
Co-Optimization of Control and Actuator
Selection for Cyber-Physical Systems

Chin-Yao Chang ∗ Sonia Mart́ınez ∗ Jorge Cortés ∗

∗Department of Mechanical and Aerospace Engineering, University of
California, San Diego, {chc433,soniamd,cortes}@ucsd.edu

Abstract: This paper considers actuator selection problems which aim to maintain control
performance of dynamical systems, and minimize operational costs or wear-and-tear of the
actuators. The logical controls of actuators make the problem combinatorial, which make
exhaustive search impractical. An actuator selection problem can be cast as a binary-integer
programming with bilinear matrix inequalities (BIBMIs). In this paper, we first show that such
non-convex optimization can be equivalently reformulated as an optimization problem with non-
convexities restricted to binary decision variables. We next consider a continuous optimization
which is equivalent to the BIBMIs, and leverage the continuous reformulation to derive a
branch-and-bound method employing bound refinement. Numerical simulations demonstrate
the effectiveness of the proposed approach.

Keywords: Bilinear matrix inequalities, cyber-physical systems, binary-integer programming

1. INTRODUCTION

Actuator (or sensor) selection is a decision problem that
consists of choosing a subset of actuators (sensors) from
the entire actuator (sensor) set in a cyber-physical sys-
tem (CPS), while maintaining network performance such
as controllability or observability. The activation of the
entire actuator set leads in principle to a better control
performance. However, wear-and-tear as well as the oper-
ating cost of actuators encourage the search of solutions
that involve partial utilization. The balance of control
performance and actuator selection poses a class of binary-
integer programming problems with bilinear inequality
constraints (BIBMIs). In this paper, we pursue a generic
approach for BIBMIs in the context of control and actua-
tor selection co-optimization for CPS.

Literature review

The identification of tractable formulations of network
controllability and observability by means of suitable met-
rics is an excellent starting point for efficient actuator and
sensor selection. Thus, many recent works are based on the
characterization of the modularity properties of various
control performance metrics (Summers, 2016; Jawaid and
Smith, 2015). For network problems without modularity
properties, mainstream approaches include greedy algo-
rithms (Tzoumas et al., 2016; Zhang et al., 2017), and
convex relaxation heuristics (Joshi and Boyd, 2009; Dhin-
gra et al., 2014; Argha et al., 2018; Taylor et al., 2017).
The literature above focuses more on classical performance
metrics, such as Kalman filters, linear quadratic regula-
tors, and Gramians. The work (Taha et al., 2017) casts
the actuator selection problem as a BIBMIs. They further
relax the bilinear constraints and focus on binary-integer
semidefinite programming, and developed computational
tractable approaches that provide upper and lower bounds
for BIBMIs.

Mixed-integer programming (MIP) is a classical NP-hard
optimization problem with a long list of heuristics that aim
to find feasible solutions, cf. review papers (Johnson et al.,
2000; Burer and Letchford, 2012). There are specialized
algorithms for BIP (a branch of MIP) that are found effec-
tive. The work (Goemans and Williamson, 1995) showed
that semidefinite programming (SDP) provides an ex-
pected solution at least .87856 times the optimal value.
However, scalability problems still limit the practicality
of SDP. Several recent works (Wu and Ghanem, 2016;
Yuan and Ghanem, 2016) have reformulated the binary
optimization to equivalent continuous optimizations in-
cluding Lp-box and exact penalty methods. Simulation
results show that those new reformulations are promising.

Statement of contributions

In this manuscript, we develop a systematic approach
that finds a quality solution for integer programming with
BIBMI in the context of control and actuator selection co-
optimization of CPSs. Our contribution is two-fold. On the
one hand, we show that to solve the integer programming
with BIBMIs, it is sufficient to solve an optimization with
the only non-convexity restricted to binary decision vari-
ables. This is done by first adding unbinding constraints
to the original integer programming. We next show that
with additional unbinding constraints, there is a bijection
between a global optimal solution of the original problem
and an optimum for the relaxed optimization without
BMIs. This implies that it is sufficient to solve the relaxed
optimization with the binary variables as the only non-
convexity. On the other hand, we provide a continuous
optimization which is equivalent to BIBMIs. We further
leverage it to bound refinements for branch-and-bound
(B&B) by analysis on the solutions of the reformulated
continuous optimization. We also develop a special branch-
ing rule for B&B which prioritizes finding one sufficiently
good solution instead of the global optimum. Simulations
demonstrate that the developed approach is effective com-
pared to the SDP-R method described in (Taha et al.,

2017). For reasons of space, all proofs are omitted and will
appear elsewhere.

