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Abstract

This paper considers continuous-time coordination algorithms for networks of agents
that seek to collectively solve a general class of nonsmooth convex optimization prob-
lems with an inherent distributed structure. Our algorithm design builds on the char-
acterization of the solutions of the nonsmooth convex program as saddle points of
an augmented Lagrangian. We show that the associated saddle-point dynamics are
asymptotically correct but, in general, not distributed because of the presence of a
global penalty parameter. This motivates the design of a discontinuous saddle-point-
like algorithm that enjoys the same convergence properties and is fully amenable to
distributed implementation. Our convergence proofs rely on the identification of a
novel global Lyapunov function for saddle-point dynamics. This novelty also allows
us to identify mild convexity and regularity conditions on the objective function that
guarantee the exponential convergence rate of the proposed algorithms for convex op-
timization problems subject to equality constraints. Various examples illustrate our
discussion.

1 Introduction

Distributed convex optimization problems arise in a wide range of scenarios involving
multi-agent systems, including network flow optimization, control of distributed energy
resources, resource allocation and scheduling, and multi-sensor fusion. In such contexts,
the goals and performance metrics of the agents are encoded into suitable objective func-
tions whose optimization may be subject to a combination of physical, communication,
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and operational constraints. Decentralized algorithmic approaches to solve these opti-
mization problems yield various advantages over centralized solvers, including reduced
communication and computational overhead at a single point via spatially distributed pro-
cessors, robustness against malfunctions, or the ability to quickly react to changes. In this
paper we are motivated by network scenarios that give rise to general nonsmooth convex
optimization problems with an intrinsic distributed nature. We consider convex programs
with an additively separable objective function and local coupling equality and inequality
constraints. Our objective is to synthesize distributed coordination algorithms that allow
each agent to find their own component of the optimal solution vector. This setup substan-
tially differs from consensus-based distributed optimization where agents agree on the en-
tire optimal solution vector. We also seek to provide algorithm performance guarantees
by way of characterizing the convergence rate of the network state towards the optimal
solution. We see these characterizations as a stepping stone towards the development of
strategies that are robust against disturbances and can accommodate a variety of resource
constraints.

Literature Review

The interest on networked systems has stimulated the synthesis of distributed strategies
that have agents interacting with neighbors to coordinate their computations and solve
convex optimization problems with constraints [6, 7]. A majority of works focus on consensus-
based approaches, where individual agents maintain, communicate, and update an esti-
mate of the entire solution vector of the optimization problem, implemented in discrete
time, see e.g., [18, 30, 41, 42, 57] and references therein. Recent work [23, 34, 37, 54] has pro-
posed a number of continuous-time solvers whose convergence properties can be studied
using notions and tools from classical stability analysis tools. This continuous-time frame-
work facilitates the explicit computation of the evolution of candidate Lyapunov functions
and their Lie derivatives, opening the way to a systematic characterization of additional
desirable algorithm properties such as speed of convergence, disturbance rejection, and
robustness to uncertainty.

In contrast to consensus-based approaches, and of particular importance to our work
here, are distributed strategies where each agent seeks to determine only its component of
the optimal solution vector (instead of the whole one) and interchanges information with
neighbors whose size is independent of the networks’. Such strategies are particularly
well suited for convex optimization problems over networks that involve an aggregate
objective function that does not couple the agents’ decisions but local (equality or inequal-
ity) constraints that instead do. Dynamics enjoying such scalability properties include the
partition-based dual decomposition algorithm for network optimization proposed in [11],
the discrete-time algorithm for non-strict convex problems in [40] that requires at least one
of the exact solutions of a local optimization problem at each iteration, and the inexact
algorithm in [39] that only achieves convergence to an approximate solution of the opti-
mization problem. In the context of neural networks, the work [21] proposes a generalized
circuit for nonsmooth nonlinear optimization based on first-order optimality conditions
with convergence guarantees. However, the proposed dynamics are not fully amenable to
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distributed implementation due to the global penalty parameters involved.

