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Abstract—This paper develops methods to compute the set of disturbances on a power network that do not tip the frequency of each
bus and the power flow in each transmission line beyond pre-defined bounds. For a linearized AC power network model, we consider
scenarios with varying degree of knowledge about the form of the disturbance. We propose a sampling method to provide inner and
outer approximations with tunable accuracy of the set of tolerable disturbances. The complexity of computing such set approximations
is a function of the number of sampling points. We introduce an error metric to measure the gap between the approximations and
design an algorithm that finds, for fixed number of sampling points, the sampling sequence that minimizes its value. Simulations on the
IEEE 39-bus power network illustrate our results.
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1 INTRODUCTION

P OWER systems safety is a fundamental aspect of the op-
eration and management of the grid. Ensuring safety has

become especially challenging in today’s large-scale systems, with
uncertainty and variability coming from renewable sources and
consumer participation. Transient-state safety refers to the ability
of power networks to reach an acceptable state range when subject
to disturbances while at the same time respecting operational
constraints. Due to the difficulty of explicitly characterizing the
form, magnitude, location and duration of disturbances, it is
hard to precisely describe their effect on the behavior of power
networks during transients. The present work is motivated by the
goal of facilitating such understanding using computational tools.

Literature review

System stability refers to the ability to “regain a state of operating
equilibrium after being subjected to a physical disturbance, with
most system variables bounded so that practically the entire
system remains intact [2]”. There are two major methods [2],
[3] for analyzing stability: time-domain and Lyapunov direct
methods. The time-domain method [4], [5], [6] usually refers to
the numerical simulation of the system behavior for some specific
disturbance. Depending on the numerical solver, this method is
able to consider almost any power network model and to precisely
depict the state trajectories, provided that the system parameters
are accurately known. However, the time-domain method cannot
answer question regarding how far the system is from (in)stability
and can hardly provide guidelines for control [7]. The Lyapunov
direct method [8], [9], [10], [11], [12], focuses on estimating the
region of attraction of the system equilibrium using Lyapunov
functions to ensure the stability of the power networks without
knowing the specific form of the disturbance (provided the initial
state lies in the identified region). Most of the direct methods
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require less simulation/computation time than time-domain meth-
ods and, more importantly, are able to provide stability margins
and parameter sensitivity analysis. However, due to the difficulty
of finding Lyapunov functions, especially for power systems
with complex dynamics subject to time-varying disturbances, and
the conservativeness required in bounding their evolution, the
identified regions of attraction could be coarse approximations
of the actual one. In this paper we take the alternative approach
of identifying the set of disturbances under which the state of the
power system remains within desired bounds during transients.
The availability of these descriptions makes it possible to quantify
network robustness by, for instance, defining metrics that measure
the minimum disturbance that is able to force the system out of
the safety region, see e.g., [13], [14]. Such notions are useful in
the context of cascading failures analysis and, unlike much of the
literature, see e.g., [15], [16], they help identify conditions for
triggering initial failures that incorporate the effect of not only
network connectivity, but also network dynamics.

Our research here is also related to the literature on the char-
acterization of forward and backward reachability sets, see [17],
[18], [19] and, in the context of power systems, [20] for linear
dynamics, [21], [22], [23] for nonlinear dynamics with time-
varying uncertainty, and [24] for constant uncertainty. Given
regions of initial states and possible input signals, a state belongs
to the forward reachability set if there exists an initial state and
an input signal trajectory that steer the dynamical system to
this particular state. Similarly, a state belongs to the backward
reachability set if the system can be driven starting from this state
into the region with an input trajectory. In general, both types of
sets are too difficult to compute precisely, so instead the emphasis
is put on constructing accurate inner and outer approximations.
An important observation is that reachability set analysis puts
the emphasis on characterizing the achievable system states and
ensuring that transient trajectories satisfy desired specifications
given the set of allowable inputs or disturbances. Our emphasis
here is entirely complementary: we focus on characterizing the set
of disturbances that do not cause the system state to violate the
desired specifications.
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Statement of contributions
We consider a linearized AC power network subject to multiple
disturbances, with each one modeled as amplitude multiplying
a time-varying signal, injected at various buses. We distinguish
between three cases: when the form of the trajectory is totally
known, partially known, or totally unknown but bounded. A
disturbance is tolerable for the transient-state safety of the power
network if the frequency of each bus and the power flow in each
transmission line still remain in their respective bounds during
a given period of time. Our main goal is to design efficient
ways of computing the transient-state tolerableness set consisting
of all such classes of disturbances. Our first contribution shows
that all three transient-state tolerableness sets can be equivalently
expressed in a unified way that contain infinitely many constraints.
The second contribution develops a sampling method to approx-
imate these sets by synthesizing inner and outer approximations.
The inner approximation is computed by sampling and tightening
the constraints at finite discrete-time instants. We use the network
dynamics to upper and lower bound the evolution of state signals
and show that satisfying the constraints at these finite instants
ensures in fact that all constraints are respected at all times. The
outer approximation comes from using only a finite number of the
constraints appearing in the original transient-state tolerableness
set. We show that, as the number of sampling points increases,
the approximation sets converge to the real transient-state tolera-
bleness set. Our third contribution consists of defining a metric to
measure the approximation gap by estimating the region difference
between the approximations and the real set. We characterize the
sampling sequence that, for a fixed number of sampling points,
results in the minimal gap of the approximations and design an
algorithm to find it by efficiently adjusting the positions of the
sampling points. Finally, we illustrate our results on the IEEE 39-
bus power system by showing the inner and outer approximations
of the three tolerableness sets.

2 PRELIMINARIES

Here we introduce basic notation and mathematical notions.

Notation
Let R, R>, R> and N denote the set of real, strictly positive
real, non-negative real and natural numbers, respectively. Variables
are assumed to belong to the Euclidean space if not specified
otherwise. For p,q ∈ N, let [p,q]N ,

{
x ∈ N

∣∣ p 6 x 6 q
}

. We
denote by a 6 b (<,>,>) the element-wise set of inequalities
for vectors a,b ∈ Rn. We let 1n and 0n in Rn denote the vector of
all ones and zeros, respectively. Let In ∈ Rn×n denote the identity
matrix and diag(a) ∈Rn×n be the diagonal matrix whose diagonal
is given by the elements of a∈Rn. For A∈Rm×n, let [A]i and [A]i, j
denote its ith row and (i, j)th element, respectively, and |A| ∈Rm×n

the matrix whose entries are the absolute values of the entries of A.
Given Σ⊂ Rn, we let Σcl denote its closure.

Algebraic graph theory
We review basic notions from algebraic graph theory from [25],
[26]. An undirected graph is a pair G = (I ,E ), where I =
{1, . . . ,n} is the vertex set and E = {e1, . . . ,em} ⊆I ×I is the
edge set. A path is an ordered sequence of vertices such that any
pair of consecutive vertices in the sequence is an edge of the
graph. A graph is connected if there exists a path between any
two vertices. Two nodes are neighbors if there exists an edge

linking them. Let N (i) denote the set of neighbors of node i.
For each edge eα ∈ E with vertices i, j, the orientation procedure
consists of choosing either i or j to be the positive end of eα

and the other vertex to be the negative end. The incidence matrix
D = (dαi) ∈ Rm×n associated with G is defined as

dαi =


1 if i is the positive end of eα ,

−1 if i is the negative end of eα ,

0 otherwise.

Set limit

We introduce basic definitions from set theory [27]. Given a
sequence of sets {Ak}∞

k=1, define

liminf
k→∞

Ak ,
⋃
k>1

⋂
j>k

A j, limsup
k→∞

Ak ,
⋂
k>1

⋃
j>k

A j.

It holds that liminf
k→∞

Ak ⊆ limsup
k→∞

Ak. Furthermore, if liminf
k→∞

Ak =

limsup
k→∞

Ak = A, then we say the limit of {Ak}∞
k=1 exists and is A.

In shorthand notation, we write Ak → A. For a set C and two set
sequences {Bk}∞

k=1 and {Ck}∞
k=1, if C ⊆ Bk ⊆Ck (resp. Ck ⊆ Bk ⊆

C) for all k > 1, and Ck→C, then Bk→C.

3 PROBLEM STATEMENT

This section describes the problem of interest. We start by describ-
ing the model for the power grid and its dynamics, and then define
the desired safety criteria against disturbances.

3.1 Power network dynamics

Following [28], [29], [30], the power network model struc-
ture is encoded by a connected undirected graph G = (I ,E ),
where I corresponds to the n buses and E represents the
m transmission lines. We denote by P = [P1,P2, . . . ,Pn]

T ∈ Rn,
Θ = [θ1,θ2, . . . ,θn]

T ∈ Rn, and Ω = [ω1,ω2, . . . ,ωn]
T ∈ Rn, re-

spectively, the network power injection, the voltage angle, and
the frequency vectors. In each case, the ith component of the
vector corresponds to the ith node. The linearized power network
dynamics are then described by the following equations: for each
i ∈I ,

θ̇i(t) = ωi(t), (1a)

Miω̇i(t) =−Eiωi(t)−∑
j∈N (i)

bi j(θi(t)−θ j(t))+Pi(t), (1b)

where Mi > 0 (resp. Ei > 0) is the moment inertia (resp. damping
parameter or droop coefficient) at node i, and bi j is the susceptance
of the transmission line between node i and j. Let D ∈ Rm×n be
the incidence matrix corresponding to an arbitrary orientation of
the graph G and define Λ(t) , DΘ(t) ∈ Rm as the voltage angle
difference between every two neighboring nodes. We rewrite the
dynamics (1) in compact form [31] as[

Λ̇(t)
MΩ̇(t)

]
=

[
0m×m D
−DTYb −E

][
Λ(t)
Ω(t)

]
+

[
0m

P(t)

]
, (2)

where M , diag([M1,M2, . . . ,Mn]) ∈ Rn×n, E ,
diag([E1,E2, . . . ,En]) ∈Rn×n, Yb , diag{bi j} ∈Rm×m. Notice that
the power flow can be represented by YbΛ(t). Throughout the
paper, we use (2) to describe the power network dynamics.
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3.2 Disturbance modeling and safety criteria
We are interested in understanding how disturbances in the power
injection affect the transient-state safety of the power network. For
system (2) with an arbitrary initial state (Λ(0),Ω(0)) and a known
nominal power injection Pnom(t)∈Rn, we consider the case where
an additional unknown power disturbance Pdist(t) ∈Rn is injected
starting at time 0, i.e.,

P(t) = Pnom(t)+Pdist(t), ∀t > 0. (3)

Such additive disturbances model the mismatch between predicted
and actual power injection in power systems and might arise, for
instance, from variability in the load consumption or uncertainty
in power generation caused by, e,.g., renewable energy sources.
As safety criteria, we consider the following:

(i) Transient-state frequency bound: Given 0 6 t1 < t2, the volt-
age frequency Ω(t) satisfies

Ω
min < Ω(t)< Ω

max, ∀t ∈ [t1, t2].