Notation

Throughout the paper, we use the following notation. We
denote by N and R respectively the sets of positive integer
and real numbers. We denote | N | as the cardinality of
N . The 2-norm and infinite norm of a complex vector
v ∈ Cn are ‖v‖2 and ‖v‖, respectively. We write the
Frobenius norm of a matrix A as ‖A‖F . The block diagonal
matrix for n number of matrices, A1, · · · , An, is written as
blkdiag(A1, · · · , An). A graph is a pair G = (N , E), where
N ⊆ N is its set of nodes and E ⊆ N ×N is its set of
edges. A path in a graph is a sequence of nodes such that
any two consecutive nodes correspond to an edge of the
graph. The length of a path is its number of edges.

2. PROBLEM FORMULATION

We consider a CPS composed of a team of N agents whose
collective dynamics are described by

ẋ = Ax+BuΠu+Bww, (1)
y = Cx+Dw,

where x ∈ Rnx , u ∈ Rnu , w ∈ Rnw , yi ∈ Rny are,
respectively, the state variable, control input, disturbance,
and output measurement. All A, Bu, Bw, C, and D are
matrices with the appropriate dimensions. The matrix Π
is block-diagonal, of the form

Π =

Inu1

π1 0 · · · 0

0 Inu2
π2

. . .
...

...
. . .

. . . 0
0 · · · 0 InuN

πN

 , (2)

where nui
is the dimension of the control associated with

agent i, and πi denotes whether the actuator of agent i is
activated (πi = 1) or not (πi = 0). We write π ∈ {0, 1}N
as the collection of πi for all i. The network state x ∈ Rnx

is a concatenation of the states of the agents, xi ∈ Rnxi

for all i = 1, · · · , N . Similarly, u and y are, respectively,
the concatenation of the controls and measurements of all
agents. The mapping from the input to state vector can
thus be written in the form Bu = blkdiag(Bu1 , · · · , BuN

).

There are two major objectives in controller design for
CPS. One is a generic control objective, most commonly
stabilization under certain assumptions on the disturbance
or control effort; another is the minimization of the number
of selected actuators. Designing a controller that simul-
taneously accounts for both objectives naturally results
in an BIBMIs. In the following, we consider the robust
L∞-control of (1) by minimizing the number of activated
actuators, which results into the following optimization
problem (Taha et al., 2017; Pancake et al., 2000):

(P1) min
S�0,ζ>0,π,Zi,i=1,··· ,N

(η + 1)ζ + α>π π[
AS + SA> −BuΠZ − Z>ΠB>u + αS Bw

B>w −αηI

]
� 0, (3)−S 0 SC>

0 −I D>

CS D −ζI

 � 0, (4)

Z = [Z>1 , · · · , Z>N]>, ‖Zi‖F ≤ zi, ∀i = 1, · · · , N, (5)

Hπ ≤ h, π ∈ {0, 1}N ,
where the ith component of απ is the cost of activating
actuator i, H and h denote the constraints for activating
the actuators, α and η for all i, are predetermined con-
stants which characterize control performance. The matrix
inequalities (3) and (4) ensure that system (1) is L∞-
stable via the quadratic Lyapunov function defined by S.
The control associated with the optimal solution of (P1)
is u = −ZS−1x. The cost function is composed of two
objectives including the number of activated actuators,
and the L∞-control performance index ζ. The coefficient
for the objective function (η + 1)ζ poses a desired L∞
control performance. Details for the formulation of (P1)
are available at (Pancake et al., 2000). Notice that for any
solution (S?,Π, Z?) such that constraint (3) and BuΠZ +
Z>ΠB>u � 0, one can always choose some Z?2 = aZ?

with scalar a > 1 so that (S?,Π, Z?2) also satisfies (3).
To this end, constraint (5) is not binding as long as z is
chosen large enough. In fact, constraint (5) is not included
in (Taha et al., 2017). We add constraint (5) because it
is very useful in approximating BMIs. We will revisit this
constraint in the numerical studies and show that it does
not change the optimal value as long as zi is not too small
for every i.