A common approach to design distributed strategies relies on the saddle-point or primal-
dual dynamics [1, 32, 46] corresponding to the Lagrangian of the optimization problem. In
fact, recent years have seen a burgeoning activity on the use of these dynamics to solve
network optimization problems arising in a number of applications, including distributed
control of power networks [33, 35, 52, 55, 56], internet congestion control [14, 31], and zero-
sum networked games [22, 47]. The work [20] studies primal-dual gradient dynamics for
convex programs subject to inequality constraints. These dynamics are modified with a
projection operator on the dual variables to preserve their nonnegativity. Although conver-
gence in the primal variables is established, the dual variables converge to some unknown
point which might not correspond to a dual solution. The work [48] introduces set-valued
and discontinuous saddle-point algorithms specifically tailored for linear programs. More
recently, the work [13] studies the asymptotic convergence properties of the (continuous)
saddle-point dynamics associated to general saddle functions. The work [24] takes a max-
imal monotone mapping approach to study the robustness of pointwise asymptotic stabil-
ity of saddle-point dynamics. Our present work contributes to this body of literature on
distributed algorithms based on saddle-point dynamics, with the key distinctions of the
generality of the problem considered and the fact that our technical analysis relies on Lya-
punov, rather than LaSalle, arguments. Also, while previous work focuses on establishing
asymptotic stability, the present work studies algorithm performance and, in particular,
the explicit characterization of the exponential convergence rate of continuous-time algo-
rithms for convex optimization problems subject to equality constraints. The availability
of such characterizations is of critical importance to assess the speed of convergence of
discrete-time implementations of the dynamics, see for instance [17, 51].

Statement of Contributions

We consider generic nonsmooth convex optimization problems defined by an additively
separable objective function and local coupling constraints. Our starting point is the char-
acterization of the primal-dual solutions of the nonsmooth convex program as saddle
points of an augmented Lagrangian which incorporates quadratic regularization and `1-
exact-penalty terms to eliminate the inequality constraints. This problem reformulation
motivates the study of the saddle-point dynamics (gradient descent in the primal variable
and gradient ascent in the dual variable) associated with the augmented Lagrangian.

Our first contribution is the identification of a novel nonsmooth Lyapunov function
which allows us to establish the asymptotic correctness of the algorithm without relying
on arguments based on the LaSalle Invariance Principle. With respect to the current state
of the art, the availability of this function opens the way to the study of other important
properties of the trajectories beyond asymptotic stability, such as the characterization of
robustness or the convergence rate. In fact, our second contribution pertains the perfor-
mance characterization of the proposed coordination algorithms. We restrict our study to
the case when the convex optimization problem is subject to equality constraints only. For
this scenario, we rely on the Lyapunov function identified in the convergence analysis to
provide sufficient conditions on the objective function of the convex program that guaran-
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tee the exponential convergence of the algorithm and characterize the corresponding rate.
Since the proposed saddle-point algorithm relies on a priori global knowledge of a penalty
parameter associated with the exact-penalty terms introduced to ensure convergence to
the solutions of the optimization problem, our third contribution is an alternative, dis-
continuous saddle-point-like algorithm that does not require such knowledge and is fully
amenable to distributed implementation over a team of agents. We show that, given any
solution of the saddle-point-like algorithm, there exists a value of the penalty parameter
such that the trajectory is also a solution of the saddle-point dynamics, thereby establish-
ing that both dynamics enjoy the same convergence properties. As an additional feature,
the proposed algorithm guarantees feasibility with respect to the inequality constraints for
any time. Various examples illustrate our discussion.

Organization

Section 2 introduces basic notions on nonsmooth analysis and set-valued dynamical sys-
tems. Section 3 proposes the saddle-point algorithm to solve the problem of interest, estab-
lishes its asymptotic correctness and characterizes its exponential converge rate. Section 4
proposes an alternative saddle-point-like algorithm which does not require a priori knowl-
edge of penalty parameters and examines its convergence properties and amenability for
distributed implementation. Section 5 summarizes our conclusions and ideas for future
work. Finally, we gather a number of intermediate results supporting the main technical
developments of the paper in an appendix.

2 Preliminaries

We collect here some notions on nonsmooth analysis and set-valued dynamical systems
used throughout the paper for completeness. The reader familiar with these concepts can
safely skip this section.

