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Abstract— This work considers the coverage of underwater
areas with a mobile robot with constrained control and commu-
nication capabilities. While underwater, the robot can control
its depth but it is subject to flow in the other directions. While
on the surface, it can move (essentially) freely. The aim of the
work is the coverage of the areas with the minimum waste of
resources. For that, we propose a two-part algorithm, where one
part is a genetic algorithm and the other part is an algorithm
based on Newton’s method. Numerical simulations are provided
to illustrate the efficiency of the algorithm.

I. INTRODUCTION

This paper studies the underwater coverage surfaces using
an autonomous vehicle with very limited possibilities of
control and communication. Specifically, we consider that
the vehicle can only communicate with the base station while
at the surface of the water. In addition, we assume that the
vehicle is only able to control its depth, while its movement
in other directions is determined by the tides and other ef-
fects. In spite of these limitations, this type of submarines can
be very useful for oceanography, aquaculture, hydrographic
survey, etc, where vehicles with more capabilities but much
more expensive might have a reduced success compared with
a swarm of smaller submarines.

Literature review: The study of the coverage problem
has been carried out from multiple points of view. Sensor
coverage algorithms have received a great attention in recent
years. In [1], a distributed control algorithm is proposed for
finding a locally optimal sensing configuration for groups
of vehicles. There have been several extensions to this
formulation of coverage control (see, e.g., [2], [3]). In [4],
authors incorporated heterogeneous robots, and extended
the algorithm to handle non-convex environments. Other
extensions to non-convex environments were proposed in
[5] and [6]. Similar frameworks have also been formulated
for stochastic settings [7]. A dynamic coverage control algo-
rithm with limited transmission of information is proposed
in [8]. The works [9], [10] study the dynamic coverage
control under different conditions. The nonuniform coverage
problem is addressed for example in [11]. In the context
of underwater systems, methods have been proposed for
mine detection [12], 3D coverage [13], and surveillance [14].
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Specially, [15] considers the coverage under the effect of
sea current disturbances. An algorithm to take into account
environmental factors during the coverage is presented in
[16]. The coverage of 3D structures is studied in [17].

Statement of contributions: As opposed to the previous
works, the control actions are very restricted in our work and
the movement of the vehicles is determined by the current
flow. Therefore, the coverage problem might be significantly
different. The unique possible action in the coverage of the
surface is the choice of the position and time of immersion.
In order to make this decision, we use an estimation of the
current flow to optimize an estimated area that the vehicle
should cover. Since the difference between the estimated
and the real current flow produces an accumulative error
in our knowledge of the position of the vehicle, the time
of immersion plays an important role in order to deter-
mine when returning to the water surface to obtain new
information is better than continuing the coverage. To solve
the optimization problem, we propose a two-part algorithm
composed by a genetic algorithm, which provides a “good”
region of immersion, and a Newton’s method, which provides
the optimal position of immersion inside the region.

Notation: We let R, R≥0, and N denote respectively the
set of real, nonnegative real, and natural numbers. The n-
dimensional real space is defined by Rn. We refer to the
Euclidean norm of vector v ∈ Rn as ‖v‖ =

√
vT v. For A ∈

Rn×m, we let A> denote its transpose matrix. We denote
the identity matrix I ∈ Rn×n by In. A function µ : [0, a)→
[0,∞) is class K if it is continuous, zero at zero and strictly
increasing and it is class K∞ if, in addition, limr→∞ µ(r) =
∞. A function σ : [0, a) × [0,∞) → [0,∞) is class KL if,
for each fixed s, the mapping σ(r, s) is class K w.r.t. r and,
for each fixed r, the mapping σ(r, s) is decreasing w.r.t. s
and lims→∞ σ(r, s) = 0. A dynamical system ẋ = f(x, u)
is input-to-state stable (ISS) [18, Definition 4.7] if there exist
a class KL function β and a class K function γ such that
for any initial state x(t0) and any bounded input u(t), the
solution x(t) exists for all t ≥ t0 and satisfies ‖x(t)‖ ≤
β(‖x(t0)‖, t−t0)+γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
. The existence of an

ISS-Lyapunov function is sufficient to ensure that the system
is ISS stable. Formally, let V : [0,∞) × Rn → R be a
continuously differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (1a)

V̇ ≤ −W3(x), ‖x‖ ≥ µ(‖u‖) > 0 (1b)

for all (t, x, u) ∈ [0,∞) × Rn × Rm, where α1, α2 are
class K∞ functions, µ is a class K function, and W3 is a



continuous positive definite function on Rn. Then, the system
ẋ = f(x, u) is ISS stable with γ = α−1

1 ◦ α2 ◦ µ.