Two reasons explain the non-convexity of (P1): one is
the discrete decision variables and the other is the BMI
terms, ΠZ and ZTΠ, embedded in (3). We deal with these
problems in inverse order: first, we describe a problem
reformulation that incorporates the BMI constraints ef-
fectively using several linear matrix inequalities, and then
we address the combinatorial problem by B&B with new
insights from continuous reformulations.

3. APPROXIMATION OF THE BMI CONSTRAINTS

In this section, we show how to effectively deal with the
nonconvexity arising from the bilinear matrix inequalities.
We start by defining the optimization problem (P2) by
relaxing the binary variables π ∈ {0, 1}N of (P1) into
π ∈ [0, 1]N . Notice that (P2) remains non-convex due to
the bilinear terms involving the products of the variables
πi and the matrices Zi, for each i = 1, . . . , N . To deal with
this, we next remove the bilinear terms by introducing the
new variables Gi = πiZi in (P2). This results into the
following convex problem,

(P3) min
S�0,ζ>0,Gi,i=1,··· ,N

(η + 1)ζ + α>π π[
AS + SA> −BuG−G>B>u + αS Bw

B>w −αηI

]
� 0,−S 0 SC>

0 −I D>

CS D −ζI

 � 0, G = [G>1 , · · · , G>N]>,

‖Gi‖F ≤ zi, ∀i = 1, · · · , N,
πi = ‖Gi‖F /zi, Hπ ≤ h.
The decision variables π and Z in (P2) are removed
in (P3), with the constraints for π and Z being imposed
on G instead. Note that the equalities πi = ‖Gi‖F /zi
should really be inequalities πi ≥ ‖Gi‖F /zi. The following
result paves the way to show later that the equality is
tight.

Proposition 3.1. (Optimal solution of (P1)). There
exists a global optimizer of (P1), denoted (S?1 , ζ?1 , π?1 , Z?1),

with the property that, for each i ∈ {1, . . . , N}, ‖Z?1i ‖F =
zi if π?1i = 1.

The following result states a similar property for the
optimization (P2).

Corollary 3.2. (Optimal solution of (P2)). There ex-
ists a global optimizer of (P2), denoted (S?2 , ζ?2 , π?2 , Z?2),
with the property that, for each i ∈ {1, . . . , N},

‖Z?2i ‖F = zi if π?2i > 0. (6)

Using Corollary 3.2, we can conclude that (P2) and (P3)
are equivalent.

Lemma 3.3. (Equivalence between (P2) and (P3)).
The optimizations (P2) and (P3) are equivalent.

One can prove Lemma 3.3 by showing that a global
optimal solution of (P2) from can be derived from (P3)
and vice versa. Lemma 3.3 shows that the BMIs embedded
in (P2) can be replaced by linear matrix inequalities
without affecting the optimal solution. Therefore, the
non-convexity in the original optimization problem (P1)
can be effectively treated once the integer constraints
are relaxed. Consequently, our focus next is on how to
effectively deal with the latter beyond the coarse [0, 1]N -
relaxation.

4. BINARY-INTEGER PROGRAMMING

In this section, we first use the results in the previous sec-
tion to formulate a continuous optimization problem with-
out binary variables, while being equivalent to (P1). The
reformulation is beneficial to address the non-convexity of
(P1) originated from the binary variables. We next revisit
B&B with both novel branching and bound-refinement
methods from the insights of the continuous reformulation.

