreases
the value of the error metric. Various simulations illustrate
our results. For space reasons, all proofs are omitted and will
appear elsewhere.

II. PRELIMINARIES

This section introduces basic notation and notions from
algebraic graph theory and set limit.

1) Notation: Let R and N denote the set of real and nat-
ural numbers, respectively. Variables are assumed to belong
to the Euclidean space if not specified otherwise. Denote
by a 6 b (<,>,>) the element-wise set of inequalities for
vectors a and b. Let 1n and 0n denote the vector of ones



and zeros with dimension n, respectively. For p,q ∈ N, let
[p,q]N ,

{
x ∈ N

∣∣ p 6 x 6 q
}

. We denote the cardinality of
a set σ by |σ |. Denote the unit step signal by 1(t). Let
In ∈ Rn×n denote the n-dimensional identity matrix. Let
diag(a) ∈ Rn×n be the diagonal matrix whose diagonals are
the elements of the vector a ∈ Rn. For a matrix A ∈ Rm×n,
[A]i denotes its ith row.

2) Algebraic graph theory: We review basic notions from
algebraic graph theory from [8]. An undirected graph is a
pair G = (I ,E ), where I = {1, . . . ,n} is the vertex set
and E = {e1, . . . ,em} ⊆I ×I is the edge set. A path is an
ordered sequence of vertices such that any pair of consecutive
vertices in the sequence is an edge of the graph. A graph is
connected if there exists a path between any two vertices.
Two nodes are neighbors if there exists an edge linking
them. Let N (i) denote the set of neighbors of node i. For
each edge eα ∈ E with vertices i, j, the orientation procedure
consists of choosing either i or j to be the positive end of eα

and the other vertex to be the negative end. The incidence
matrix D = (dαi) ∈ Rm×n associated with G is defined as

dαi =

 1 if i is the positive end of eα ,
−1 if i is the negative end of eα ,
0 otherwise.

Define L(Y ) , DTY D, where Y ∈ Rm×m is an arbitrary
diagonal matrix with all diagonal entries non-zero. Denote
by L†(Y ) its unique Moore-Penrose pseudoinverse.

3) Set limit: We introduce basic definitions from set
theory [9]. Suppose {Ak}∞

k=1 is a sequence of set. If⋂
k>1

⋃
j>k

A j =
⋃
k>1

⋂
j>k

A j = A,

then we say the limit of {Ak}∞
k=1 exists and is A. In shorthand

notation, we write Ak→ A.

III. PROBLEM STATEMENT

This section describes the problem we are interested in
solving. We start by describing the power grid mathematical
model and dynamics, and then define our desired stability
criteria against disturbances.

A. Power network dynamics

Following [10], [11], the power network model structure
is encoded by a connected undirected graph G = (I ,E ),
where I corresponds to the n buses and E represents the m
transmission lines. We denote by P = [p1, p2, . . . , pn]

T ∈Rn,
Θ = [θ1,θ2, . . . ,θn]

T ∈ Rn, and Ω = [ω1,ω2, . . . ,ωn]
T ∈ Rn,

respectively, the network power injection, the voltage angle,
and the frequency vectors. In each case, the ith component
of the vector corresponds to the ith node. The power network
dynamics are then described by the swing equations: for each
i ∈I ,

θ̇i(t) = ωi(t), (1a)

Miω̇i(t) =−Eiωi(t)−∑
j∈N (i)

bi j sin(θi(t)−θ j(t))+ pi(t), (1b)

where Mi > 0 (resp. Ei > 0) is the moment inertia (resp.
damping parameter) at node i, and bi j is the susceptance of

the transmission line between node i and j. For simplicity of
exposition, we assume positiveness of each Mi, though our
discussion can be easily extended to situations where this is
not the case. Let Λ(t) , DΘ(t) ∈ Rm be the voltage angle
difference between every two neighboring nodes, where D∈
Rm×n is the incidence matrix corresponding to an arbitrary
orientation of the graph G . We rewrite the dynamics (1) in
compact form as