II. PROBLEM STATEMENT

We consider the problem of covering an underwater region
D ∈ R2, such that all points to be measured are located
at the same depth d, i.e., all point q̃ ∈ D can be denoted
as q̃ =

(
x̃ ỹ d

)>
. For the fulfillment of this objective,

we use a set of vehicles capable of moving in the surface
as well as drifting underwater. An example of such vehicle
platform is the Data Diver developed by Apium [19]. To
achieve this objective, the data diver performs a sequence of
immersions in the water. In each immersion, the data diver
will cover some part of D until the whole region results
covered. The question is then where to immerse and for how
long so that the covered region is maximized in order to
efficiently perform the task.

First of all, we describe the behavior and sensing capa-
bilities of the data diver in order to present the intricacies
of the problem. The design of the data diver implies that its
movement is composed by two parts. On one hand, it can
move freely on the surface of the water. On the other hand,
when it is submerged, only the depth can be controlled, while
the flow of the water determines its movements in the others
directions. The communications are carried out through GPS
and short range radios. For that reason, the localization and
communication on the surface are considerably accurate but
we lose these capabilities underwater. In addition, we have
to take into account important sources of error. To decide
the immersion position, we work with a model of the flow
which is an approximation of the actual one. We can obtain
the flow estimation using the data collected during the dives
(see, e.g., [20], [21]). Besides, several disturbances can occur
underwater and the lack of position measurements hinders
their rejection. For these reasons, when we decide how
much time the data diver is submerged, we have to assume
that the actual coverage might be considerably different
to our estimation. Consequently, if we want to measure
D, we have to move the data diver on the surface such
that, when it is submerged, the current flow sweeps along
it enabling the coverage of some part of D. At a certain
moment, the data diver returns to the surface to decide its
new immersion. Hence, our control the coverage performed
in each immersion depends exclusively on the position where
the data diver is submerged and on the time that the data diver
is submerged. Therefore, the possible coverage is going to
be maximized as a function of these two variables.

The process of immersion and emersion of the data diver
is described in Figure 1. The position of the data diver is
determined by its Cartesian position and its orientation with
respect to the x-axis, which form the vector q(t) ∈ R4. The
data diver emerges at the instant tem

k , k ∈ N, being tem
0 = 0

the initial time and it submerges at the instant timk , k ∈ N.
We decide where the data diver submerges (q(timk )) and how
much time is submerged (Tk,sub = tem

k+1 − timk ) to maximize
the covered area of D.

Fig. 1. Diagram of path followed by data diver during each immersion.

Next, we describe the data diver dynamics, its communi-
cation and sensing capabilities and the current flow model.

A. Data diver modeling

The data diver is a hybrid system, whose dynamics change
depending on its depth. If the data diver is on the surface of
the water, we assume that it can move like a non-holonomic
mobile vehicle. In contrast, the currents determine its under-
water dynamics. Let us consider the following assumptions:

Assumption 2.1: The change between dynamics is instan-
taneous.

Assumption 2.2: The position of the data diver is exactly
known on the water surface, while underwater only depth
measurements are available.