(ii) Transient-state power flow bound: Given 0 6 t1 < t2, the
power flow YbΛ(t) satisfies

Fmin < YbΛ(t)< Fmax, ∀t ∈ [t1, t2].

Depending on how much is known about the form of the
disturbance signal Pdist, we provide different definitions of what
it means for a disturbance to be tolerable by the system, i.e., not
disrupt its transient-state safety. We consider three increasingly
realistic cases:

(a) Precisely known trajectory form: the amplitude of the
disturbance is unknown but its trajectory form is precisely known,

Pdist(t) = Bdiag(ζ pre(t))Kpre, ∀t > 0, (4)

where Kpre ∈ Rs denotes the amplitude; ζ pre(t) ∈ Rs is an inte-
grable function that stands for the trajectory form; diag(ζ pre(t)) is
a shorthand notation for the diagonal matrix diag(ζ pre(t)) ∈Rs×s,
and B ∈ Rn×s is a constant matrix whose elements are either 0 or
1, representing the buses where the elements of diag(ζ pre(t))Kpre

are injected. The transient-state tolerableness set is then defined as

Ψ
pre ,

{
Kpre ∣∣ (i)-(ii) hold for (2) under (3) and (4)

}
(5)

Clearly, if Kpre lies in Ψpre, then the disturbance Pdist(t) with
amplitude Kpre does not violate the transient-state requirements.

(b) Partially known trajectory form: the amplitude is unknown
and the trajectory form is partially known, in the sense that a
nominal trajectory form together with an estimation error bound
are available. Formally,

Pdist(t) = Bdiag(ζ par)Kpar, (6a)

ζ
par(t) = ζ

nom(t)+ζ
err(t), (6b)

where ζ nom(t) ∈ Rs is known and ζ err(t) ∈ Rs is bounded
component-wise by a known vector α ∈ Rs. For convenience,
we define Z(α),

{
ζ
∣∣ |ζi(t)|6 αi, ∀i ∈ [1,s]N, ∀t ∈ [t1, t2]

}
. The

transient-state tolerableness set is then defined as

Ψ
par ,

{
Kpar ∣∣ ∀ζ err ∈ Z(α), (i)-(ii) hold for (2)

under (3) and (6)
}
. (7)

The interpretation of this set is that, if the amplitude Kpar belongs
to Ψpar, then the transient-state requirements (i)-(ii) are satisfied
under the disturbance Pdist(t) no matter how the evolution of the

unknown trajectory estimation error ζ err(t) (as long as it remains
bounded by α). Notice that if α = 0s and ζ nom = ζ pre, then Ψpar =
Ψpre. We still deal with the case of precisely known trajectory form
independently as its treatment sets the basis for generalization to
the other two, more complicated, cases.

(c) Unknown trajectory form: both the amplitude and the
trajectory form of the disturbance are unknown. To define the
transient-state tolerableness set in this case, we consider the
magnitude, rather than the amplitude, of the disturbance. Formally,

Pdist(t) = BKunk(t). (8)

We define the set of disturbances bounded by R ∈ Rs as P(R) ,{
Kunk

∣∣ |Kunk
i (t)|6 Ri, ∀i ∈ [1,s]N, ∀t ∈ [t1, t2]

}
. The transient-

state tolerableness set is then

Ψ
unk ,

{
R > 0s

∣∣ ∀Kunk ∈ P(R), (i)-(ii) hold for (2)

under (3) and (8)
}
. (9)

The interpretation of this set is that, if the magnitude bound R
belongs to Ψunk, then the transient-state requirements (i)-(ii) are
satisfied under the disturbance Punk(t) no matter its evolution (as
long as it magnitude is bounded by R).

Our goal is to provide formal descriptions of the transient-
state tolerableness sets in each of the cases (a)-(c). Given the
complexity of obtaining exact descriptions of these sets, we
focus on developing inner and outer approximations of them with
tunable accuracy. Our strategy to assess the impact of disturbances
on system trajectories over the time interval of interest is to
consider a finite set of sampling points, ensure certain bounds are
satisfied by the trajectories at these points, and reason to ensure
that no violations occur in between the sampling points. Figure 1
illustrates the main ideas behind our forthcoming discussion.

t

(a)

t

(b)

Figure 1. Illustration of our strategy to develop approximations of the
transient-state tolerableness sets. In this example, we describe condi-
tions under which a one-dimensional signal trajectory stays within the
horizontal black dashed bounds in a time interval determined by the two
sampling points. In plot (a), we only require the value of the signal to
lie within the bounds at two sampling points, which leads to an outer
approximation, as some trajectories (red dashed lines) may exceed
the bounds within the time interval. In plot (b), we employ a similar
strategy, but require the two terminal values to lie within some stricter
bounds, denoted by horizontal green dashed lines, whose positions are
determined by knowledge about the signal derivative inside the interval.
This allows us to guarantee that the whole trajectory does not exceed
the black dashed bounds at any time within the interval. This leads to an
inner approximation, as there may be trajectories (e.g., the red dashed
one) whose terminal values are not in the stricter green bounds but also
stay within the black dashed bounds at all times.

Remark 3.1. (Time interval selection). The initial time t1 is
typically the starting time of the disturbance, t1 = 0. We assume the
terminal time t2 is specified by a system operator based on desired
time horizons over which the network performance must meet
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certain specifications. In general, the time when the system reaches
steady state after the disturbance depends on the disturbance itself,
the network connectivity, and the network dynamics in a complex
way. The work [2] shows that in transient stability studies t2 =3
to 5s, and it may extend to 10 to 20s for very large systems with
dominant inter-area swing dynamics. •

4 TRANSFORMATION OF THE TRANSIENT-STATE
TOLERABLENESS SETS

In this section, we show how the transient-state tolerableness sets
defined in Section 3.2 can be expressed in a way that shares the
same structure across all three cases. This allows for a unified
treatment of all cases later.

In our treatment, we consider the case where all buses have
strictly positive inertias so that the diagonal matrix M in (2) is
invertible. Under the input (3), the dynamics can be written as

ẋ(t) = Ax(t)+
[

0m
M−1P(t)

]
, (10)

where

x(t)=
[

Λ(t)
Ω(t)

]
, A=

[
0m×m D

−M−1DTYb −M−1E

]
.

Solving (10), one has

x(t) = eAtx0 +
∫ t

0
eA(t−τ)

[
0m

M−1P(τ)

]
dτ, (11)

where x0 , [ΛT (0) ΩT (0)]T . Denoting

S(t,x0,Pnom), eAtx0 +
∫ t

0
eA(t−τ)

[
0m

M−1Pnom(τ)

]
dτ,

V (t,ζ ),
∫ t

0
eA(t−τ)

[
0m×s

M−1Bdiag(ζ (τ))

]
dτ,

xmax ,

[
Ωmax

Y−1
b Fmax

]
, xmin ,

[
Ωmin

Y−1
b Fmin

]
, (12)

one has that in the case (a) of precisely known trajectory form,
the state response can be re-written as x(t) = S(t,x0,Pnom) +
V (t,ζ pre)Kpre, and hence the transient-state tolerableness set takes
the form

Ψ
pre =

{
Kpre ∣∣ xmin < S(t,x0,Pnom)

+V (t,ζ pre)Kpre < xmax, ∀t ∈ [t1, t2]
}
. (13)

Based on this expression, it is easy to check whether a given
amplitude Kpre belongs to Ψpre. However, in cases (b) and (c), one
has

Ψ
par = {Kpar ∣∣ xmin < S(t,x0,Pnom)+V (t,ζ nom)Kpar

+V (t,ζ err)Kpar < xmax, ∀ζ err ∈ Z(α), ∀t ∈ [t1, t2]},
Ψ

unk = {R > 0s
∣∣ xmin < S(t,x0,Pnom)+V (t,1n)Kunk(t)

< xmax, ∀Kunk ∈ P(R), ∀t ∈ [t1, t2]}. (14)

Checking whether a disturbance amplitude belongs to either of
these two sets is impractical because of the need to check for all
possible values in Z(α) or P(R), respectively. The following result
shows that these checks can be made as simple as that for case (a).

Lemma 4.1. (Transformation of the transient-state tolerableness
set). The following statements hold.

(i) Kpar ∈Ψpar if and only if, for all t ∈ [t1, t2],

S(t,x0,Pnom)+V (t,ζ nom)Kpar +W (t)diag(α) |Kpar|< xmax,
(15a)

S(t,x0,Pnom)+V (t,ζ nom)Kpar−W (t)diag(α) |Kpar|> xmin,
(15b)

where

W (t),
∫ t

0
|Q(t− τ)|dτ ∈ R(m+n)×s, (16a)

Q(t̄), eAt̄
[

0m×s
M−1B

]
∈ R(m+n)×s. (16b)

(ii) R > 0s ∈Ψunk if and only if, for all t ∈ [t1, t2],

S(t,x0,Pnom)+W (t)R < xmax, (17a)

S(t,x0,Pnom)−W (t)R > xmin. (17b)

Proof. We only provide the proof of case (i). The proof of (ii)
follows similarly.
⇐) Assume Kpar satisfies (15). Notice that ∀ζ err ∈ Z(α), ∀i ∈

[1,m+n]N, it holds that

[W (t)diag(α) |Kpar|]i =
∫ t

0
|[Q(t− τ)]i|diag(α) |Kpar|dτ

=
∫ t

0

s

∑
j=1
|[Q(t− τ)]i, j|α j|Kpar

j |dτ

>
∫ t

0

s

∑
j=1

[Q(t− τ)]i, jζ
err
j (τ)Kpar

j dτ

=
∫ t

0
[Q(t− τ)]i diag(ζ err(τ))Kpardτ

= [V (t,ζ err)Kpar]i.