Λ̇(t) = DΩ(t), (2a)

MΩ̇(t) =−EΩ(t)−DTYbsin(Λ(t))+P(t), (2b)

where M , diag([M1,M2, . . . ,Mn]) ∈ Rn×n, E ,
diag([E1,E2, . . . ,En]) ∈ Rn×n, Yb , diag{bi j} ∈ Rm×m,
and sin is the component-wise sine function. Under
the small angle difference assumption [12], i.e.,
sin(θi(t) − θ j(t)) ≈ θi(t) − θ j(t), or equivalently,
sin(Λ(t)) ≈ Λ(t), the power flow can be represented
by YbΛ(t) and the dynamics (2) can be linearized as follows,[

Λ̇(t)
Ω̇(t)

]
=

[
0m×m D

−M−1DTYb −M−1E

][
Λ(t)
Ω(t)

]
+

[
0m

M−1P(t)

]
.

(3)

As we show later in this section, if the power injection
P(t) is constant, then the system (3) converges to a unique
equilibrium (Λss,ωsync1n), where ωsync ∈ R is called the
synchronized frequency.

B. Disturbance modeling and stability criteria

We are interested in understanding how the power injec-
tion P(t) influences both the transient stability and steady-
state stability of the power network. For system (2) with
an arbitrary initial state (Λ(0),Ω(0)) and an arbitrary initial
constant power injection P0 ∈Rn, we consider the case where
an additional power disturbance P̄(t,K)∈Rn is injected into
the power grid starting at time 0, i.e.,

P(t,K) = P0 + P̄(t,K), ∀t > 0. (4)

We assume the disturbance possesses the following form,

P̄(t,K) = Bρ ρ(t)+BKDζ (t)K, ∀t > 0, (5)

where Bρ ∈ Rn×r, BK ∈ Rn×s are constant matrices; vector
ρ(t) ∈ Rr (resp. ζ (t) ∈ Rs) is an integrable function with a
limit denoted as limt→+∞ ρ(t) = ρ∞ (resp. limt→+∞ ζ (t) =
ζ∞); diagonal matrix Dζ (t) is a shorthand notation for the
diagonal matrix diag(ζ (t)) ∈ Rs×s and K ∈ Rs.

The interpretation for this specific form of the disturbance
are as follows. The vector ρ(t) captures some known base-
line disturbance, while the part Dζ (t)K is some additional
disturbance whose amplitude K is unknown, and whose form
of trajectories are determined by ζ (t). The matrix Bρ (resp.
BK) denotes the coupling relations between components of
ρ(t) (resp. Dζ (t)K). A simple choice could be Bρ = BK = In,
ρ(t) = 0n, and ζ (t) = 1(t)1n, letting the disturbance P̄(t)
become a step signal of amplitude K, i.e., P̄(t,K) = 1(t)K.
The function ζ (t) can also take the form of other types of
signals, e.g., piecewise linear, exponential decaying, sinusoid
signals and their (linear or nonlinear) combinations.



The problem we seek to solve is characterizing how the
amplitude K in the disturbance injection affects the transient
and steady-state stability of the power network. As stability
criteria, we consider the following:

(i) Transient-state frequency bound: For a given 0 6 t1 <
t2 and a time interval [t1, t2], the voltage frequency
Ω(t) should be upper and lower bounded by Ωmax ∈
Rn and Ωmin ∈ Rn, respectively, i.e., Ωmin 6 Ω(t) 6
Ωmax, ∀t ∈ [t1, t2].

(ii) Transient-state power flow bound: For any given time
interval [t1, t2], the power flow YbΛ(t) should be upper
and lower bounded by Fmax ∈ Rm and Fmin ∈ Rm,
respectively, i.e., Fmin 6 YbΛ(t)6 Fmax, ∀t ∈ [t1, t2].