According to Assumption 2.1, the dynamics of the system
can be written as follows

q̇(t) = f(q(t), t) =


gsur(q(t))usur(t) (2a)

for t ∈ [tem
k , t

im
k )

fsub(q(t), t) + gsubusub(t) (2b)
for t ∈ [timk , t

em
k+1)

with t ∈ R≥0 and initial conditions q0 = q(0), and where
q(t) =

(
x(t) y(t) z(t) θ(t)

)> ∈ R4 are the generalized
coordinates of the system. The Cartesian position of the data
diver is

(
x(t) y(t) z(t)

)
and θ(t) is the orientation with

respect to the x axis. usur(t) ∈ R2 is the control input on
the surface and usub(t) ∈ R is the underwater control input.
Note that we can define a map Φt : R4 → R4 such that

q(t) = Φtf (q0), (3)

which determines the position of the data diver after a time t.
The dynamics which describes the movement on the

surface of the water is

gsur(q(t)) =

[
cos θ(t) sin θ(t) 0 0

0 0 0 1

]>
. (4)

In (4), we are ignoring the effect of the water in the dynamics
while the vehicle is on the surface of the water. This is
a reasonable simplification, since the nonholonomic model
above is globally controllable.

The underwater movement is determined by the flow
of the water in the xy-plane, while the depth z can
be controlled through the measurement of the pressure.



Then, fsub(q(t), t) =
[
ν>(q(t), t) 0

]>
and gsub =[

0 0 1 0
]>

, where the flow of the water which sweeps
along the data diver is represented by the vector ν(q(t), t) =(
νx(q(t), t) νy(q(t), t) νz(q(t), t)

)> ∈ R3.
The instantaneous coverage s(q̃, q(t)) represents the cov-

erage of the point q̃ when the data diver is in q(t). A possible
parametrization of this instantaneous coverage is

s(q̃, q(t)) =


(
δ2(t)− r2

)4
/r8

if ‖z(t)− d‖ ≤ h and δ(t) ≤ r,
0 otherwise.

(5)

where δ(t) = ‖(x(t), y(t)) − (x̃, ỹ)‖, and h and r are
the height and the radius, respectively, which define the
maximum cone that can be captured by the cam of the
data diver. Note that (5) is only a possible model of the
instantaneous coverage. However, it can be described in
different ways depending on the sensor characteristics [22].

B. Flow and sensing estimation

To solve the optimization problem, we need some knowl-
edge of the current flow to estimate the underwater posi-
tion. Let us assume that the estimation of the trajectory
is q̂(t) ∈ R4 such that q̂(t) =

(
x̂(t) ŷ(t) ẑ(t) θ̂(t)

)>
and that we have a model of the current flow ν̂(q̂(t), t) =(
ν̂x(q̂(t), t) ν̂y(q̂(t), t) ν̂z(q̂(t), t)

)> ∈ R3. Hence, its
estimated dynamics is

˙̂q(t) = f̂(q̂(t), t) =


gsur(q̂(t))usur(t) (6a)

for t ∈ [tem
k , t

im
k )

f̂sub(q̂(t), t) + ĝsubûsub(t) (6b)
for t ∈ [timk , t

em
k+1)

with initial conditions q̂0 = q̂(0) and where f̂sub(q̂(t), t) =[
ν̂>(q̂(t), t) 0

]>
and ĝsub =

[
0 0 1 0

]>
.

Assumption 2.2 implies that the position is known on the
surface, i.e., q̂(t) = q(t), while underwater only θ̂(t) = θ(t).
Note that ẑ(t) 6= z(t) because even when the depth can be
measured, the estimation is carried out before the immersion.
Analogous to (3), q̂(t) = Φ̂t

f̂
(q̂0). Since we can consider

that the initial conditions of the data diver are always on the
surface, we can assume q̂0 = q0. With this information, we
can define the following error vector

e(t) = q(t)− q̂(t) =


04×1 for t ∈ [tem

k , t
im
k )(

ex(t) ey(t) ez(t) 0
)>

for t ∈ [timk , t
em
k+1)

.

This knowledge of the flow enables the coverage estima-
tion in the next immersion. First, let us assume the following:

Assumption 2.3: There exists bounds on the estimation
error such that ‖(ex(t), ey(t))‖ ≤ ē1,k(t − timk , q(timk )) and
‖ez(t)‖ ≤ ē2,k(t−timk , q(timk )), where ē1,k and ē2,k are known
functions which are zero if t = timk and are strictly increasing
with t− timk .