4.1 Equivalent formulation of (P1)

We consider a reformulation of (P3) by adding a non-
convex constraint, shown in the following

(P4) min
(x,σ)∈X ,σ∈[−1,1]N

f(x, σ),

s.t. N − σ>σ = 0. (7)

where x collects all the decision variables in (P3), σi =

2‖Gi‖F
zi

− 1 for all i = 1, · · · , N , X denotes all the

constraints in (P3), and f is the objective function of
(P3) written with variables x and σ. Constraint (7) forces
σ to take the vertex points of the hypercube [−1, 1]N .
Adding constraint (7) makes (P4) equivalent to (P1).

Lemma 4.1. (Equivalence between (P1) and (P4)).
Optimizations (P1) and (P4) are equivalent.

To this end, we have reformulated (P1) into (P4) with the
only non-convexity lying in the concave quadratic equality
constraint. We further consider the following optimization
which penalizes (P3) with the concave constraint in (P4)

(P5-µ) min
(x,σ)∈X ,σ∈[−1,1]N

f(x, σ) + µ(N − σ>σ),

where µ > 0. Proposition 4.2 shows that the optimal
solution of (P5-µ) satisfies σ?5 ∈ {−1, 1}N if µ is large
enough. Let L <∞ be the smallest constant such that

‖f(x, σa)− f(x, σb)‖ ≤ L‖σa − σb‖, (8)

∀(x, σa) ∈ X , (x, σb) ∈ X , σa, σb ∈ [−1, 1]N .

The inequality above is also known as uniformly Lipschitz
in x with respect to σ. We have L < ∞ in (8) because f
is linear to σ. The gradient of f is given as

Of(x, σ) = [Oxf(x, σ)>, Oσf(x, σ)>]>,

then (8) implies that

‖Oσf(x, σ)‖ ≤ L. (9)

We now state Proposition 4.2 which shows the properties
of the optimal solution of (P5-µ).

Proposition 4.2. (Boundary points are local optima).
If µ ≥ L, then every (xc, σc) ∈ X and σc ∈ {−1, 1}N such
that

Oxf(xc, σc)
>(x− xc) ≥ 0, O2

xf(xc, σc) � 0, (10)

is a local minimum of (P5-µ). Moreover, the global
optimal solution of (P5-µ) satisfies σ?5 ∈ {−1, 1}N .

We describe the sketch proof briefly here. For the local
optimality, we first use (10) to show that first-order lo-
cal optimality condition always holds. Uniform Lipschitz
property (8) is then used to show that every (xc, σc) ∈ X
and σc ∈ {−1, 1}N can only be a local minimum. We also
apply (8) to show σ?5 ∈ {−1, 1}N by contradiction.

4.2 Branch-and-Bound Method Revisited

In the last section, we have shown that the penalization
method can enforce integer σ. In this section, we leverage
a convexified (P5-µ) into the B&B method to find better
upper and lower bounds of each branch, which may lead
to a faster convergence.

Branch-and-bound (Schrijver, 1998; Karlof, 2005) B&B
is an algorithm that systematically enumerates candidate
solutions. The enumeration starts with a root (initial)
node which includes the entire solution set. The algorithm
next branches the solution set into two disjoint sets, and
computes their respective upper and lower bounds. A
branch is “pruned” if it has a bigger lower bound than the
upper bound of any other branch. The procedure repeats
until the optimal solution is found. This branching process
generates a binary tree with nodes being “branches”
and edges connecting the branches. The B&B algorithm
usually finds the optimal solution with much less number
of iterations than a brute-force search for MIP.

Branching Method There are many branching strategies
for B&B, such as most infeasible branching, pseudo cost
branching, and strong branching, cf., (Martin, 2001). In
this work, we adapt a rounding branching strategy which
is inspired by the fact that the rounding method usually
helps deriving practically useful solutions (Lenstra et al.,
1990). The rounding branching strategy rounds the opti-
mal switching in (P3), σ?3 , to a closest point σp3 such
that σp3 ∈ {−1, 1}N . It then computes

dσ :=
⌈
(σ?3)>σp3

⌉
. (11)

The definition of dσ requires the following considerations.
First of all, (σ?3)>σp3 is the projection of σ?3 on a line
segment lσ = [−σp3 , σp3]. Second, if we evenly divide
lσ into N number of line segments, then dσ represents
the segment that the projection is in. The definition is
very useful in separating the integer points based on the

distance to σp3 , which gives rise to the following disjoint
sets

X u := {σ | σ>σp3 ≥ dσ, σ ∈ [−1, 1]N}, (12a)

X d := {σ | σ>σp3 ≤ dσ − 1, σ ∈ [−1, 1]N}. (12b)

All the points in X u are closer to the rounded solution,
σp3 , compared to the points in X d. We branch (P3) by
X u and X d

(P3)-X u : (P3) with constraint X u,
(P3)-X d : (P3) with constraint X d .