Therefore, one has that if (15) holds ∀t ∈ [t1, t2], then the following
inequalities hold ∀t ∈ [t1, t2], ∀ζ err ∈ Z(α),

S(t,Pnom)+V (t,ζ nom)Kpar +V (t,ζ err)Kpar < xmax, (18a)

S(t,Pnom)+V (t,ζ nom)Kpar−V (t,ζ err)Kpar > xmin, (18b)

and hence Kpar ∈Ψpar.
⇒) On the other hand, if Kpar ∈ Ψpar, then (18) holds ∀t ∈

[t1, t2], ∀ζ err ∈ Z(α). To prove (15), let us show that for all l ∈
[1,m+n]N, one has

[S(t,Pnom)+V (t,ζ nom)Kpar +W (t)diag(α) |Kpar|]l < xmax
l ,

(19a)

[S(t,Pnom)+V (t,ζ nom)Kpar−W (t)diag(α) |Kpar|]l > xmin
l .

(19b)

For any l ∈ [1,m+ n]N, we select ζ̂ err(t) ∈ Z(α) as follows: for
any t̄ ∈ [t1, t2], let

ζ̂
err
j (τ) = αlsgn{[(Q(t̄− τ)]l, jK

par
j }, ∀ j ∈ [1,s]N. (20)

One can check that [W (t̄)diag(α) |Kpar|]l = [V (t̄, ζ̂ err)Kpar]l .
Therefore, since the lth row of (18a) (resp. (18b)) holds at t = t̄,
one has that (19a) (resp. (19b)) holds at t = t̄. The result follows
from the arbitrariness of l and t̄.

Given (13) and Lemma 4.1, it is clear that all the transient-
state tolerableness sets Ψpre, Ψpar and Ψunk admit a common
representation involving certain vector signal (different in each
case) being upper and lower bounded over the time interval of
interest.
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Remark 4.2. (Containment relations among Ψpre, Ψpar and Ψunk).
The transient-state tolerableness sets for the different types of
disturbances are related as follows:

(i) If |ζ pre−ζ nom| is upper bounded by α , then Ψpar ⊆Ψpre;
(ii) If |ζ pre| is upper bounded by Rs 3 β pre > 0, then for every

R ∈ Ψunk, it holds R̄ ∈ Ψpre for all |R̄| 6 diag(β pre)−1R. In
particular, if β pre 6 1s, then Ψunk ⊆Ψpre;

(iii) If |ζ nom| is upper bounded by β nom ∈Rs with β nom +α > 0,
then for every R ∈ Ψunk, it holds that R̄ ∈ Ψpar for all |R̄| 6
(diag(β nom +α))−1 R. In particular, if β nom +α 6 1s, then
Ψunk ⊆Ψpar.

These statements follow from Lemma 4.1 by noting that if |ζ |
is upper bounded by β > 0s, then W (t)diag(β ) > V (t,ζ ), for all
t ∈ [t1, t2]. •

Remark 4.3. (Extension to linearly coupled safety criteria). The
expressions obtained above for the computation of the transient-
state tolerableness sets can be extended to the case where the
safety requirements involve linearly coupled states of the form

x̄min <Cx(t)< x̄max, ∀t ∈ [t1, t2], (21)

where C ∈Rc×(m+n), x̄max, x̄min ∈Rc. A particular example of this
scenario is the use of the center of inertia (COI) frequency [32],
[33],

ωCOI(t),

(
n

∑
i=1

Miωi(t)

)
/

n

∑
i=1

Mi,

which corresponds to C = [M1,M2, · · · ,Mn,0T
m]/∑

n
i=1 Mi. When

the safety criteria is given by (21), the expression (13) to compute
Ψpre should be modified by replacing S(t,x0,Pnom) and V (t,ζ pre)
by CS(t,x0,Pnom) and CV (t,ζ pre), respectively. Similarly, the
results in Lemma 4.1 to compute Ψpar and Ψunk are stil valid by
replacing S(t,x0,Pnom), V (t,ζ nom) and W (t) by CS(t,x0,Pnom),
CV (t,ζ nom) and

∫ t
0 |CQ(t− τ)|dτ , respectively. In all cases, xmin

(resp. xmax) should be replaced by x̄min (resp. x̄max). •

Remark 4.4. (Initial state as another disturbance). In the def-
initions of tolerableness sets, we assume the initial state x0 is
arbitrary but known. We can also consider the initial condition as
another type of disturbance, and characterize the tolerableness sets
with respect to both x0 and Kpre, Kpar or R. For instance, consider
the definition of Ψpar as

Ψ̃
par ,

{
(xest

0 ,Kpar)
∣∣ ∀ζ err ∈ Z(α), ∀x0 s.t. |x0− xest

0 |6 xbnd
0 ,

(i)-(ii) hold for (2) under (3) and (6)
}
,

where xbnd
0 > 0m+n constrains the initial state uncertainty. Note

that (xest
0 ,Kpar) ∈ Ψ̃par means that Kpar corresponds to a tolerable

disturbance for any initial state in a xbnd
0 -neighborhood around xest

0 .
Similarly to Lemma 4.1, one can show that (xest

0 ,Kpar) ∈ Ψ̃par if
and only if, for all t ∈ [t1, t2],

S(t,xest
0 ,Pnom)+ |eAt |xbnd

0 +V (t,ζ nom)Kpar

+W (t)diag(α) |Kpar|< xmax,

S(t,xest
0 ,Pnom)−|eAt |xbnd

0 +V (t,ζ nom)Kpar

−W (t)diag(α) |Kpar|> xmin.

For brevity, throughout the rest of the paper, we carry out the
exposition for the simpler definition of tolerableness set where the
initial condition is not an argument, but the results can be extended
accordingly. •

Remark 4.5. (Tolerableness sets with zero inertia buses). The
equivalent characterization of the tolerableness sets relies on the
fact that M is invertible. If this is not the case, one can derive a
similar equivalent transformation. For instance, if the disturbance
trajectory form is precisely known, the time-domain solution for
system (2) under (3) and (4) still takes a linear form with respect to
Kpre, denoted by x(t) = Ŝ(t,x0,Pnom)+ V̂ (t,ζ pre)Kpre, and hence
one has

Ψ
pre =

{
Kpre ∣∣ xmin < Ŝ(t,x0,Pnom)

+V̂ (t,ζ pre)Kpre < xmax, ∀t ∈ [t1, t2]
}
.

Due to the non-zero inertias, Ŝ(t,x0,Pnom), V̂ (t,ζ pre) have more
complicated expressions than S(t,x0,Pnom), V (t,ζ pre)), but the
ensuing discussion is equally applicable. •

5 INNER AND OUTER APPROXIMATIONS OF THE
TRANSIENT-STATE TOLERABLENESS SETS

The descriptions of the transient-state tolerableness sets obtained
in Section 4 involve infinitely many constraints to check whether
a disturbance is tolerable due to the dependence on continuous
time. To address this issue, here we construct inner and outer
approximations of these sets that are easier to compute and have
tunable accuracy. For simplify of exposition, we first consider the
case of scalar signals, and then build on this treatment to deal with
the vector case.

5.1 Scalar-signal case

Here we deal with the case when the signal that must stay within
given upper and lower bounds is scalar. Our discussion here can be
interpreted as looking at one component of the actual vector signal.
Let y : R×Rs→R be a generic scalar signal and let ymin,ymax ∈R
with ymin < ymax. We make the following assumption.

Assumption 5.1. (Signal differentiability and upper bound). The
signal y is differentiable with respect to its first argument and its
derivative is upper bounded by a time-continuous signal uniformly
in K, i.e., there exists yd : R→ R> such that

|ẏ(t,K)|6 yd(t), ∀t ∈ [t1, t2]. •

Consider the set Σ ,
{

K
∣∣ ymin < y(t,K)< ymax, ∀t ∈ [t1, t2]

}
.

Let us first define a sampling sequence

τ , {τ1,τ2, . . .τr}, (22)

where r > 3 and τi’s are called sampling points ordered as t1 =
τ1 < τ2 < .. . < τr = t2. Our approximations of the set Σ are based
on the idea of requiring the signal to be upper and lower bounded
at every sampling point, instead of at every time, and making sure
that the constraints defining Σ are not violated at all the other
times.

The next result makes our approximation methodology precise.

Lemma 5.2. (Sufficient condition for checking constraints on
continuous-time signal). Consider a sampling sequence defined
in (22). For each q ∈ [1,r−1]N, Under Assumption 5.1, define

dτ
q , max

t∈[τq,τq+1]
{yd(t)} ∈ R>, (23a)

δ
τ
q , dτ

q (τq+1− τq)/2 ∈ R>. (23b)
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If

ymin +δ
τ
q < y(τq,K) < ymax−δ

τ
q , (24a)

ymin +δ
τ
q < y(τq+1,K)< ymax−δ

τ
q , (24b)

for all q ∈ [1,r−1]N, then ymin < y(t,K)< ymax for all t ∈ [t1, t2].

Proof. We prove that the two upper bounds in (24) imply y(t,K)<
ymax for all t ∈ [t1, t2] (the statement for the lower bound follows
similarly). For q ∈ [1,r−1]N, let

a ,
y(τq,K)+ y(τq+1,K)

2
+δ

τ
q .

Note that, using (24), one has that a < ymax. Let us show that

max
t∈[τq,τq+1]

y(t,K)6 a. (25)

It is easy to see that dτ
q is a Lipschitz constant for y con-

strained on [τq,τq+1]. First, we show that a− y(τq,K) > 0 and
a− y(τq+1,K)> 0. These facts are a consequence of

a− y(τq,K) =
1
2
(
y(τq+1,K)− y(τq,K)+dτ

q (τq+1− τq)
)
,

a− y(τq+1,K) =
1
2
(
y(τq,K)− y(τq+1,K)+dτ

q (τq+1− τq)
)
,

and the fact that |y(τq+1,K)− y(τq,K)| 6 dτ
q (τq+1 − τq). Next,

using the Lipschitz condition, one sees that, if y reaches at
some time a starting from the value y(τq,K), it takes at least
(a− y(τq,K))/dτ

q > 0 seconds from τq to do so. On the other
hand, to come down from such a value, it would take at least(
a− y(τq+1,K)

)
/dτ

q > 0 seconds, so the total time would be
at least

(
2a− y(τq,K)− y(τq+1,K)

)
/dτ

q = τq+1− τq. Therefore y
cannot reach any value larger than a, i.e., (25) follows, concluding
the proof.