Assumption 2.3 implies that we have an expected error of
our estimation. This simplification enables the abstraction

of the problem to carry out the later development. The
assumption might be a strong constraint if the flow has a big
dependance with the time. In contrast, if the time dependance
is small, we can use the obtained data in previous immersions
to update the bound. In addition, if the flow does not suffer
large changes in the Cartesian coordinates, we can consider a
constant bound. With this information, replacing (x(t), y(t))
by (x̂(t), ŷ(t))+(ex(t), ey(t)) and z(t) by ẑ(t)+ez(t) in (5)
and using the properties of the norm, we obtain an estimation
of the instantaneous coverage

ŝ(q̃, q̂(t)) =



((
δ̂(t) + ē1,k(t− timk , q(timk ))

)2

− r2

)4

/r8

if ‖ẑ(t)− d‖ ≤ h− ē2,k(t− timk , q(timk ))

and δ̂(t) ≤ r − ē1,k(t− timk , q(timk ))

0 otherwise,
(7)

where δ̂(t) = ‖(x̂(t), ŷ(t)) − (x̃, ỹ)‖, and which satisfies
ŝ(q̃, q̂(t)) ≤ s(q̃, q(t)) since ē1,k ≥ 0 and ē2,k ≥ 0 . So, (5)
provides the instantaneous coverage of point q̃ and (7) is an
estimation of this coverage made before the immersion.

III. ALGORITHM DESIGN

In this section, we design the coverage algorithm. To
perform the desired coverage, it is necessary to define the
control law usur(t), which brings the data diver to the point
q(timk ), and the control law usub(t), which brings the data
diver to the desired depth d?, 0 < d? < d sufficiently close
to D to do the measurement. First, these control laws are
described. Then, the coverage problem is studied.

A. Surface control

The inputs vector usur(t) is composed by the
driving and steering velocities such that usur(t) =(
usur,1(t) usur,2(t)

)>
. Through a dynamic linerization

algorithm the following controller is obtained [23]

ξ̇(t) = v1(t) cos θ(t) + v2(t) sin θ(t)

usur,1(t) = ξ(t)

usur,2(t) =
v2(t) cos θ(t)− v1(t) sin θ(t)

ξ(t)
,

(8)

being ξ ∈ R the state of a one-dimensional dynamic com-
pensator, and v1(t) = kp1(xim−x(t))−kd1ẋ(t) and v2(t) =

kp2(yim−y(t))−kd1ẏ(t), where qim =
(
xim yim 0 0

)>
is

the point where the data diver should do the immersion, i.e.,
q(timk ). kp1, kd1, kp2, kd2 ≥ 0 should satisfy the constrains
imposed in [23].

B. Underwater control

It is easy to see that the estimated underwater dynamics
(6b) converges and asymptotically to d? with the control
law ûsub(t) = −ν̂z(q̂(t), t) + k(d? − ẑ(t)), where k > 0
is a feedback gain. However, note that the evolution of
the actual system (2b) may be different depending on the
error eνz (t) = ν(q(t), t) − ν̂(q̂?(t), t), where q̂?(t) =(
x̂(t) ŷ(t) z(t) θ(t)

)>
. Note that the definition of q̂?(t)



is necessary because we know the exact depth of the data
diver at every moment and we can use this information in
the control law. Nevertheless, we still need an estimation
of the depth to compute the estimated trajectory, since this
estimation will be done before the knowledge of the actual
estimation. In contrast, we have to use always the estimations
on the xy-plane because its position on that plane is unknown
while the data diver is underwater. With this information, let
us consider the following state feedback control law

usub(t) = −ν̂z(q̂?(t), t) + k(d? − z(t)). (9)

Asymptotic stability cannot be proved for the actual under-
water dynamics since we have an unknown error eνz (t). In
spite of that, ISS stability respect to eνz (t) is guaranteed.

Proposition 3.1: Consider the underwater subsystem (2b)
with control law (9). Then, (2b) is ISS respect to eνz .

The importance of Proposition 3.1 is that the more we
submerge the data diver and we obtain new information of
the current flow, the more accurate estimation we have and,
consequently, we can guarantee that the closer to d? the data
diver will be in the next immersions.