(iii) Steady-state synchronized frequency bound: At steady
state, the synchronized frequency ωsync should be up-
per and lower bounded by ωmax

sync ∈ R and ωmin
sync ∈ R,

respectively, i.e., ωmin
sync 6 ωsync 6 ωmax

sync.
(iv) Steady-state power flow bound: At steady state, the

power flow YbΛss should be upper and lower bounded
by Fmax

ss ∈Rm and Fmin
ss ∈Rm, respectively, i.e., Fmin

ss 6
YbΛss 6 Fmax

ss .

We refer to the set ΨT of all K ∈ Rs satisfying require-
ments (i)-(ii) as the transient-state feasibility set. Similarly,
we refer to the set ΨS of all K ∈ Rs satisfying require-
ments (iii)-(iv) as the steady-state feasibility set. A vector
K that lies in ΨT ∩ΨS does not destroy either the transient-
state constraints or the steady-state constraints for the power
network. Our objective is then to provide formal descriptions
of these sets.

Remark 3.1: (Computation of the steady-state feasibility
set). We show that the steady-state feasibility set ΨS can be
equivalently expressed in the following form. First define

P∞ , P0 +Bρ ρ∞ +BKDζ∞
K, ωsync , 1T

n P∞/
n

∑
i=1

Ei, (6a)

L(Yb), DTYbD, Λss , DL†(Yb)
(
P∞−ωsyncE1n

)
. (6b)

One can show [13] that the system (3) with input (5)
convergences to the unique equilibrium (Λss,ωsync1n). Hence
K ∈ΨS if and only if

ω
min
sync 6 ωsync 6 ω

max
sync,

Fmin
ss 6 YbDL†(Yb)

(
P∞−ωsyncE1n

)
6 Fmax

ss ,

where P∞ and ωsync are both linear functions of K, as defined
in (6). It is easy to see that the set ΨS is a s-dimensional
convex polytope consisting of m+1 constraints. •

IV. COMPUTATION OF THE TRANSIENT-STATE
FEASIBILITY SET

In this section we start by illustrating how the computation
of the transient-state feasibility set is a hard problem in
general. Our strategy to deal with this is to turn them into
obtaining inner and outer approximations of this set that are
easier to compute, and whose degree of exactness can be
tuned by the designer.

We start by re-writing the dynamics (3) with input (4) as
follows,

ẋ(t,K) = Ax(t,K)+

[
0m

M−1P(t,K)

]
, (8a)

where

x(t,K)=

[
Λ(t,K)
Ω(t,K)

]
, A=

[
0m×m D
−M−1DT −M−1E

]
.

Solving (8), one has

x(t,K) = eAtx0 +
∫ t

0
eA(t−τ)

[
0m

M−1P(τ,K)

]
dτ = S(t)+V (t)K,

where

S(t), eAtx0 +
∫ t

0
eA(t−τ)

[
0m

M−1
(
P0 +Bρ ρ(τ)

)]dτ,

V (t),
∫ t

0
eA(t−τ)

[
0m

M−1BKDζ (τ)

]
dτ.

Denoting

xmax ,

[
Ωmax

Fmax

]
, xmin ,

[
Ωmin

Fmin

]
,

one can express the transient-state feasibility set as

Ψ
T =

{
K ∈ Rs ∣∣ xmin 6 S(t)+V (t)K 6 xmax, ∀t ∈ [t1, t2]

}
.

This expression shows that ΨT consists of infinitely many
affine constraints of K and hence is convex. Due to the
infinitely many constraints in ΨT , here we provide instead
inner and outer approximations of ΨT that are easy to
compute. The inner approximation is based on the idea
of requiring the constraints in ΨT be satisfied at a finite
collection of time points but with narrowed bound limits, and
thus making sure that the ones unchecked are not violated.
The outer approximation is simply a subset of the constraints
appearing in ΨT .

A. Transient-state feasibility set for a scalar signal

Here, we restrict our attention to scalar signals. We later
build on this analysis to address the more general case of
vector signals.