Lemma 5.2 opens the way to efficiently compute inner and
outer approximations of the set Σ. The next result formally states
this and shows that the two approximations can be made arbitrarily
accurate.

Lemma 5.3. (Inclusion relations and convergence of inner and
outer sets). Let K ∈ Rs, and t 7→ y(t,K) satisfy Assumption 5.1.
For a sampling sequence τ , let

ε
τ , max

q∈[1,r−1]N
{τq+1− τq} ∈ R>

denote its maximum inter-time separation. With the notation of
Lemma 5.2, define

Σ
τ
O ,

{
K
∣∣ ymin 6 y(τq,K)6 ymax, ∀q ∈ [1,r]N

}
,

Σ
τ
I ,

{
K
∣∣ ymin +δ

τ
q < y(τq,K), y(τq+1,K)

< ymax−δ
τ
q , ∀q ∈ [1,r−1]N

}
.

Then, the following statements hold
(i) Στ

I ⊆ Σ⊆ Σcl ⊆ Στ
O, and

(ii) for a sequence of sampling sequences {τ(k)}∞
k=1, if ετ(k)→

0+ as k→ ∞, then Σ
τ(k)
O → Σcl and Σ

τ(k)
I → Σ.

Proof. We first prove (i). Since the constraints defining Στ
O all

appear in Σcl, we deduce Σcl ⊆ Στ
O. By Lemma 5.2, it holds that

Στ
I ⊆ Σ.

Next we prove (ii). For each sampling sequence τ(k), let
δ max(k) , ετ(k) maxq∈[1,r(k)−1]N dτ(k)

q /2. Since dτ(k)
q is a Lipschitz

constant for y constrained on [τq(k),τq+1(k)], we have that for all
k ∈ N, t ∈ [τq(k),τq+1(k)] and q ∈ [1,r(k)−1]N,

|y(t,K)− y(τq(k),K)|6 dτ(k)
q (t− τq(k))

6 dτ(k)
q (τq+1(k)− τq(k)) = 2δ

τ(k)
q 6 2δ

max(k). (27)

Now if ymin 6 y(τ1(k),K), . . . ,y(τr(k)(k),K) 6 ymax, then by the
above inequality one has ymin − 2δ max(k) 6 y(t,K) 6 ymax +
2δ max(k) for any t ∈ [t1, t2]. Let

Σ̂
τ(k)
O ,

{
K
∣∣ ymin−2δ

max(k)6 y(t,K)6

ymax +2δ
max(k), ∀t ∈ [t1, t2]

}
.

The above reasoning shows that ΣO ⊆ Σ̂
τ(k)
O . Together with (i), we

have Σcl ⊆ Σ
τ(k)
O ⊆ Σ̂

τ(k)
O . Next we show that

Σ̂
τ(k)
O → Σcl as k→ ∞, (28)

which, by the properties of set limits presented in the preliminar-
ies, suffices to guarantee that Σ

τ(k)
O → Σcl as k→ ∞.

To prove (28), we first show that limsup
k→∞

Σ̂
τ(k)
O =Σcl by pointing

out that the two sets mutually contain each other. Since Σcl ⊆ Σ̂
τ( j)
O

for every j ∈ N, it holds that Σcl ⊆
⋃

j>k Σ̂
τ( j)
O for every k ∈ N,

which further implies that Σcl ⊆
⋂

k>1
⋃

j>k Σ̂
τ( j)
O = limsup

k→∞

Σ̂
τ(k)
O .

On the other hand, suppose that K /∈ Σcl, then by the definition
of Σcl, there exists t̄ ∈ [t1, t2] such that y(t̄,K)> ymax or y(t̄,K)<
ymin. Since by the assumptions, if j→ ∞, then ετ( j)→ 0+, which
implies that δ max( j)→ 0+, one has that K /∈ Σ̂

τ( j)
O for every j

large enough, i.e., K 6∈
⋃

j>k Σ̂
τ( j)
O for k large enough. This further

implies that K /∈
⋂

k>1
⋃

j>k Σ̂
τ( j)
O , i.e., K /∈ limsup

k→∞

Σ̂
τ( j)
O . Therefore,

by contradiction, it holds that limsup
k→∞

Σ̂
τ(k)
O ⊆ Σcl.

Next we show that liminf
k→∞

Σ̂
τ(k)
O = Σcl. Since liminf

k→∞
Σ̂

τ(k)
O ⊆

limsup
k→∞

Σ̂
τ(k)
O and we have already proven that limsup

k→∞

Σ̂
τ(k)
O = Σ̂cl,

we only need to show that Σ̂cl ⊆ liminf
k→∞

Σ̂
τ(k)
O . This containment

holds by noticing that Σ̂cl ⊆ Σ̂
τ( j)
O for every j ∈ N, which implies

that Σ̂cl ⊆
⋃

k>1
⋂

j>k Σ
τ( j)
O = liminf

k→∞
Σ̂

τ(k)
O .

Similarly, by letting

Σ̂
τ(k)
I ,

{
K
∣∣ ymin +δ

max(k)< y(t,K)<

ymax−δ
max(k), ∀t ∈ [t1, t2]

}
,

One has that Σ̂
τ(k)
I ⊆ Σ

τ(k)
I ⊆ Σ and Σ̂

τ(k)
I → Σ as k→ ∞; therefore

Σ
τ(k)
I → Σ as k→ ∞.

As stated in Lemma 5.3, the inner and outer approximations
can be made arbitrarily accurate as ετ decreases, at the cost
of increasing the cardinality of the sampling sequence, which
linearly raises the number of constraints in the definition of the
approximations.

5.2 Vector-signal case

Here we build on the treatment of the generic scalar-signal case
to construct inner and outer approximations of the transient-state
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tolerableness sets Ψpre, Ψpar and Ψunk. In the precisely known
case, for every i ∈ [1,m+n]N, if we let

Ψ
pre
i ,

{
Kpre ∣∣ xmin

i 6 [S(t,x0,Pnom)]i

+[V (t,ζ pre)]iKpre 6 xmax
i , ∀t ∈ [t1, t2]

}
, (29)

then Ψpre =
⋂

i∈[1,m+n]N Ψ
pre
i . The inner (resp. outer) approxima-

tion of each Ψ
pre
i follows from Lemma 5.3 with respect to the

signal y(t,Kpre) = [S(t,x0,Pnom)]i + [V (t,ζ pre)]iKpre and bounds
ymax = xmax

i and ymin = xmin
i . Then, the inner (resp. outer) ap-

proximation of Ψpre is just the intersection of inner (resp. outer)
approximations for every i. We can also approximate Ψpar and
Ψunk in a similar fashion.

The main difficulty then in applying the scalar-signal results
lies in the fact that the signals are not necessarily known a priori,
but instead are the result of the effect of the disturbances on
the power network dynamics (2). The next result shows that,
nevertheless, we can guarantee that Assumption 5.1 is satisfied.

Lemma 5.4. (Component-wise derivative bound signal). Suppose
the amplitude vector Kpre (resp. Kpar) in Ψpre (resp. Ψpar), and the
magnitude vector R in Ψunk are bounded as follows,

‖Kpre‖∞ 6 γ
pre, ‖Kpar‖∞ 6 γ

par, ‖R‖∞ 6 γ
unk. (30)

For every i ∈ [1,n+m]N, define

zpre
i (t), |[S′(t,x0,Pnom)]i|+ γ

pre‖[V ′(t,ζ pre)]i‖1, (31a)

zpar
i (t), |[S′(t,x0,Pnom)]i|

+ γ
par (‖[V ′(t,ζ nom)]i‖1 +αi‖[W ′(t)i‖1

)
, (31b)

zunk
i (t), |[S′(t,x0,Pnom)]i|+ γ

unk‖[W ′(t)]i‖1, (31c)

where S′(t,x0,Pnom), V ′(t,ξ ) and W ′(t) are the component-wise
time-derivative of S(t,x0,Pnom), V (t,ξ ) and W (t), and admit the
following form

S′(t,x0,Pnom) = AS(t,x0,Pnom)+

[
0m

M−1Pnom(t)

]
, (32a)

V ′(t,ζ ) = AV (t,ζ )+
[

0m×s
M−1Bdiag(ζ (t))

]
, (32b)

W ′(t) = |Q(t)|. (32c)

Then it holds that for all i ∈ [1,m+n]N and for all t ∈ [t1, t2],

d
dt

([S(t,x0,Pnom)]i +[V (t,ζ pre)]iKpre)6 zpre
i (t), (33a)

d
dt

([S(t,x0,Pnom)]i +[V (t,ζ nom)]iKpar(±)W (t)|Kpar|)

6 zpar
i (t), (33b)

d
dt

([S(t,x0,Pnom)]i(±)W (t)R)6 zpar
i (t). (33c)

Proof. One can easily verify (32a) and (32b) using the chain rule.
For (32c), by letting τ̄ = t− τ , one has

W (t) =
∫ t

0
|Q(t− τ)|dτ =

∫ t

0
|Q(τ̄)|dτ̄,

and hence W ′(t) = |Q(t)| follows immediately.
Next, since d([S(t,x0,Pnom)]i +[V (t,ζ pre)]iKpre)/dt =

[S′(t,x0,Pnom)]i + [V ′(t,ζ pre)]iKpre 6 |[S′(t,x0,Pnom)]i| +
‖Kpre‖∞‖[V ′(t,ζ pre)]i‖1 6 zpre

i (t), one has (33a) holds. The
rest follows similarly.

Lemma 5.4 allows us to use the results for generic scalar
signals to construct the set approximations in the case of vector

signals generated by power network dynamics subject to distur-
bances.