The intuition behind this branching approach is that if the
rounded solution is close to the global optimum, then the
optimum is likely to be in X u.

The rounding branching method may get stuck at a branch
for which no new branches can be derived by (12). To
illustrate such situation, consider a path Pi from the root
node of the enumeration tree to node i, and XPi :=

∩npi

k=1 X ik, where npi = |Pi| is the length of Pi and X ik
denotes the constraint added by either (12a) or (12b)
at node (branch) k in Pi. Denote X ui and X di as the
candidate disjoint sets for the next branches from the end
node of Pi (or node i). If one of the following holds{

XPi
⊆ X ui

∩XPi
, X di ∩XPi

= ∅,
XPi ⊆ X di ∩XPi , X ui ∩XPi = ∅, (13)

then the rounding branching method is “stuck” or
“locked” because the search space can not be further
reduced. The situation may occur when there are multiple
nodes in Pi that give the same σp3 , and eventually make
XPi

⊆ {σ | σ>σp3 = dσ} for some dσ ∈ [−N,N]. Any
further branching by σp3 becomes meaningless along the
path Pi. To address the issue, we adapt a simple strategy
that unlocks the branching process by choosing σp3i and dσi

such that the resulting X ui
and X di do not satisfy (13).

This can be achieved by choosing new σp3i and dσi by

{σp3i , dσi
} 6∈ ∪npi

k=1{σ
p3
ik , dσik

}, (14)

where dσik
is the dσ associated with node k of Pi. We

summarize the rounding branching method (for one round
of branching) in Algorithm 1.

Algorithm 1 Rounding branching method

1: Given the optimal solution of (P3)-XPi

2: Compute X ui
and X di by (11) and (12).

3: If (13) holds
4: choose {σp3i , dσi

} by (14)
5: update X ui

and X di by {σp3i , dσi
} and (12)

6: end

Refining the Upper and Lower Bounds An important
aspect of B&B are the computations of the upper and
lower bounds for each branch. We continue the discussion
on (P5-µ) in Section 4.1 for a bound refinement method.

The refining procedure starts with the optimal solution
of the convexified problem associated with the end node
(branch) of a path, say (P3)-XPi

. Let (x?3 , σ?3) be the
optimal solution of (P3)-XPi

, then f(x?3 , σ?3) is clearly
a lower bound for branch (P3)-XPi

. Based on (x?3 , σ?3),
we consider penalized (P3)-XPi

given as

(P3-µ)-XPi min
x,σ

f(x, σ + σ?3)− 2µσ>σ?3 ,

s.t. σ + σ?3 ∈ [−1, 1]N ∩ XPi
,

(x, σ + σ?3) ∈ X .

Let (P5-µ)-XPi
be an optimization which is the same as

(P3-µ)-XPi
except that the term µ(N−‖σ‖22−‖σ?3‖22) is

added to the objective function. Accordingly, the objective
function of (P5-µ)-XPi

is µ(N −‖σ+σ?3‖22). Notice that
(P3-µ)-XPi

can be viewed as a convexified optimization
of (P5-µ)-XPi

by removing the concave components. This
correlation will be helpful for bound refinements. Figure 1
illustrates how the optimizations are related. The bound
refinement requires solving (P3-µ)-XPi with the optimal
solution given by (xµ, σµ), and finding ∆σµ such that

∆σµ = argminσ σ
>σ?3 , (15)

s.t. σ?3 + σ ∈ [−1, 1]N ∩ XPi
.