C. Coverage optimization

In this section, we describe the strategy to optimize the
coverage of the desired surface. To obtain the effective
coverage of q̃ we should make the following assumption:

Assumption 3.2: Once the data diver has emerged, it is
possible to reconstruct the followed trajectory.

Assumption 3.2 is acceptable in view of works like [20],
where the flow field is successfully reconstructed. Hence, due
to Assumption 3.2, we can compute the effective coverage
of q̃ performed by the data diver, from the beginning until
the instant of the next immersion timk , i.e.,

Sk(q̃) =

tim
k∫

0

s(q̃, q(t))dt. (10)

Analogously, the estimation of the effective coverage of q̃
after the immersion is

Ŝk(q̃, Tk,sub, q(t
im
k )) =

tim
k +Tk,sub∫
tim
k

ŝ(q̃, Φ̂t
f̂
(q(timk ))dt

+ Sk(q̃),

(11)

where Tk,sub = tem
k+1 − timk is the time that the data diver is

submerged in the immersion k and q(timk ) is the position of
that immersion. Note that (10) depends only on q̃ because it
is simply the coverage of q̃ obtained until now, i.e., it is the
coverage initial condition for the next immersion. In contrast,
the future coverage (11) depends on the future position of
immersion and the time associated to this immersion. Let
C(q̃) be the desired effective coverage of q̃ such that once
the coverage of q̃ has reached C(q̃), we consider that q̃ has
been perfectly covered. Then, it is possible to define a penalty
function p, positive definite, which penalizes both the lack

Fig. 2. Coverage estimation depending on the position of immersion for
a fixed Tk,sub when the data diver is submerged in a simple laminar flow.

of coverage of q̃ if it is less than C(q̃) and the excess of
coverage it is larger than C(q̃). An example can be

p(C(q̃),Ŝk(q̃, Tk,sub, q(t
im
k ))) =

−
log
(
e−λŜk(q̃,Tk,sub,q(t

im
k )) + e−λC(q̃)

)
λ

,

(12)

which is a smooth function which satisfies that the larger λ >
0 is, the closer the approximation is to the min function. With
these considerations, the total estimated effective coverage of
region D after immersion k is

Q(Tk,sub, q(t
im
k )) =

∫
D
p(C(q̃), Ŝk(q̃, Tk,sub, q(t

im
k )))dq̃.

(13)
Note that if Ŝ(q̃) increases, then Q increases but once Ŝ(q̃)
reaches C(q̃), new coverage of q̃ are penalized due to (12).
Finally, the optimization problem to solve is

minimize
Tk,sub∈R≥0,q(t

im
k )∈R4

−Q(Tk,sub, q(t
im
k )). (14)

Solving (14) implies the optimization of the estimated cov-
erage which guarantees at least the same level of coverage
in the actual immersion.

Remark 3.3: Since (13) is a nondecreasing function of
Tk,sub, it might be interesting adding constraints to minimize
Tk,sub to guarantee that in case of similar coverage, the diver
follows the trajectory which covers more area in less time.

The function −Q might be non-convex depending on the
flow and the sensing and penalty functions. In addition, the
more parts of D are covered, more local minimums appear
(See Figure 2 as an example). For this reason, a two-part
algorithm is designed to solve the optimization problem.
First, an heuristic search of non-covered regions is carried
out with a genetic algorithm [24]. Random time and position
of immersion form each chromosome of the population.
The crossover and mutation cause the evolution toward non-
covered regions. Second, the result of the genetic algorithm
is used as the initial condition for a Newton’s method to
obtain a local optimized value.

The application of the Newton’s method needs the com-
putation of the second order partial derivatives of (13). The
following propositions provide the conditions to guarantee
the existence of these derivatives.



Proposition 3.4: If f̂sub is a twice differentiable function,
then ∂Φt

f̂
(q0)/∂q0 and ∂2Φt

f̂
(q0)/∂q2

0 exist in the inter-
val t ∈ [timk , t

em
k+1).