Consider a time-dependent differentiable real signal t 7→
y(t,K) and a sequence of time

τ =
{
(τ1,τ2, . . . ,τr)

∣∣ t1 = τ1 < τ2 < .. . < τr = t2
}
. (10)

We want to know what kinds of K guarantee that

ymin 6 y(t,K)6 ymax, ∀t ∈ [t1, t2]. (11)

Suppose that there exists a real signal t 7→ yd(t,K) ∈R such
that it can upper-bound the derivative of y(t,K), i.e.,

|ẏ(t,K)|6 yd(t,K), ∀t ∈ [t1, t2]. (12)

The next result shows that if yd(t,K) is bounded, then one
can ensure (11) by only restricting the value of y(t,K) for
t ∈ τ .

Lemma 4.1: (Sufficient condition for checking real-time
state constraint). For a sequence of time τ defined in (10),
a time-dependent differentiable real signal t 7→ y(t,K), and a
derivative bound signal t 7→ yd(t,K) defined in (12), assume
that yd(t,K) can be bounded independent with t and for each
q ∈ [1,r− 1]N, define dq(K) , maxt∈[τq,τq+1]{yd(t,K)} ∈ R.
Let δq(K), dq(K)(τq+1− τq)/2 ∈ R. If

ymin +δq(K)6 y(τq,K) 6 ymax−δq(K), (13a)



ymin +δq(K)6 y(τq+1,K)6 ymax−δq(K), (13b)

for all q ∈ [1,r−1]N, then (11) holds.
Given the time signal y, Lemma 4.1 opens the way to

efficiently compute inner and outer approximations for the
set

Σ ,
{

K
∣∣ ymin 6 y(t,K)6 ymax, ∀t ∈ [t1, t2]

}
. (14)

The next result formally states this, and shows that the two
approximations can be arbitrarily accurate by adapting ετ

defined as the largest time period in τ . i.e.,

ε
τ , maxq∈[1,r−1]N{τq+1− τq}> 0. (15)

Lemma 4.2: (Inclusion relations and convergence of inner
and outer set). Under the assumption in Lemma 4.1, further
assume that there exists a bounded d̃q independent with K
such that dq(K)6 d̃q for all q ∈ [1,r−1]N. Denote

δ̃q , d̃q(τq+1− τq)/2,

ΣO ,
{

K
∣∣ ymin 6 y(τq,K)6 ymax, ∀q ∈ [1,r]N

}
,

ΣI ,
{

K
∣∣ ymin + δ̃q 6 y(τq,K), y(τq+1,K)

6 ymax− δ̃q, ∀q ∈ [1,r−1]N
}
.

It holds that
(i) ΣI ⊆ Σ⊆ ΣO, and

(ii) if ετ → 0+, then ΣO→ Σ and ΣI → Σ.

B. Metric measuring the approximation gap

An interesting question regarding using ΣI and ΣO to
approximate Σ is how well the approximation is. If we define

Σ̄O ,
{

K
∣∣ ymin−2δ̃q 6 y(t,K)6

ymax +2δ̃q, ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N
}
, (17a)

Σ̄I ,
{

K
∣∣ ymin + δ̃q 6 y(t,K)6

ymax− δ̃q, ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N
}
, (17b)

then one has that for a same τ , It holds that Σ̄I ⊆ ΣI ⊆
Σ⊆ ΣO ⊆ Σ̄O. Therefore a conservative but guaranteed way
to describe the approximation extent is to depict the gap
between Σ̄I and Σ, and between Σ and Σ̄O. Since Σ̄I and Σ̄O
almost have the same structure with difference coming only
from shifted upper and lower bound, we here, for simplicity,
only show a metric describing the gap between Σ̄I and Σ.
We define our approximation extent metric as,

ν(τ), maxq∈[1,r−1]N{δ̃q}. (18)