Solving (15) is a simple linear programming with ignor-
able complexity compared to (P3-µ)-XPi

. Proposition 4.3
shows how the bounds are refined by (xµ, σµ) and ∆σµ.

(P1)

(P2)

Relax binary
constraints

(P4)

(P3)

(P5-)

(P3-)-X

Penalize N -

Add binary
constraints

Relax bilinear
constraints

Penalize linearized
N - with additional

constraint X

Fig. 1. Summary for how the optimization formulations
are related.

Proposition 4.3. (Lower and Upper Bounds). If µ ≥ L
and σ?3 + σµ 6∈ {−1, 1}N , then

(a) f(xµ, σµ + σ?3) ≥ f(x?3 , σ?3),
(b) Lower bound: ∀σ ∈ XPi

∩{−1, 1}N and (x, σ) ∈ X ,

f(xµ, σµ+ σ?3)− 2µ(σµ −∆σµ)>σ?3 ≤ f(x, σ), (16)

(c) Upper bound: ∃σ ∈ XPi
∩{−1, 1}N and (x, σ) ∈ X

such that

f(xµ, σµ+ σ?3) + µ(N − ‖σµ + σ?3‖22) ≥ f(x, σ). (17)

Notice that though we have identified the LHS of (16) is
a lower bound, it is not necessary bigger than f(x?3 , σ?3)
(depending on the value of −2µ(σµ−∆σµ)>σ?3) A proper
way to choose the lower bound is then naturally

max{f(x?3 , σ?3), f(xµ, σµ)− 2µ(σµ −∆σµ)>σ?3}.
One the other hand, (17) does not provide a candidate
integer solution for the branch. We therefore regard (17) as
a way to refine an upper bound obtained by some standard
ways, such as polynomial-time complexity algorithms that
find a local optimum of (P4).

Although B&B can avoid checking all the combinations
in σ, it can still take long to find the global optimal
solution. In the interest of reducing the computational
complexity, we instead pursue finding a quality solution
efficiently rather than the global optimum. We consider
that a sufficiently good solution has been found if there is
a branch i which satisfies

UBi−LBi ≤ ε, ε > 0, (18)

where UBi and LBi respectively refer to the upper and
lower bounds for branch i. To facilitate getting a branch
that satisfies (18), we prioritize branching on a node that

has the smallest UBi−LBi. Let L be the set of leaf nodes
in the binary enumeration tree. Algorithm 2 summarizes
the B&B method that pursues a quality solution efficiently
instead of the global optimum. For convenience of presen-
tation, we will call the B&B with the rounding branch-
ing and bound-refinement (16)-(16) as Early Termination
B&B (ETB&B) though it is essentially a special variant of
B&B. The update of L replaces the branched node by its

Algorithm 2 ETB&B

1: Initialize:
ε > 0, i = 0, L = {0}, M ∈ N, count = 0

2: Solve (P3) (for LBi) and find a UBi
3: Refine LBi and UBi by (16) and (17)
4: while (UBi−LBi ≥ ε, ∀i ∈ L) or (count ≤M) do
5: count← count +1
6: Compute i = argmink∈ L UBk −LBk
7: Run Algorithm 1 for node i
8: Solve (P3)-X ui

and the associated UB and LB
9: Solve (P3)-X di and the associated UB and LB

10: Update L, UBk and LBk for all k ∈ L
11: end while
12: Return the incumbent solution

children nodes. Notice that we do not restrict the way of
computing the upper bound in Algorithm 2. In addition,
we impose another termination criteria (count > M) in
Algorithm 2 to restrict the total number of branches.

5. NUMERICAL STUDIES

Our simulations compare the proposed method against
the work in (Taha et al., 2017). The comparison is two-
fold. One is on the relaxation of the bilinear constraints in
(P1). The other is on the derivation of a feasible solution.
We will also compare the proposed ETB&B against B&B
(most infeasible branching). All the simulations are done
on a desktop with 3.5GHz CPU and 16GB RAM, using
MATLAB and its CVX toolbox (Grant and Boyd, 2014)
to solve the convex optimization problems.