Theorem 5.5. (Inclusion relations and convergence of inner and
outer sets for the transient-state tolerableness set). For every i ∈
[1,n+m]N, let τ i = {τ i

1,τ
i
2, . . . ,τ

i
r(i)} be a sampling sequence and

define for each λ ∈ {pre, par, unk},

ε
τ i
, max

q∈[1,r(i)−1]N
{τ i

q+1− τ
i
q},

dλ
q,i , max

t∈[τ i
q,τ

i
q+1]
{zλ

i (t)}, ∀q ∈ [1,r(i)−1]N,

δ
λ
q,i , dλ

q,i(τ
i
q+1− τ

i
q)/2, ∀q ∈ [1,r(i)−1]N.

Given the sets defined in (34), let

Ψ
pre
O ,

⋂
i∈[1,n+m]N

Ψ
pre
O,i, (35a)

Ψ
pre
I ,

⋂
i∈[1,n+m]N

Ψ
pre
I,i , (35b)

Ψ
par
O ,

⋂
i∈[1,n+m]N

(Ψ
par
O,i ∩Ψ

par
O,i ), (35c)

Ψ
par
I ,

⋂
i∈[1,n+m]N

(Ψ
par
I,i ∩Ψ

par
I,i ), (35d)

Ψ
unk
O ,

⋂
i∈[1,n+m]N

(Ψ
unk
O,i ∩Ψ

unk
O,i ), (35e)

Ψ
unk
I ,

⋂
i∈[1,n+m]N

(Ψ
unk
I,i ∩Ψ

unk
I,i ). (35f)

Then, the following statements hold for any λ ∈ {pre,par,unk},
(i) Ψλ

I ⊆Ψλ ⊆Ψλ
cl ⊆Ψλ

O, and
(ii) if ετ i → 0+ for all i ∈ [1,m+n]N, then Ψλ

O→Ψλ
cl and Ψλ

I →
Ψλ .

Proof. We only prove the case λ = pre (the other two cases
follow similarly). Notice that each Ψ

pre
i defined in (29) can

be approximated individually using Lemma 5.3 by letting
y(t,Kpre) = [S(t,x0,Pnom)]i +[V (t,ζ pre)]iKpre. The corresponding
time-derivative bound signal is yd = zpre

i , which follows from
Lemma 5.4. Therefore, it holds that for every i ∈ [1,m + n]N,
Ψ

pre
I,i ⊆ Ψ

pre
i ⊆ Ψ

pre
i,cl ⊆ Ψ

pre
O,i, and Ψ

pre
O,i → Ψ

pre
cl and Ψλ

I → Ψpre as
ετ i → 0+. Since finite intersections preserve containment relations
and set limits, statements (i) and (ii) follow.

Even though we assume for simplicity that the time interval
[t1, t2] is the same for each component of x(t), note that this can
be easily extended to scenarios where each xi(t) has its own time
sampling interval [t i

1, t
i
2].

Remark 5.6. (Bound on the disturbance amplitude). Theorem 5.5
requires an a priori bound on the norm of Kpre (resp. Kpar and R)
to obtain the set Ψ

pre
I (resp. Ψ

par
I and Ψunk

I ). This assumption is
reasonable in the sense that the energy of the disturbance should
be upper bounded. Alternatively, since Ψ

pre
O (resp. Ψ

par
O and Ψunk

O )
can be computed without any knowledge of the norm bound, one
can obtain an upper bound on the norm of Kpre, for instance, by
solving maxK∈Ψ

pre
O
‖K‖∞, provided that Ψ

pre
O is bounded. •

Remark 5.7. (Computational complexity). Note that both Ψλ
I and

Ψλ
O for any λ ∈ {pre,par,unk} consist of only linear constraints,

and hence are convex sets, where the number of constraints
appearing in them are, depending on the case, either 2∑

m+n
i=1 r(i)

or 4∑
m+n
i=1 r(i). This implies that the complexity of characterizing
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Ψ
pre
O,i ,

{
Kpre ∣∣ xmin

i 6 [S(τ i
q,x0,Pnom)]i +[V (τ i

q,ζ
pre)]iKpre 6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
pre
I,i ,

{
Kpre ∣∣ xmin

i +δ
pre
q,i < [S(t,x0,Pnom)]i +[V (t,ζ pre)]iKpre < xmax

i −δ
pre
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
par
O,i ,

{
Kpar ∣∣ [S(τ i

q,x0,Pnom)]i +[V (τ i
q,ζ

nom)]iKpar +W (τ i
q)|Kpar|6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
par
O,i ,

{
Kpar ∣∣ [S(τ i

q,x0,Pnom)]i +[V (τ i
q,ζ

nom)]iKpar−W (τ i
q)|Kpar|> xmin

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
par
I,i ,

{
Kpar ∣∣ [S(t,x0,Pnom)]i +[V (t,ζ nom)]iKpar +W (t)|Kpar|< xmax

i −δ
par
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
par
I,i ,

{
Kpar ∣∣ [S(t,x0,Pnom)]i +[V (t,ζ nom)]iKpar−W (t)|Kpar|> xmin

i +δ
par
q,i , ∀t ∈ {τ

i
q,τ

i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
unk
O,i ,

{
R
∣∣ [S(τ i

q,x0,Pnom)]i +W (τ i
q)R 6 xmax

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
unk
O,i ,

{
R
∣∣ [S(τ i

q,x0,Pnom)]i−W (τ i
q)R > xmin

i , ∀q ∈ [1,r(i)]N
}
,

Ψ
unk
I,i ,

{
R
∣∣ [S(t,x0,Pnom)]i +W (t)R < xmax

i −δ
unk
q,i , ∀t ∈ {τ i

q,τ
i+1
q }, ∀q ∈ [1,r(i)−1]N

}
,

Ψ
unk
I,i ,

{
R
∣∣ [S(t,x0,Pnom)]i−W (t)R > xmin

i +δ
unk
q,i , ∀t ∈ {τ i

q,τ
i+1
q }, ∀q ∈ [1,r(i)−1]N

}
. (34)

such sets grows linearly with respect to the number of sampling
points, and, if we take the r(i)’s equal for each component, then it
also grows linearly with m+n, i.e., the number of states. Further-
more, the approximations also scale well with the dimension of K
because of the linear dependence of the system trajectories on this
parameter.

The actual computation of the approximation sets involves the
evaluation of several time-varying matrices (e.g., S(t,x0,Pnom),
V (t,ζ pre), W (t), etc.) at each sampling time. Here, we briefly
describe the procedure we employ to do this for S(t,x0,Pnom) at
t = τ i

1,τ
i
2, · · · ,τ i

r for each i ∈ [1,n+m]N (other procedures are also
possible). Using a first-order approximation, for sufficiently small
T > 0 and any n ∈ N, we can write

S((n+1)T,x0,Pnom)≈ S(nT,x0,Pnom)+T S′(nT,x0,Pnom)

= S(nT,x0,Pnom)+TAS(nT,x0,Pnom)+T
[

0m
M−1Pnom(nT )

]
,

where the equality follows from substituting S′(nT,x0,Pnom)
by (32a). Using this equation, one can iteratively compute the
value of S(t,x0,Pnom) at t = 0,T,2T,3T, . . . . For T much smaller
than the distance between consecutive sampling points, one can
report to this approximation to evaluate S(t,x0,Pnom) at the sam-
pling points. •

Remark 5.8. (Robustness metric based on tolerableness set). One
can synthesize metrics that quantify the robustness to disturbances
of the power network at a given steady state using the transient-
state tolerableness set. The basic idea is to identify the smallest
(with respect to some criteria) disturbance that leads to a violation
of the safety criteria (i)-(ii). Formally, for λ ∈ {pre,par,unk}, one
can define the metric, denoted by β λ , as the optimal value of the
following optimization problem,

inf f (K) (36a)

s.t. K /∈Ψ
λ , (36b)

g(K)6 0, (36c)

where f : Rs 7→ R is a measurement of the disturbance energy,
say, f (K) = ‖K‖2, and (36c) represents some other constraints for
the disturbance. Since we cannot precisely compute Ψλ , one can

alternatively compute the optimal value, denoted β λ
I (resp. β λ

O ),
of the following optimization problem

inf f (K) (37a)

s.t. K /∈Ψ
λ
O(resp. Ψ

λ
I ), (37b)

g(K)6 0. (37c)

By Theorem 5.5, one has that β λ
I 6 β λ 6 β λ

O . If f is continuous,
as ετ i → 0+ for all i ∈ [1,m+ n]N, it holds that β λ

I → β λ and
β λ

O → β λ , i.e., we can upper and lower bound β λ with an arbitrary
degree of accuracy.

Although constraint (37b) is nonconvex (since it corresponds
to the complement of a convex polytope), we can decompose (37b)
into a finite union of linear constraints. We take λ =pre as an
example. Define for each q ∈ [1,r(i)],

Ψ
pre
O,i,q ,

{
K pre ∣∣ xmin

i 6 [S(τ i
q,x0,Pnom)]i +[V (τ i

q,ζ
pre)]iKpre

6 xmax
i

}
.

Then we deduce Ψ
pre
O =

⋂
i∈[1,m+n]N

⋂
q∈[1,r(i)]N Ψ

pre
O,i,q. Now denote

β
pre
O,i,q as the optimal solution of

inf f (K) (38a)

s.t. K /∈Ψ
λ
O,i,q, (38b)

g(K)6 0. (38c)

One can see that β
pre
O equals the smallest value among β

pre
O,i,q over

all possible i and q. Notice now (38b) is a linear constraint, and if
f and g are convex, then (38) is a convex optimization problem.
In the same way, we can compute β

pre
I . This strategy also works

for λ ∈ {pre,par}. •

6 OPTIMIZING THE SAMPLING SEQUENCE

A relevant question regarding the inner and outer approximations
developed above is how to precisely quantify how well they
approximate the corresponding transient-state tolerableness set.
With metrics available to provide such quantification, one can then
ask the question of how to optimize the location of a fixed number
of sampling points in order to provide better approximations. This
aim is motivated by the fact that the complexity of characterizing
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the approximations grows with the number of constraints defining
them. To answer these questions, we first consider the scalar-signal
case and quantify the approximation gap between Στ

I (resp. Στ
O)

and Σ (resp. Σcl). We then propose an provably correct algorithmic
procedure to find the optimal sampling sequence and generalize
our treatment to the vector-signal case.