We let 〈·, ·〉 denote the Euclidean inner product and ‖·‖, respectively ‖·‖∞, denote the
`2- and `∞-norms in Rn. The Euclidean distance from a point x ∈ Rn to a set X ⊂ Rn is de-
noted by dist(x,X). Let 1n = (1, . . . , 1) ∈ Rn. Given x ∈ Rn, let [x]+ = (max{0, x1}, . . . ,max{0, xn}) ∈
Rn. Given a set X ⊂ Rn, we denote its convex hull by coX , its interior by intX , and its
boundary by bdX . The closure of X is denoted by clX = intX ∪ bdX . Let B(x, δ) = {y ∈
Rn | ‖y − x‖ < δ} and B(x, δ) = {y ∈ Rn | ‖y − x‖ ≤ δ} be the open and closed ball,
centered at x ∈ Rn of radius δ > 0. Given X,Y ⊂ Rn, the Minkovski sum of X and Y is
defined by X + Y = {x+ y | x ∈ X, y ∈ Y }.

A function f : Rn → R is convex if f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y) for all x, y ∈ Rn
and θ ∈ [0, 1]. A function f is strictly convex if f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y) for
all x 6= y and θ ∈ (0, 1). A function f : Rn → R is positive definite with respect to X ⊂ Rn
if f(x) = 0 for all x ∈ X and f(x) > 0 for all x /∈ X . We say f : Rn → R is coercive with
respect to X ⊂ Rn if f(x)→ +∞when dist(x,X)→ +∞. Given γ > 0, the γ-sublevel set of
f is lev≤γ(f) = {x ∈ Rn | f(x) ≤ γ}. A bivariate function f : Rn×Rp → R is convex-concave
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if it is convex in its first argument and concave in its second. A set-valued map F : Rn ⇒ Rn
maps elements of Rn to elements of 2R

n
. A set-valued map F : Rn ⇒ Rn is monotone if

〈x − y, ξx − ξy〉 ≥ 0 whenever ξx ∈ F (x) and ξy ∈ F (y). Finally, F is strictly monotone if
〈x− y, ξx − ξy〉 > 0 whenever ξx ∈ F (x), ξy ∈ F (y) and x 6= y.

2.1 Nonsmooth Analysis

We review here relevant basic notions from nonsmooth analysis [15] that will be most
helpful in both our algorithm design and analysis. A function f : Rn → R is locally Lipschitz
at x ∈ Rn if there exist δx > 0 and Lx > 0 such that |f(y) − f(z)| ≤ Lx‖y − z‖ for all
y, z ∈ B(x, δx). The function f is locally Lipschitz if it is locally Lipschitz at x, for all x ∈ Rn.
A convex function is locally Lipschitz (cf. [26, Theorem 3.1.1, p. 16]).

Rademacher’s Theorem [15] states that locally Lipschitz functions are continuously dif-
ferentiable almost everywhere (in the sense of Lebesgue measure). Let Ωf ⊂ Rn be the set
of points at which f fails to be differentiable, and let S denote any other set of measure
zero. The generalized gradient ∂f : Rn ⇒ Rn of f at x ∈ Rn is defined by

∂f(x) = co
{

lim
i→+∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf

}
.

Note that if f is continuously differentiable at x ∈ Rn, then ∂f(x) reduces to the singleton
set {∇f(x)}. If f is convex, then ∂f(x) coincides with the subdifferential (in the sense of
convex analysis), that is, the set of subgradients ξ ∈ Rn satisfying

f(y) ≥ f(x) + 〈ξ, y − x〉 (1)

for all y ∈ Rn (cf. [15, Proposition 2.2.7]). With this characterization, it is not difficult to see
that f is (strictly) convex if and only if ∂f is (strictly) monotone.

A set-valued map F is upper semi-continuous if, for all x ∈ Rn and ε > 0, there exists
δ > 0 such that F (y) ⊂ F (x) + B(0, ε) for all y ∈ B(x, δ). We say F is locally bounded if,
for every x ∈ Rn, there exist ε > 0 and δ > 0 such that ‖ξ‖ ≤ ε for all ξ ∈ F (y) and all
y ∈ B(x, δ). The following result summarizes some important properties of the generalized
gradient [15].