We consider the test cases in (Taha et al., 2017) which has
a random network with following structure

ẋi = −
[
1 1
1 2

]
xi +

∑
i6=k

ea(i,k)xk +

[
0
1

]
(πiui + wi), (19)

where a(i, k) is randomly generated with values in [−N5 ,
N
5],

and N is the number of nodes. We assume that C and
D in (1) are respectively an identity matrix and a zero
matrix. The constraint for the actuator selection is rather
simple with H = 1

> and h = N/5 in (P1). The constraint
makes sure that the number of activated actuators is
no less than N/5. More detailed discussions about test
system (19) are in (Taha et al., 2017).

We first compare the relaxation on the bilinear constraints
by SDP-R (Taha et al., 2017) and (P3). Both methods
give almost exactly the same lower bound for (P1). The
main difference is on the computational time, shown in
Table 1. It is unsurprising to see improvements of the

Table 1. Computational time.

N = 10 N = 15 N = 20
SDP-R 10.51 40.70 154.50
(P3) 3.74 8.82 29.42

computational time by solving (P3) instead of SDP-R,

because SDP-R introduces N number of additional linear
matrix inequalities in the approximation.

We next implement the ETB&B method to find a can-
didate solution for (P1) associated with (19). We choose
M = 10 in Algorithm 2, and choose the incumbent solution
when it terminates. Each branch i finds the lower bound
by solving (P3)-XPi

. The upper bound is simply a feasible
solution that is closest to the rounded solution of (P3)-
XPi

. The lower and upper bounds are then refined by (16)
and (17). Table 2 compares the solutions derived from the
ETB&B and the directed rounding method in (Taha et al.,
2017). The computational time of ETB&B grows linearly

Table 2. Solutions of rounding method and
ETB&B.

N = 10 N = 15 N = 20
Rounded soln. 6.67 9.87 8.76
ETB&B soln. 4.42 3.64 7.40
LB of ETB&B 3.29 3.5 5.50

with respect to the number of branches. Namely, if the
computational time the rounding method is T , then the
one for the ETB&B is MT . This could be dramatically re-
duced by sophisticated coding such as parallel computing.
Figure 2 illustrates that quality of the solution in general
improves when M increases.

2 4 6 8 10

Number of branches

0

5

10

15

20

D
e
ri
v
e
d
 o

p
ti
m

a
l
v
a
lu

e

20

40

60

80

100

120

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 (

s
)

Optimal value

Computational Time

Fig. 2. Quality of the solution and the computational time.

The next part of the numerical analysis is on the bound
refinement by (16) and (17). We compare in Figure 3
about the final solutions of ETB&B with and without the
bound refinement for one case with N = 10. Figure 3 also
includes numerical result for standard B&B. We further
show in Figure 4 regarding to the evolution of UB−LB for
completeness. Note that although Figure 3 suggests that
the rounding branching method performs better than the
standard most infeasible branching method, we observe in
a number cases that the rounding branching method do
worse. However, the bound refinement (16) and (17) con-
sistently lead to better convergence properties regardless
on which branching method is implemented.

In all the numerical examples above, we choose zi = 10 for
all i = 1, · · · , N , but observe that the retrieved ‖Zi‖F does
not necessary equal zi. Though as analyzed in Section 3,
there exists an optimal solution with ‖Zi‖F = zi, the
solver does not return it. This confirms that choosing
zi = 10 makes constraint (5) unbinding. The rigorous
selection of z is an interesting direction for future research.

2 4 6 8 10
Number of branches

0

20

40

60

80

D
er

iv
ed

 o
pt

im
al

 v
al

ue

ETB&B-refined
ETB&B
B&B-refined
B&B

Fig. 3. Optimal values obtained through refined and non-
refined B&B methods.

2 4 6 8 10

Number of branches

0

20

40

60

80

U
B

-L
B

ETB&B-refined

ETB&B

B&B-refined

B&B

Fig. 4. Difference between UB and LB in various B&B.