An explanation of choosing ν as the metric is as follows. For
a given q ∈ [1,r−1]N, define cns(δ̃q) as the collection of all
K′s that satisfy ymin 6 y(t,K) 6 ymax, ∀t ∈ [τq,τq+1] while
not satisfy ymin + δ̃q 6 y(t,K)6 ymax− δ̃q, ∀t ∈ [τq,τq+1]. It
holds that,

cns(δ̃q)⊆
{

K
∣∣ ymin 6 y(t,K)6 ymin + δ̃q,

ymax− δ̃q 6 y(t,K)6 ymax, ∀t ∈ [τq,τq+1]
}
. (19)

It is easy to see that the region cns(δ̃q) becomes smaller as
δ̃q decreases, and becomes empty as δ̃q is 0. Hence a good
metric to measure the size of cns(δ̃q) would simply be δ̃q.
Also since Σ\Σ̄I ⊆

⋃
q∈[1,r−1]N cns(δ̃q), the meaning of ν(τ) is

clear: it stands for the largest conservativeness region among
all [τq,τq+1] intervals. Lastly, it should be mentioned that i)
the proposed metric v(τ) works symmetrically for measuring
the gap between Σ̄O and Σ as well, and ii) if v(τ)→ 0+, then
Σ̄I → Σ and hence ΣI → Σ.

C. Algorithm to reduce the approximation gap

One obvious way to reduce ν(τ) and hence make both
ΣO and ΣI more similar to Σ is to add more sampling points
into τ , but this way would inevitably increase the number of
constraints appeared in both ΣI and ΣO, making the two sets
more complicated; therefore, an interesting issue would be
how to find a relative small v(τ) if the number of sampling
points (i.e., r) is fixed. Since in general ν is a non-convex
function, finding the minimal value and its optimal solution
set can be intractable or NP-hard; however, it is still possible
to reasonably adjust the sampling sequence τ to attain a
smaller metric value. The following algorithm, starting from
an arbitrary initial sampling sequence τ0 = {τ0

1 ,τ
0
2 , . . . ,τ

0
r } as

defined in (10), is able to monotonically decrease the metric
value by modifying the sampling points until termination.
Furthermore, denote d̃max , maxq∈[1,r−1]N d̃q and let τ̄ be the
sampling sequence generated as Algorithm 1 terminate, then
if d̃max is independent with the sampling sequence, we can
upper bound ν(τ̄) with respect to d̃max.

Algorithm 1: Reduce metric value

Data: A sampling sequence τ0 = {τ0
1 ,τ

0
2 , . . . ,τ

0
r }, where

t1 = τ0
1 < τ0

2 < .. . < τ0
r = t2; derivative bound

signal yd defined in (12)
Result: An improved sampling sequence

τ̄ , {τ̄1, τ̄2, . . . , τ̄r} such that τ̄1 = t1, τ̄r = t2,
and ν(τ̄)6 ν(τ0);

1 Initialization: τ , {τ1,τ2, . . . ,τr}= τ0

2 while not terminated do
3 for q = 1 : r−2 do
4 d̃q,q+1 , max{d̃q, d̃q+1}
5 µq , d̃q,q+1(τq+2− τq)/2
6 end
7 Compute µmax , minq∈[1,r−2]N{µq}; select any q′

that belongs to its optimal solution set; select any
q∗ that solves maxq∈[1,r−1]N{δ̃q}

8 if µmax < v(τ) then
9 Update the sampling sequence τ by deleting the

sampling point τq′+1 and then by adding a
sampling point in the middle of [τq∗ ,τq∗+1]

10 else
11 τ̄ = τ; quit the algorithm
12 end
13 end



Next we show the monotonic decreasing property of the
value of ν obtained in each round of Algorithm 1 and provide
an upper bound of v(τ̄) for arbitrary initial time sequence τ0.

Lemma 4.3: (Properties of Algorithm 1). Suppose r > 3,
then for an arbitrary initial sampling time sequence τ0

defined in (10), it holds that
(i) If at some round of the algorithm, the sampling se-

quence is updated from τ to τ ′, then ν(τ ′)6 ν(τ).
(ii) ν(τ̄)6 d̃max(t2− t1)/(r−2).