Proposition 2.1 (Properties of the generalized gradient). Let f : Rn → R be locally Lipschitz
at x ∈ Rn. Then,

(i) ∂f(x) ⊂ Rn is nonempty, convex and compact, and ‖ξ‖ ≤ Lx, for all ξ ∈ ∂f(x);

(ii) ∂f(x) is upper semi-continuous at x ∈ Rn.

Let C1,1(Rn,R) denote the class of functions f : Rn → R that are continuously differ-
entiable and whose gradient ∇f : Rn → Rn is locally Lipschitz. The generalized Hessian
∂(∇f) : Rn ⇒ Rn×n of f at x ∈ Rn is defined by

∂(∇f)(x) = co
{

lim
i→+∞

∇2f(xi) | xi → x, xi /∈ Ωf

}
.
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By construction, ∂(∇f)(x) is a nonempty, convex and compact set of symmetric matrices
which reduces to the singleton set {∇2f(x)} whenever f is twice continuously differen-
tiable at x ∈ Rn [27]. The following result is a direct extension of Lebourg’s Mean-Value
Theorem to vector-valued functions [50].

Proposition 2.2 (Extended Mean-Value Theorem). Let∇f : Rn → Rn be locally Lipschitz and
let x, y ∈ Rn. Then,

∇f(x)−∇f(y) ∈ co
{
∂(∇f([x, y]))

}
(x− y),

where co
{
∂(∇f([x, y]))

}
(x − y) = co{H(x − y) | H ∈ ∂(∇f)(z) for some z ∈ [x, y]}, and

[x, y] = {x+ θ(y − x) | θ ∈ [0, 1]}.

2.2 Set-Valued Dynamical Systems

Throughout the manuscript, we consider set-valued and locally projected dynamical sys-
tems [16, 38] defined by differential inclusions [2]. LetX ⊂ Rn be open, and let F : X ⇒ Rn
be a set-valued map. Consider the differential inclusion{

ẋ ∈ F (x),

x(0) = x0 ∈ X.
(DI)

A solution of (DI) on the interval [0, t+) ⊂ R (if any) is an absolutely continuous mapping
taking values in X , denoted by x ∈ AC([0, t+), X), such that ẋ(t) ∈ F (x(t)) for almost all
t ∈ [0, t+). A point x is an equilibrium of (DI) if 0 ∈ F (x). We denote by eq(F ) the set of
equilibria. Given x0 ∈ X , the existence of solutions of (DI) with initial condition x0 ∈ X is
guaranteed by the following result [2, 4, 16].

Lemma 2.3 (Existence of local solutions). Let the set-valued map F : X ⇒ Rn be locally
bounded, upper semi-continuous with nonempty, convex and compact values. Then, given any
x0 ∈ X , there exists a solution of (DI) with initial condition x0.

Given a locally Lipschitz function V : X → R, the set-valued Lie derivative LFV : X ⇒ R
of V with respect to F at x ∈ X is defined by

LFV (x) =
{
ψ ∈ R | ∃ξ ∈ F (x) : 〈ξ, π〉 = ψ, ∀π ∈ ∂V (x)

}
.

For each x ∈ X , LFV (x) is a closed and bounded interval in R, possibly empty.

Let G ⊂ Rn be a nonempty, closed and convex set. The tangent cone and the normal cone
of G at x ∈ G are, respectively,

TG(x) = clR≥0(G− x), NG(x) = {n ∈ Rn | 〈n, y − x〉 ≤ 0, ∀y ∈ G}.

Note that if x ∈ intG, then TG(x) = Rn and NG(x) = {0}. Let projG(x) = arg miny∈G‖x −
y‖. The orthogonal (set) projection of a nonempty, convex and compact set F (x) ⊂ Rn at
x ∈ G with respect to G ⊂ Rn is defined by

PTG(x)(F (x)) =
⋃

ξ∈F (x)

lim
δ↘0

projG(x+ δξ)− x
δ

. (2)
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Note that if x ∈ intG, then PTG(x)(F (x)) reduces to the set F (x). By definition, the orthog-
onal projection PTG(x)(F (x)) is equivalent to the Euclidean projection of F (x) ⊂ Rn onto
the tangent cone TG(x) at x ∈ G, i.e., PTG(x)(F (x)) = projTG(x)(F (x)), cf. [45, Remark 1.1].
Consider now the locally projected differential inclusion{

ẋ ∈ PTG(x)(F (x)),

x(0) = x0 ∈ G.
(PDI)

Note that, in general, the set-valued map x 7→ PTG(x)(F (x)) possesses no continuity prop-
erties and the values of PTG(x)(F (x)) are not necessarily convex [2]. The following re-
sult [9, 25] states conditions under which solutions of (PDI) exist.