6. CONCLUSIONS

This paper considers a co-optimization problem for control
performance and actuator selection. This poses a general
binary programming with BIBMIs. Our first contribution
shows that it is sufficient to solve a binary-integer pro-
gramming problem without BMIs. We next propose the
bound refinement approach for B&B based on a con-
tinuous reformulation of the binary-integer programming
problem. The bound refinement enhances the convergence
of the B&B. Our future work is on improving the time
complexity, including scalability of the SDP and a more
sophisticated implementation of ETB&B.

ACKNOWLEDGMENTS

This research was supported by the ARPA-e Network Op-
timized Distributed Energy Systems (NODES) program,
Cooperative Agreement DE-AR0000695.

REFERENCES

Argha, A., Su, S.W., Savkin, A., and Celler, B. (2018).
A framework for optimal actuator/sensor selection in a
control system. International Journal of Control. To
appear.

Burer, S. and Letchford, A.N. (2012). Non-convex mixed-
integer nonlinear programming: A survey. Surveys in
Operations Research and Management Science, 17(2),
97–106.

Dhingra, N.K., Jovanović, M., and Luo, Z.Q. (2014).
An ADMM algorithm for optimal sensor and actuator

selection. In IEEE Conf. on Decision and Control, 4039–
4044.

Goemans, M.X. and Williamson, D.P. (1995). Improved
approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. Jour-
nal of the ACM (JACM), 42(6), 1115–1145.

Grant, M. and Boyd, S. (2014). CVX: Matlab software for
disciplined convex programming, version 2.1. Available
at http://cvxr.com/cvx.

Jawaid, S.T. and Smith, S.L. (2015). Submodularity
and greedy algorithms in sensor scheduling for linear
dynamical systems. Automatica, 61, 282–288.

Johnson, E.L., Nemhauser, G.L., and Savelsbergh, M.W.
(2000). Progress in linear programming-based algo-
rithms for integer programming: An exposition. Informs
journal on computing, 12(1), 2–23.

Joshi, S. and Boyd, S. (2009). Sensor selection via convex
optimization. IEEE Transactions on Signal Processing,
57(2), 451–462.

Karlof, J.K. (2005). Integer programming: theory and
practice. CRC Press.

Lenstra, J.K., Shmoys, D.B., and Tardos, E. (1990). Ap-
proximation algorithms for scheduling unrelated parallel
machines. Mathematical programming, 46(1-3), 259–271.

Martin, A. (2001). General mixed integer programming:
Computational issues for branch-and-cut algorithms. In
Computational combinatorial optimization, 1–25.

Pancake, T., Corless, M., and Brockman, M. (2000).
Analysis and control of polytopic uncertain/nonlinear
systems in the presence of bounded disturbance inputs.
In American Control Conference, 159–163. Chicago, IL.

Schrijver, A. (1998). Theory of linear and integer program-
ming. John Wiley & Sons.

Summers, T.H. (2016). Actuator placement in networks
using optimal control performance metrics. In IEEE
Conf. on Decision and Control, 2703–2708. Las Vegas,
NV.

Taha, A.F., Gatsis, N., Summers, T.H., and Nugroho,
S. (2017). Time-varying sensor and actuator selection
for uncertain cyber-physical systems. arXiv preprint
arXiv:1708.07912.

Taylor, J.A., Luangsomboon, N., and Fooladivanda, D.
(2017). Allocating sensors and actuators via optimal
estimation and control. IEEE Transactions on Control
Systems Technology, 25(3), 1060–1067.

Tzoumas, V., Rahimian, M.A., Pappas, G.J., and Jad-
babaie, A. (2016). Minimal actuator placement with
bounds on control effort. IEEE Transactions on Control
of Network Systems, 3(1), 67–78.

Wu, B. and Ghanem, B. (2016). lp-box ADMM: A versatile
framework for integer programming. arXiv preprint
arXiv:1604.07666.

Yuan, G. and Ghanem, B. (2016). Binary optimization
via mathematical programming with equilibrium con-
straints. arXiv preprint arXiv:1608.04425.

Zhang, H., Ayoub, R., and Sundaram, S. (2017). Sen-
sor selection for Kalman filtering of linear dynamical
systems: Complexity, limitations and greedy algorithms.
Automatica, 78, 202–210.