D. Approximation of the transient-state feasibility set

Based on Lemma 4.2, we are finally ready to depict the
set ΨT by two sets that sandwich ΨT .

Theorem 4.4: (Inclusion relations and convergence of in-
ner and outer set for the transient-state stability set). Sup-
pose the vector K can be bounded such that ‖K‖∞ 6 γ .
Further let

R(t), AeAt
(

x0 +
∫ t

0
e−Aτ

[
0m

M−1
(
P0 +Bρ ρ(τ)

)]dτ

)
+

[
0m

M−1
(
P0 +Bρ ρ(t)

)] ,
Q(t), AeAt

∫ t

0
e−Aτ

[
0m

M−1BKDζ (τ)

]
dτ +

[
0m

M−1BKDζ (t)

]
,

zi(t), |[R(t)]i|+ γ‖[Q(t)]i‖1, ∀i ∈ [1,n+m]N. (20)

For every i∈ [1,n+m]N, choose any sampling sequence τ i =
{τ i

1,τ
i
2, . . . ,τ

i
r(i)} defined in (10), and define

ε
τ i
, maxq∈[1,r(i)−1]N{τ

i
q+1− τ

i
q}> 0,

d̃q,i , maxt∈[τ i
q,τ

i
q+1]
{zi(t)}, ∀q = [1,r(i)−1]N,

δ̃q,i , d̃q,i(τ
i
q+1− τ

i
q)/2, ∀q = [1,r(i)−1]N,

Ψ
T
O,i ,

{
K
∣∣ xmin

i 6 [S(τ i
q)]i +[V (τ i

q)]iK

6 xmax
i , ∀q ∈ [1,r(i)]N} .

Ψ
T
I,i ,

{
K
∣∣ xmin

i + δ̃q,i 6 [S(τ i
q)]i +[V (τ i

q)]iK, [S(τ i
q+1)]i

+[V (τ i
q+1)]iK 6 xmax

i − δ̃q,i, ∀q ∈ [1,r(i)−1]N
}
,

Ψ
T
O ,

⋂
i∈[1,n+m]N

Ψ
T
O,i, Ψ

T
I ,

⋂
i∈[1,n+m]N

Ψ
T
I,i.

It holds that
(i) ΨT

I ⊆ΨT ⊆ΨT
O, and

(ii) If ετ i → 0+ for all i ∈ [1,m+n]N, then ΨT
O→ΨT and

ΨT
I →ΨT .

Similar to the way we define ν in (18), here we define

πi , maxq∈[1,r(i)]N{δ̃q,i},
π , maxi∈[1,m+n]N{πi/(xmax

i − xmin
i )}, (22)

and use π as the metric measuring the approximation gap,
where the coefficient 1/(xmax

i − xmin
i ) scales πi relative to

its bounds. Still we can reduce π by reducing every πi
independently using Algorithm 1.

parameter value parameter value
M I118 t0 0s
Yb 8I186 t1 4s
E 0.2I118 γ 0.65

Fmax and −Fmin 2.41186 Ωmax and −Ωmin 0.11118

TABLE I: Power network parameters.

V. SIMULATIONS

In this section, we illustrate our results on the IEEE
118-bus power network [14], which has 54 generators, 91
loads and 186 transmission lines. We run our simulations in
MATLAB on a laptop with a 3GHz Intel Core i7 dual-core
CPU and 8GB of RAM. We select parameters based on [11],
[15] with minor adjustments, cf. Table I. The initial power
injection vector P0 is as follows: the initial power injection
of all 54 generators is 1, of all 91 loads is -54/91, and of
all other nodes is 0. We also set Ω(0) = 0118 and Λ(0) =
DL†(Yb)P0. The order and directions of the transmission lines
can be arbitrary, since all lines have the same transient-state
maximum bound and minimum bound, where the two bounds
have the same absolute value. Under this setup, at t = 0, the
system (3) is balanced. At that time instant, a disturbance
in the form of step signals with amplitude K1 (resp. K2) is
injected into node 34 (resp. node 35), i.e., [P̄(t,K)]i = 1(t)K1
(resp. [P̄(t,K)]i = 1(t)K2) if i= 34 (resp. i= 35), and all other
components of P̄(t,K) are zero.