6.1 Metric measuring the approximation gap
Here we define a metric to quantify the gap between the inner and
outer approximations and the actual set. To do so, we find it useful
to introduce the following set definitions with the same functional
form as Σ,

Σ̄
τ
O ,

{
K
∣∣ ymin−2δ

τ
q 6 y(t,K)6

ymax +2δ
τ
q , ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N

}
, (39a)

Σ̄
τ
I ,

{
K
∣∣ ymin +δ

τ
q < y(t,K)<

ymax−δ
τ
q , ∀t ∈ [τq,τq+1], ∀q ∈ [1,r−1]N

}
. (39b)

Given the similarity in their definitions with Σ, these sets are
easier to compare with it than the original Στ

I and Στ
O. In addition,

note that by (27), it holds that Στ
O ⊆ Σ̄τ

O, and since all constraints
in Στ

I appear in Σ̄τ
I as well, one has that Σ̄τ

I ⊆ Στ
I . Therefore a

conservative but guaranteed way to describe the approximation is
to depict the gap between Σ̄τ

I and Σ, and between Σcl and Σ̄τ
O.

To quantify the gap between Σ̄τ
I and Σ, we define the approxi-

mation metric as

ν(τ), max
q∈[1,r−1]N

{δ τ
q }. (40)

The explanation for this choice is as follows. For a given q∈ [1,r−
1]N, all the K’s that satisfy ymin 6 y(t,K) 6 ymax, ∀t ∈ [τq,τq+1]
while do not satisfy ymin+δ τ

q 6 y(t,K)6 ymax−δ τ
q , ∀t ∈ [τq,τq+1]

are given by cns(δ τ
q ) as defined in (41). The region cns(δ τ

q )
becomes smaller as δ τ

q decreases, and is empty if δ τ
q is 0. Hence

a proxy to measure the size of cns(δ τ
q ) is simply δ τ

q . Furthermore,
by noting that ν(τ) characterizes the largest size of all cns(δ τ

q )’s
and that Σ\Σ̄τ

I is a subset of
⋃

q∈[1,r−1]N cns(δ τ
q ), we conclude ν(τ)

measures the gap between Σ̄τ
I and Σ. Given the symmetry with the

definition of Σ̄τ
O, note that one can also use the metric to measure

the gap between Σ̄τ
O and Σcl.

Our next result characterizes the minimization of ν . Formally,
consider

min
τ

ν(τ) (42a)

s.t. t1 = τ1 < τ2 < .. . < τr = t2. (42b)

This problem possesses a unique global minimizer, which can be
equivalently characterized by a set of equations.

Proposition 6.1. (Characterization of global optimum of metric).
The optimization problem (42) has a unique global minimizer,
which is uniquely determined by,

δ
τ
i = δ

τ
i+1, ∀i ∈ [1,r−2]N, (43a)

τ1 = t1, τr = t2. (43b)

Proof. Note that the result holds if the following three statements
are true:

(i) There exists at least one global minimizer for (42)
(ii) Any global minimizer of (42) satisfies condition (43).

(iii) There exists a unique solution for (43).

To see this, by (i) and (ii), a solution for (43) exists. By (iii),
since the solution for (43) is unique, it has to be the only global
minimizer. Our strategy is then to prove (i)-(iii) separately.

To prove (i), consider the optimization problem (42) but with
non-strict inequality constraints. Since ν is continuous and the
constraints define a compact feasibility set, by the extreme value
theorem [34], there exists at least one global minimizer τ̄∗. If at
least one of these minimizers satisfies the constraint (42b), then it
is also a global minimizer of (42). If it does not, then it is easy to
find a sampling sequence τ̂∗ that satisfies the constraint and has
at most the same metric value. In fact, without loss of generality,
assume that τ̄∗q−1 < τ̄∗q = τ̄∗q+1 = · · · = τ̄∗q+k < τ̄∗q+1 for some q ∈
[1,r− 1]N and k ∈ N. Let τ̂∗j = τ̄∗j for every j ∈ [1,r]N/[q,q+
k− 1]N and τ̂∗j = τ̄∗q−1 +(τ̄∗q − τ̄∗q−1)( j− q+ 1)/(k+ 1) for every
j ∈ [q,q+ k−1]N. By this way one can easily check that ν(τ̂∗)6
ν(τ̄∗) holds.

We prove statement (ii) by contradiction. Suppose (42) admits
a global minimizer τ that does not satisfy condition (43) and
let us construct another sequence τ̄ with ν(τ̄) < ν(τ). We first
consider the case where consecutive subintervals achieve the same
maximum value, i.e., for some k ∈ N∪ {0}, it holds that δ τ

j <
δ τ

q = δ τ
q+1 = · · ·= δ τ

q+k = ν(τ) for every j ∈ [1,r−1]N\[q,q+k]N.
Since condition (43) does not hold, either τq 6= t1 or τq+k 6= t2.
Without loss of generality, assume the first case. Now construct τ̄

by letting τ̄ j = τ j for every j ∈ [1,r]N\[q,q+k]N and τ̄ j = τ j +dx j
for every j ∈ [q,q+k]N, where dx j is determined as follows: since
every δ τ

j is a strictly monotonically decreasing and continuous
function of τ j, one can always find dx j > 0 small enough for every
j ∈ [q,q+k]N such that δ τ̄

q−1 < δ τ̄
j < δ τ

q = δ τ
q+1 = · · ·= δ τ

q+k holds
for every j ∈ [q,q+ k]N, which implies that ν(τ̄) < ν(τ). In the
most general case where there are several groups of consecutive
subintervals achieving the same maximum value, and all groups
share no common sampling point, one can construct τ̄ by tuning
the points using the idea above for each individual group, resulting
in ν(τ̄)< ν(τ).

To prove statement (iii), assume there exist two different
sampling sequences τa and τb that both satisfy condition (43).
We first consider the case when δ τa

i 6= δ τb

i for every i ∈ [1,r−1]N,
and, without loss of generality, assume that δ τa

i < δ τb

i . Notice that
if τb

2 6 τa
2 , then

δ
τb

1 , (τb
2 − t1)/2 max

t∈[t1,τb
2 ]
{yd(t)}

6 (τa
2 − t1)/2 max

t∈[t1,τa
2 ]
{yd(t)}= δ

τa

1 ,

violating the assumption, and hence τb
2 > τa

2 . Similarly, it
holds that τb

3 > τa
3 . Along this one has that τb

r−1 > τa
r−1. The

contradiction occurs as one can easily see that δ τb

r−1 6 (t2 −
τa

2 )/2maxt∈[t1,τa
2 ]
{yd(t)}= δ τa

r−1. Next, we consider the case when

δ τa

i = δ τb

i for every i ∈ [1,r−1]N. Since δ τ
1 is a strictly monoton-

ically increasing function of τ2, to have δ
τb
1 = δ

τb
1 , it must hold

that τa
2 = τb

2 . Similarly, τa
i = τb

i for every i ∈ [1,r]N, i.e., τa and τb

are the same sequence. Therefore, equation (43) admits only one
solution.

Given Proposition 6.1, we denote the unique minimizer of (42)
by τ∗, and the optimal value by ν(τ∗).

6.2 Algorithm to reduce the approximation gap
Here, we introduce a strategy that, for a fixed number r of
sampling points, finds the sampling sequence that minimizes v.
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cns(δ τ
q ),

{
K
∣∣ ymin < y(t,K)< ymax, ∀t ∈ [τq,τq+1]

}
\
{

K
∣∣ ymin +δ

τ
q < y(t,K)< ymax−δ

τ
q , ∀t ∈ [τq,τq+1]

}
=
({

K
∣∣ ymax−δ

τ
q 6 y(t,K)< ymax, ∀t ∈ [τq,τq+1]

}⋂{
K
∣∣ ymin < y(t,K), ∀t ∈ [τq,τq+1]

})⋃
({

K
∣∣ ymin < y(t,K)6 ymin +δ

τ
q , ∀t ∈ [τq,τq+1]

}⋂{
K
∣∣ y(t,K)< ymax, ∀t ∈ [τq,τq+1]

})
(41)

Our design is based on Proposition 6.1. Notice that we can equiv-
alently obtain τ∗ by solving the transcendental equations (43).
Based on this equivalence relation, we propose Algorithm 1 to
provide a sampling sequence τ̂ whose metric value ν(τ̂) can
be made arbitrarily close to ν(τ∗). The algorithm proceeds by
approximating ν(τ∗) through the bisection method, i.e., starts
from an initial interval that contains ν(τ∗), and iteratively obtains
intervals containing ν(τ∗) whose length is half the length of the
one generated in the previous step. This process terminates when
the approximation is optimal within a prescribed tolerance error.

Algorithm 1: Obtain near-optimal sampling sequence
Data: Derivative bound signal yd , tolerance error value

νerr > 0, t1 and t2
Result: Near-optimal value ηN and near-optimal sequence τ̂

1 Initialization: τeven
i = t1 +(i−1)(t2− t1)/(r−1) ∀i ∈ [1,r]N,

a0 = 0, b0 = ν(τeven), η0 = (a0 +b0)/2, k = 0, f lag=true
2 while flag do
3 τk

1 = t1, τk
r = t2

4 for i = 2 : r−1 do
5 Set τk

i such that δ τk

i−1 = ηk

6 end
7 if bk−ak 6 νerror/2 then
8 N = k, f lag=false
9 end

10 Compute δ τk

r−1
11 if δ τk

r−1−ηk > 0 then
12 ak+1 = ηk, bk+1 = bk

13 else
14 ak+1 = ak, bk+1 = ηk

15 end
16 ηk+1 = (ak+1 +bk+1)/2, k = k+1
17 end
18 τ̂1 = t1, τ̂r = t2
19 for i = 2 : r−1 do
20 Set τ̂i such that δ τ̂

i−1 = ηN +νerr/2
21 end

The following result formally characterizes the convergence
properties of Algorithm 1.

Proposition 6.2. (Algorithm 1 finds optimal sampling sequence).
Given a tolerance error νerr > 0, there exists a unique N such
that the sampling sequence τk, k ∈ [1,N]N and outputs ηN , τ̂ from
Algorithm 1 satisfy

(i) |ηk−ν(τ∗)|6 ν(τeven)2−k for every k ∈ [1,N]N;
(ii) |ηN −ν(τ∗)|6 νerr/2, with N < log2 ν(τ0)− log2 νerr+2;

(iii) ν(τ̂)6 ν(τ∗)+νerr.