Lemma 2.4 (Existence of local solutions of projected differential inclusions). Let G ⊂ Rn be
nonempty, closed and convex, and let the set-valued map F : G ⇒ Rn be locally bounded, upper
semi-continuous with nonempty, convex and compact values. If there exists c > 0 such that, for
every x ∈ G,

sup
ξ∈F (x)

‖ξ‖ ≤ c(1 + ‖x‖),

then, for any x0 ∈ G, there exists at least one solution x ∈ AC([0, t+), G) of (PDI) with initial
condition x0.

3 Convex Optimization via Saddle-Point Dynamics

Consider the constrained minimization problem

min{f(x) | h(x) = 0p, g(x) ≤ 0m}, (P)

where f : Rn → R and g : Rn → Rm are convex, and h : Rn → Rp is affine, i.e., h(x) =
Ax− b, with A ∈ Rp×n and b ∈ Rp, where p ≤ n. Let C = {x ∈ Rn | h(x) = 0p, g(x) ≤ 0m}
denote the constraint set and assume that the (closed and convex) set of solutions S =
{x? ∈ C | f(x?) = infC f} of (P) is nonempty and bounded. Throughout the paper we
assume that the constraint set C ⊂ Rn satisfies the strong Slater assumptions [26], i.e.,

(A1) rank(A) = p, i.e., the rows of A ∈ Rp×n are linearly independent;

(A2) ∃x ∈ Rn such that h(x) = 0p and gk(x) < 0 for all k ∈ {1, . . . ,m}.

Our main objective is to design continuous-time algorithms with performance guar-
antees to find the solution of the nonsmooth convex program (P). We are specifically in-
terested in solvers that are amenable to distributed implementation by a group of agents,
permitting each one of them to find their component of the solution vector. The algorithms
proposed in this work build on concepts of Lagrangian duality theory and characterize the
primal-dual solutions of (P) as saddle points of an augmented Lagrangian. More precisely,
consider the Lagrangian function associated with (P),

f(x) + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉, (3)
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where κ > 0 and λ ∈ Rp is a Lagrange multiplier. Throughout the paper, we find it more
convenient to deal with an augmented Lagrangian L : Rn × Rp → R of the form

L(x, λ) = f(x) +
1

2µ
‖h(x)‖2 + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉, (4)

where µ > 0. Under the regularity assumptions (A1)–(A2), for every x? ∈ S, there exists
(λ?, ν?) ∈ Rp × Rm such that (x?, λ?) is a saddle point of the augmented Lagrangian L, i.e.,

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), ∀x ∈ Rn, ∀λ ∈ Rp,

provided that κ ≥ ‖ν?‖∞. We denote the (closed and convex) set of saddle points of L
by sp(L) (note that the addition of the augmentation term 1

2µ‖h(x)‖2 does not change the
saddle points, i.e., the original Lagrangian (3) and the augmented Lagrangian (4) have
exactly the same saddle points). The following statement reveals that the converse result
is also true. Its proof can be deduced from results on penalty functions in the optimization
literature, see e.g. [5], and therefore we omit it.

Lemma 3.1 (Saddle Points and Solutions of the Optimization Problem). Let L : Rn ×Rp →
R and let (x?, λ?) ∈ sp(L) with κ > ‖ν?‖∞ for some dual solution ν? of (P). Then, x? ∈ S, i.e.,
x? is a (primal) solution of (P).