In Figure 1 (a) to (d), the gray regions with dotted
boundaries represent ΨT

I , while the yellow regions with
solid boundaries stand for ΨT

O. As Theorem 4.4 states, the
transient-state feasibility set ΨT is contained in ΨT

O and
contains ΨT

I . In (a), the sampling sequence τ i for each state xi
is chosen to be the same one with even sampling period 0.2s,
i.e., τ i = {0s,0.2s,0.4s, . . . ,3.8s,4s}, ∀i ∈ [1,m+n]N, while
in (b), each sampling sequence is optimized by Algorithm 1,
and we use {0s,0.2s,0.4s, . . . ,3.8s,4s} as the initial sampling
sequence for all i ∈ [1,m+n]N. By optimizing the sampling
sequences (but maintaining the same number of sampling
points), the gap between ΨT

I and ΨT
O is smaller in (b) than

in (a). In (b) to (d), we still apply Algorithm 1 to optimize
the sampling sequence, but increase the number of sampling
points. In particular, we still choose even sampling sequence
to initiate Algorithm 1 but decrease its sampling period from
0.2s as in (b), 0.1s as in (c), to 0.05s as in (d). We observe
convergence between the two approximations, which verifies
statement (ii) in Theorem 4.4.

Lastly, we illustrate how the total computation time for
the approximations ΨT

O and ΨT
I (resp. the metric value π)

changes with the number of sampling points and the size of
the disturbance. In each data point of Figure 2(a)-(b), we use
the same even sampling sequence for each i∈ [1,m+n]N and
optimize the sequence using Algorithm 1. For different data
points, we decrease the sampling period from 0.2s to 0.05s,
in 0.025 decrements. As a comparison, in Figure 2(c)-(d), we
repeat the simulations for disturbances injected at all 91 load
nodes in the form of step signal with amplitude K, i.e., for the



(a) (b) (c) (d)

Fig. 1: Inner and outer approximations of the transient-state feasibility set with different sampling sequences.

(a) (b) (c) (d)

Fig. 2: Illustration of the total time to compute the inner and outer approximations and the metric value with respect to
different numbers of sampling points.

jth load node, [P̄(t,K)] j = 1(t)K j, and all other components
of P̄(t,K) are zero. Comparing (a) and (c), though the
number of disturbances with amplitude K increases sharply
from 2 to 91, the total computation time remains acceptable.
However, for the same number of sampling points, the
metric value associated with the 91-disturbance case is higher
than that with the 2-disturbance case. This is because the
increase in the number of disturbances makes zi(t) in (20),
the estimation of the derivative bound of xi(t), become larger
for some i∈ [1,m+n]N, resulting in an increase of πi in (22),
and finally boosting the metric π .

VI. CONCLUSIONS

We have considered the problem of efficiently describing
the set of disturbances to a power network that do not
affect its transient-state and steady-state stability in terms
of frequency and power flow. Under the assumption that
a bound on the amplitude of the disturbance is available,
we have devised a sampling method to provide superset
and subset approximations of the transient-state feasibility
set. These approximations can be computed with arbitrary
accuracy, at the cost of increasing the computational com-
plexity. We have also introduced a metric to measure the
approximation gap and designed an algorithm to optimize it
for a given fixed number of sampling points. Future work will
investigate the definition of robustness margins for the power
network based on the feasibility sets, provide approximations
for systems with uncertain baseline disturbances, extend the
analysis from constant amplitude to time-varying amplitude,
and quantify the difference between the feasibility sets of the
nonlinear swing dynamics and its linearized version.
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