Proposition 3.5: If ŝ and f̂sub are Riemann integrable
functions, p and ŝ are twice differentiable functions, and
Proposition 3.4 is satisfied, and hence Newton’s method can
be implemented to find a local optimum with

∇Q(T, q0) =


∫
D

∂p(C(q̃),Ŝ(q̃,T,q0))

∂Ŝ

∂Ŝ(q̃,T,q0)
∂T dq̃∫

D

∂p(C(q̃),Ŝ(q̃,T,q0))

∂Ŝ

∂Ŝ(q̃,T,q0)
∂q0

dq̃

 , (15)

HQ(T, q0) =

[
H1 H2

H>2 H3

]
, (16)

where (15)-(16) are detailed in (17)-(19).
Once all the elements have been introduced, we propose

Algorithm 1 to complete the coverage of the surface D.

IV. SIMULATION

The algorithm developed in Section 3 has been tested in
different simulations. Consider the model described by (2a)-
(2b) under control law (8)-(9) and assume the current flow

ν(q(t), t) =

−0.84 · 10−3y(t)− 0.015
−1.37 · 10−3x(t)

0

 (20)

while the available model to do the estimation is

ν̂(q̂(t), t) =

−10−3ŷ(t)− 0.01
−10−3x̂(t)

0

 . (21)

The surface to be covered is a square region of 5 m and it is
located at d = 12 m. Hence, the reference depth for the data
diver is d? = 11.9 m. The parameters of the camera sensor
(5) are h = 0.2 m and r = 0.5 m. From (20)-(21), we obtain
ē2

1,k(t − timk , q(timk )) = (x̄0|ec1(t−tim
k ) − ec2(t−tim

k )| + |c3(1 −
ec1(t−tim

k )) + (1− ec2(t−tim
k ))|)2 + ȳ2

0(ec1(t−tim
k ) − ec2(t−tim

k ))2

and ē2,k(t− timk , q(timk )) = 0 with c1 = 0.0011, c2 = 0.0010,
c3 = 1.2455, and x̄0 = 10 and ȳ0 = 10 the maximum

Algorithm 1: Coverage of an underwater surface.

Step 1 Set k = 1, S(q̃) = 0.
Step 2 Execute the genetic algorithm to obtain a first approxi-

mation for Tk,sub and q(timk ).
Step 3 Use the values of Step 2 as initial conditions of the

Newton’s method to obtain Tk,sub and q(timk ).
Step 4 Update (8) to reach the desired position q(timk ).
Step 5 Once the data diver reaches q(timk ), submerge it to a

depth of d? [units of length] using (9).
Step 6 Keep the data diver underwater Tk,sub [units of time].
Step 7 Return the data diver to the water surface and rebuild its

trajectory. If C(q̃) = Sk(q̃), ∀q̃, exit. Otherwise update
k = k + 1 and S(q̃), and go to Step 2.

Fig. 3. Comparative of the covered area by the different algorithms. (Red)
Newton’s method + Genetic algorithm. (Green) Newton’s method. (Blue)
Genetic algorithm. (Black) Random position and time of immersion.

expected initial conditions in xy-plane. By simplicity, we
can take ē1(t, tim1 , ..., t

im
k ) ≤ 0.01(t− timk ) for t− timk ≤ 1300

s, which is acceptable approximation for the case of study.
Figure 3 shows a comparison of the two-step algorithm w.r.t.
the Newton’s method and the genetic algorithm separately
considered and w.r.t. the coverage with random immersions.
Naturally, the combination of the Newton’s method with the
genetic algorithm provides better results than if we consider
them independently. In Figure 4, we can observe as the data
diver covers the surface following the two-step algorithm.

V. CONCLUSIONS

We have proposed an algorithm for coverage optimization
of an underwater surface. The unawareness of the position of
the data diver and the lack of control while underwater imply
that the trajectory should be estimated depending on the
position and time of immersion. The optimization problem
is solved using a combination of genetic algorithm and New-
ton’s method. The solution provides a minimum expectation
of the coverage that will be carried out during the immersion.
Future work will include the estimation and improvement
of the current flow model using the data obtained by the
vehicles, the extension to more complex notions of coverage
that incorporate requirements from computer vision to better
reconstruct the ocean floor, and the investigation of scenarios
with cooperative multi-agent systems.
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∂Ŝ
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