Proof. With the notation of Algorithm 1, we first show that for
the sampling sequence τk , if δ τk

r−1 > ηk, then ηk < ν(τ∗). One
can see that since ηk = δ τk

1 = δ τk

2 , · · · ,= δ τk

r−2, if ηk > ν(τ∗), then

using the same argument as in the proof of Proposition 6.1(ii),
it holds that τk

i > τ∗i for any i ∈ [2,r− 1]N, leading to δ τk

r−1 6
δ τ∗

r−1 = ν(τ∗) 6 ηk, which contradicts the assumption. Similarly,
one can prove that if δ τk

r−1 6ηk, then ηk > ν(τ∗). Along with these
observations, one can easily see that via step 11 to step 16, plus
the initialization condition, it holds that ν(τ∗) ∈ [ak,bk] for every
k ∈ [1,N]N, and bk+1− ak+1 = (bk− ak)/2. Finally, statement (i)
holds by noticing that |ηk − ν(τ∗)| 6 bk − ak = (b0− a0)/2k =
ν(τ0)/2k. This implies that ν(τk) exponentially converges to the
optimal value ν(τ∗).

The first part of statement (ii) is simply due to the termination
condition in step 7 in Algorithm 1. Since k = N is the first
satisfying bk−ak 6 νerror/2, it holds that νerror/2< bN−1−aN−1 =
ν(τ0)/2N−1, and hence the rest of statement (ii) follows immedi-
ately.

To prove statement (iii), notice δ τ̂
i = ηN + νerr/2 > ν(τ∗) =

δ τ∗
j for any i, j ∈ [1,r−1]N, where the inequality follows from (ii).

Therefore, δ τ̂
i > δ τ∗

i for every i ∈ [1,r− 1]N, which implies that
τ̂i > τ∗i for every i ∈ [1,r− 1]N, and hence δ τ̂

r−1 6 δ τ∗
r−1 = ν(τ∗).

Now, one has

ν(τ̂) = max{ηN +νerr/2,δ τ̂
r−1}

6 max{ηN +νerr/2,ν(τ∗)}= η
N +νerr/2 6 ν(τ∗)+ν

err,

where the last inequality follows from (ii).

Notice that steps 5 and 20 of Algorithm 1 require the solution
of a transcendental equation in one variable. Even though an exact
solution is not available, we discuss in the following remark a
bisection method to approximate it with an arbitrary degree of
accuracy.

Remark 6.3. (Solving transcendental equation in one variable).
Here we describe a strategy to approximate the solution in steps 5
and 20 of Algorithm 1. For conciseness, we describe it in general
as Algorithm 2: one can apply it to solve step 5 (resp. step 20) by
simply letting τ = τk (resp. τ = τ̂) and η = ηk (resp. η = ηN). Al-
gorithm 2 uses bisection method too, where we tighten the length
of the interval containing the solution of δ τ

i−1 = η iteratively.
Similar to the way we prove Proposition 6.2, one can easily

check that |τi(l)− τi|6 (t2− τi−1)2−l for every l ∈ N. Due to the
fact that τi(l) converges to τi exponentially fast, in practice, we
terminate Algorithm 2 when l is large enough and take τi(l) as
our approximation of τi. •

Figure 2 shows an execution of Algorithm 1. Note that the
sampling sequence obtained by the optimization algorithm is
optimal for a class of disturbances (rather than for a specific dis-
turbance), as defined by the cases (a), (b), and (c) in Section 3.2.

Remark 6.4. (Generalized metric for vector-signal). Similar to
the way we define ν in (40), for any λ ∈ {pre, par, unk}, we
define

π
λ
i , max

q∈[1,r(i)]N
{δ λ

q,i},
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Algorithm 2: Solve transcendental equation in one variable
Data: Derivative bound signal yd , τi−1 and t2
Result: τi that satisfies δ τ

i−1 = η

1 Initialization: c(0) = τi−1, d(0) = t2, and
τi(0) = (c(0)+d(0))/2

2 while true do
3 if (τi(l)− τi−1)maxt∈[τi−1,τi(l)]{yd(t)}> η then
4 cl+1 = cl , dl+1 = τi(l)
5 else
6 cl+1 = τi(l), dl+1 = dl

7 end
8 τi(l) = (ck+1 +dk+1)/2 and l = l +1
9 end

(a) (b)

Figure 2. Execution of Algorithm 1. Here y : R→ R, t 7→ e−2t + sin te−t K,
with |K| 6 1. One can easily check that yd : R → R>, t → 2|e−2t |+
|cos te−t − sin te−t | satisfies |ẏ(t)| 6 yd(t) for any t > 0. The interval of
interest is determined by t1 = 0, t2 = 5. We run the algorithm for r = 12
sampling points and set νerr = 2−19ν(τeven). (a) shows yd and the
trajectories of the 12 sampling points at each iteration. Since yd is
monotonically decreasing, as k increases, τk tends to be dense around
t = 0s and sparse around t = 5s. (b) shows the convergence of ak, bk

and ηk.

π
λ , max

i∈[1,m+n]N
{πλ

i /(x
max
i − xmin

i )}, (44)

and use πλ as the metric measuring the approximation gap
between Ψλ

I (resp. Ψλ
O) and Ψλ (resp. Ψλ

cl), where the coefficient
1/(xmax

i − xmin
i ) scales πλ

i relative to its bounds. One can reduce
πλ by applying Algorithm 1 component-wise to optimize the
sampling sequence τ i for each i ∈ [1,m+n]N. •

7 SIMULATIONS

Here we illustrate our results on the IEEE 39-bus New Eng-
land power network displayed in Figure 3. This network has
46 transmission lines and 10 generators serving a load of ap-
proximately 6GW. We run our simulations in MATLAB on a
desktop with a 3.5GHz Intel Core i7-4770k quad-core CPU
and 8GB of RAM. For system (2), the susceptance bi j and
the rotational inertia Mi for generator nodes are taken from the
Power System Toolbox [35]. We assign all non-generator buses
an uniform small inertia Mi = 0.1. Let the damping parameter (or
droop coefficient) to be Di = 1 for all buses. The nominal power
injection Pnom(t) is chosen to be a constant P0 obtained from the
same toolbox. The initial state (Λ(0),Ω(0)) is chosen to be the
equilibrium with respect to the input P(t) = P0. The frequency
bounds are Fmax =−Fmin = 10 unit×146, the power flow bounds
are Ωmax =−Ωmin = 0.5 Hz×139, and the time period considered
for transient-safety is [t1, t2] = [0,3]. If there is no disturbance

injection, then the state (Λ(t),Ω(t)) stays at equilibrium, which
trivially satisfies the transient-safety requirements.

G8

37

25
G10

30

2

1

G1

39

9

8

3

4

5

7

18 17

26

27

28

G9

29

38

14

15

16

24

21 22

G6

35

G7

23

36
20

G5

34

19

G4

33

G3

32

10

13

126

11

G2

31

<Bus#>

Figure 3. IEEE 39-bus power network.

We start by showing the efficiency of the approximation gap
reduction obtained by Algorithm 1. We consider the case when a
precisely known disturbance occurs at the 16th and the 24th buses,
with the trajectory form of a step signal. Formally, this corresponds
to the model (4) with B ∈ R39×2, where Bi j = 1 only when (i, j)
equals (16,1) and (24,2); diag(ζ pre(t)) = diag([1(t) 1(t)]), and
Kpre = [Kpre

1 Kpre
2 ] for which the bound γpre = 4.7 is known.

We compute the approximations Ψ
pre
I and Ψ

pre
O using the expres-

sions (35) in Theorem 5.5. We use the same sampling sequence
for each component i∈ [1,m+n]N and consider two cases: an even
sampling sequence of period 0.02s and the sequence that results
from optimizing it by applying Algorithm 1. Figure 4(a) and (b)
show the approximation sets Ψ

pre
O and Ψ

pre
I obtained in each case,

with a marked improvement in the case of the optimized sequence.
Figure 4(c) shows the result obtained with an optimized sequence
using Algorithm 1 on an even sampling sequence of period 0.01s.
The gap between the two approximation sets is smaller than in
Figure 4(b), which is in agreement with the convergence result in
Theorem 5.5(ii).

Figure 5 illustrates how the trajectory form impacts the shape
and size of the tolerableness set. Figure 5(a) shows the inner and
outer approximations when the step function in the first component
of the disturbance trajectory is delayed by one second, i.e.,
ζ pre(t) = [1(t− 1) 1(t)]T . Figure 5(b) shows the same sets when
the trajectory form is the sinusoid ζ pre(t) = [sin(πt) sin(πt)]T .
Comparing with Figure 4(c), one observes that the tolerableness
set can take remarkably different forms depending on the type of
disturbance (even though all the three trajectory forms are bounded
by 1).

Next, we illustrate the containment relations among the ap-
proximations and the exact tolerableness set stated in Theo-
rem 5.5(i). To do this, we select two nearby disturbance am-
plitudes, Kpre

I = [2 − 3]T ∈ Ψ
pre
I and Kpre

O = [2 − 3.1]T /∈ Ψ
pre
O .

Figure 6 shows the state trajectories of (2) corresponding to each
disturbance. In the case of Kpre

I , the frequency responses (resp.
flow responses) of all buses (resp. transmission lines) stay within
the ±0.5Hz (resp. ±10unit) bound, and hence Kpre

I ∈Ψpre accord-
ing to (5), which is consistent with the inclusion Ψ

pre
I ⊆ Ψpre.
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(a) (b) (c)

Figure 4. Inner and outer approximations of the transient-state tolerableness set for the precisely known case with different sampling sequences.
Plot (a) uses even sampling with 151 points. Plots (b) and (c) use optimized sampling sequences with 151 and 301 points, respectively. The first
two plots show that Algorithm 1 reduces the gap between the inner and outer approximations for a fixed number of sampling points. The last two
plots illustrate the convergence of the approximations as the number of sampling points increases.

(a) (b)

Figure 5. Inner and outer approximations of transient-state tolerableness
set for the precisely known case with different trajectory forms. In plot
(a), the trajectory form is ζ pre(t) = [1(t−1s) 1(t)]T and in plot (b) ζ pre(t) =
[sin(πt) sin(πt)]T , respectively.

In the case of Kpre
O , one frequency response goes beyond the -

0.5Hz bound, reaching to approximately -0.506Hz, violating the
frequency safety requirement slightly, and hence Kpre

O /∈ Ψ
pre
cl ,

which is consistent with the inclusion Ψ
pre
cl ⊆Ψ

pre
O .

Figure 7 illustrates the computation of the inner and outer
approximation sets in the cases when the disturbance trajectory
form is partially known and unknown. In the first case, for
the model (6), we have the nominal trajectory form ζ nom(t) =
0.9 · [1(t) 1(t)]T and the uncertainty bound α = 0.1 · 12 on ζ err.
Since |ζ pre(t)− ζ nom(t)| 6 α and |ζ nom(t)|+ α 6 1 for every
t ∈ [t1, t2], we deduce from Remark 4.2 that Ψunk ⊂ Ψpar ⊂ Ψpre.
The comparison of Figures 4 and 7 validates these containment
relations.

Table 1 gathers the computational time for the inner and
outer approximations in Figures 4, 5 and 7. The additional 2
seconds for Figure 4(b) with respect to Figure 4(a) are due to
the take taken by the optimization of the sampling sequence. This
latter time increases as more sampling points are considered, cf.
Figure 4(c). We also see a slight computational time difference
among Figure 4(c), Figure 5(a), and Figure 5(c), corresponding to
different disturbance trajectory forms. Finally, for a fixed number
of sampling points, the computational time does not vary dramat-
ically for precisely known, partially known, and totally unknown
disturbances. Computational times are also reported in [1] for a
simulation on the IEEE 118-bus network with 91 disturbances.

Finally, we illustrate the robustness metric definition based
on tolerableness sets introduced in by Remark 5.8. We consider
39 different scenarios: in the ith scenario, we inject a power

Sets Time(s) Sets Time(s)
Figure 4(a) 12.41 Figure 5(a) 18.62
Figure 4(b) 14.39 Figure 5(b) 16.52
Figure 4(c) 20.38 Figure 7(a) and (b) 20.26 and 20.39

Table 1
Times for the computation of for various tolerableness sets.

disturbance with trajectory form 1(t) only at node i. For each
i ∈ {1, · · · ,39}, β

pre
O (resp. β

pre
I ) stands for the upper (resp. lower)

approximation of the maximum allowable disturbance magnitude
injected at node i so that the whole network maintains transient-
state safety. One can see from Figure 8 that nodes 1,9,12 and
38 are the most vulnerable. The first three cases have similar
causes – either low inertia, making the transient frequency easily
affected by disturbances or low dissipation capabilities due to a
small number of neighboring nodes, resulting in a relatively long
time required to dissipate the disturbances. The 38th node case is
primarily due to the fact that the only transmission line connecting
the node with the rest of the network is almost saturated before
the disturbance injection.

(a) (b)

Figure 7. Inner and outer approximations of the transient-state tol-
erableness set with partially known and totally unknown trajectory
forms. Plot (a) shows the tolerableness set with nominal trajectory form
ζ nom(t) = 0.9 · [1(t) 1(t)]T and uncertainty α = 0.1 ·12. Plot (b) shows the
set with totally unknown trajectory. Together with Figure 4(c) one has
that Ψunk ⊆Ψpar ⊆Ψpre, as stated in Remark 4.2.

8 CONCLUSIONS

We have considered the problem of efficiently describing the set
of disturbances to a power network that do not affect its transient-
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(a) (b) (c) (d)

Figure 6. Frequency and power flow trajectories with different disturbance amplitudes. The problem data is the same as in Figure 4. Plots (a) and (b)
show the trajectories with a disturbance amplitude Kpre

I = [2 −3]T (which, from Figure 4(c), is contained in the inner approximation set Ψ
pre
I ), while

plots (c) to (d) show the trajectories for Kpre
O = [2 −3.1]T (which is not contained in the outer approximation set Ψ

pre
O ). In both cases, the power flow

trajectories stay within the ±10 unit bound. However, all the frequency trajectories stay within the ±0.5 Hz bound when the disturbance amplitude
is Kpre

I , while for the Kpre
O case, one frequency trajectory hits up to approximately -0.506Hz, exceeding the -0.5Hz bound.

Figure 8. Robustness characterization of the IEEE39 bus network based
on tolerableness sets. In each scenario, we inject a disturbance at the
corresponding node and compute the approximations of the robustness
metric defined in Remark 5.8. This metric measures the maximum
allowable disturbance that does not violate transient safety. Both ap-
proximations use 301 sampling points optimized through Algorithm 1.

state safety in terms of frequency and power flow. Under the
assumption that a bound on the amplitude of the disturbance is
available, we have devised a sampling method to provide inner
and outer approximations of the transient-state tolerableness set.
These approximations can be computed with arbitrary accuracy,
at the cost of increasing the computational complexity. We have
also introduced a metric to measure the approximation gap and
designed an algorithm to optimize it for a given fixed number
of sampling points. Future work will extend the analysis from
unknown constant amplitude to unknown time-varying amplitude,
and quantify the difference between the tolerableness sets of the
nonlinear swing dynamics and its linearized version.

REFERENCES

[1] Y. Zhang and J. Cortés, “Transient-state feasibility set approximation
of power networks against disturbances of unknown amplitude,” in
American Control Conference, Seattle, WA, May 2017, pp. 2767–2772.

[2] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares,
N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem, and
V. Vittal, “Definition and classification of power system stability,” IEEE
Transactions on Power Systems, vol. 19, no. 2, pp. 1387–1401, 2004.

[3] A. Gajduk, M. Todorovski, and L. Kocarev, “Stability of power grids: an
overview,” The European Physical Journal Special Topics, no. 223, pp.
2387–2409, 2014.

[4] I. Nagel, L. Fabre, M. Pastre, F. Krummenacher, R. Cherkaoui, and
M. Kayal, “High-speed power system transient stability simulation us-
ing highly dedicated hardware,” IEEE Transactions on Power Systems,
vol. 28, no. 4, pp. 4218–4227, 2013.

[5] A. S. Deese and C. O. Nwankpa, “Utilization of FPAA technology for
emulation of multiscale power system dynamics in smart grids,” IEEE
Transactions on Smart Grid, vol. 2, no. 4, pp. 606–614, 2011.

[6] R. Fried, R. S. Cherkaoui, C. C. Enz, A. Germond, and E. A. Vittoz,
“Approaches for analog VLSI simulation of the transient stability of
large power networks,” IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 46, no. 10, pp. 1249–1263,
1999.

[7] M. Pavella, D. Ernst, and D. Ruiz-Vega, Transient Stability of Power
Systems: A Unified Approach to Assessment and Control. Kluwer
Academic Publishers, 2012.

[8] A. Pai, Energy Function Analysis for Power System Stability. Springer,
1989.

[9] H.-D. Chiang, F. F. Wu, and P. P. Varaiya, “A BCU method for direct
analysis of power system transient stability,” IEEE Transactions on
Power Systems, vol. 9, no. 3, pp. 1194–1208, 1994.

[10] M. Anghel, F. Milano, and P. Antonis, “Algorithmic construction of Lya-
punov functions for power system stability analysis,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 60, no. 9, pp. 2533–2546,
2013.

[11] F. Dörfler and F. Bullo, “Synchronization and transient stability in
power networks and nonuniform Kuramoto oscillators,” SIAM Journal
on Control, vol. 50, no. 3, pp. 1616–1642, 2012.

[12] T. L. Vu, S. M. A. Araifi, M. S. E. Moursi, and K. Turitsyn, “Toward
simulation-free estimation of critical clearing time,” IEEE Transactions
on Power Systems, vol. 31, no. 6, pp. 4722–4731, 2016.

[13] Y. Zhang and J. Cortés, “Quantifying the robustness of power networks
against initial failure,” in European Control Conference, Aalborg, Den-
mark, July 2016, pp. 2072–2077.

[14] Q. Ba and K. Savla, “On distributed computational approaches for
optimal control of traffic flow over networks,” in Allerton Conf. on
Communications, Control and Computing, Monticello, IL, 2016, pp.
1102–1109.

[15] S. Soltan, D. Mazauric, and G. Zussman, “Analysis of failures in power
grids,” IEEE Transactions on Control of Network Systems, vol. 4, no. 2,
pp. 288–300, 2017.

[16] Y. Yang, T. Nishikawa, and A. E. Motter, “Small vulnerable sets deter-
mine large network cascades in power grids,” Science, vol. 358, no. 6365,
2017.

[17] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Hybrid Systems: Computation and Control.
Springer, 2007, pp. 428–443.

[18] M. Kloetzer and C. Belta, “Reachability analysis of multi-affine systems,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science, J. P. Hespanha and A. Tiwari, Eds. Santa Barbara,
CA: Springer, 2006, vol. 3927, pp. 348–362.

[19] T. Dang, “Approximate reachability computation for polynomial sys-
tems,” in Hybrid Systems: Computation and Control, ser. Lecture Notes
in Computer Science, J. P. Hespanha and A. Tiwari, Eds. Santa Barbara,
CA: Springer, 2006, vol. 3927, pp. 138–152.

[20] Y. C. Chen and A. D. Domı́nguez-Garcı́a, “A method to study the effect
of renewable resource variability on power system dynamics,” IEEE
Transactions on Power Systems, vol. 27, no. 4, pp. 1978–1989, 2012.

[21] H. N. Villegas-Pico and D. C. Aliprantis, “Voltage ride-through capability
verification of wind turbines with fully-rated converters using reachabil-
ity analysis,” IEEE Transactions on Energy Conversion, vol. 29, no. 2,
pp. 392–405, 2014.

[22] A. El-Guindy, D. Han, and M. Althoff, “Formal analysis of drum-boiler
units to maximize the load-following capabilities of power plants,” IEEE
Transactions on Power Systems, vol. 31, no. 6, pp. 4691–4702, Jan. 2016.



14

[23] A. El-Guindy, K. Schaab, B. Schürmann, O. Stursberg, and M. Althoff,
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