Lemma 3.1 identifies a condition under which the penalty parameter κ is exact [5, 36].
This condition in turn depends on the dual solution set. Given this result, instead of di-
rectly solving (P), we seek to design strategies that find saddle points of L. Since the
bivariate augmented Lagrangian L is, by definition, convex-concave, a natural approach
to find the saddle points is via its associated saddle-point dynamics{

(ẋ, λ̇) ∈ −(∂xL,−∂λL)(x, λ),

(x(0), λ(0)) = (x0, λ0) ∈ Rn × Rp.
(SPD)

Let (∂xL,−∂λL) : Rn × Rp ⇒ Rn × Rp denote the saddle-point operator associated with L.
Since L is convex-concave and locally Lipschitz [49, Theorem 35.1], the mapping (x, λ) 7→
(∂xL,−∂λL)(x, λ) is locally bounded, upper semi-continuous and takes nonempty, con-
vex and compact values, cf. Proposition 2.1. The existence of local solutions (x, λ) ∈
AC([0, t+),Rn × Rp) of (SPD) is guaranteed by Lemma 2.3. Moreover, we have that

sp(L) = (∂xL,−∂λL)−1(0n, 0p) = eq(∂xL,−∂λL).

Consequently, our strategy to solve (P) amounts to the issue of “finding the zeros” of the
saddle-point operator via (SPD). One can in fact show [49] that the saddle-point operator
(∂xL,−∂λL) : Rn × Rp ⇒ Rn × Rp is maximal monotone, and thus, the existence and
uniqueness of a global solution of (SPD) follows from [2, Theorem 1, p. 147].

3.1 Convergence Analysis

By construction of the saddle-point dynamics (SPD), it is natural to expect that its trajec-
tories converge towards the set of saddle points of the augmented Lagrangian L as time
evolves. Our proof strategy to establish this convergence result relies on Lyapunov’s direct
method.
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Theorem 3.2 (Asymptotic convergence). Let L : Rn×Rp → Rwith µ ∈ (0, 1) and κ > ‖ν?‖∞
for some dual solution ν? of (P). Then, the set sp(L) is strongly globally asymptotically stable
under (SPD).

Proof. We start by observing that the set of saddle points sp(L) is nonempty, convex and
compact given that κ > ‖ν?‖∞, the solution set S ⊂ Rn of (P) is nonempty and bounded,
and that the strong Slater assumptions hold, cf. [26, Theorem 2.3.2]. Consider the candidate
Lyapunov function V : Rn × Rp → R defined by

V (x, λ) = f(x)− infC f +
1

2µ
‖h(x)‖2 + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉

+
1

2
dist((x, λ), sp(L))2.

(5)

We start by showing that V (x, λ) > 0 for all (x, λ) /∈ sp(L) and V (x, λ) = 0 if (x, λ) ∈
sp(L). Let (x, λ) ∈ Rn × Rp and let

(x?(x, λ), λ?(x, λ)) = arg min
(x̃,λ̃)∈sp(L)

(
‖x− x̃‖2 + ‖λ− λ̃‖2

)
. (6)

For notational convenience, we drop the dependency of (x?, λ?) on the argument (x, λ).
Note that the (unique) minimizer (x?, λ?) of (6) exists since the set sp(L) is nonempty,
convex and compact.

Using the fact that (x?, λ?) is a saddle point of the original Lagrangian (3) too, and in-
voking Lemma 3.1, we deduce f(x?) ≤ f(x)+ 〈λ?, h(x)〉+κ〈1m, [g(x)]+〉. Adding 〈λ, h(x)〉
to both sides of the equation, we obtain

f(x)− infC f + 〈λ, h(x)〉+ κ〈1m, [g(x)]+〉 ≥ 〈λ− λ?, h(x)〉.

Using this inequality and the fact that dist((x, λ), sp(L))2 = ‖x − x?‖2 + ‖λ − λ?‖2 in the
definition of V , one can write

V (x, λ) ≥ 1

2µ
‖h(x)‖2 + 〈λ− λ?, h(x)〉+

1

2
‖x− x?‖2 +

1

2
‖λ− λ?‖2

=
1

2

〈
P (x− x?, λ− λ?), (x− x?, λ− λ?)

〉
where the symmetric matrix

P =

 1

µ
A>A+ In A>

A Ip

 ∈ R(n+p)×(n+p) (7)

is positive definite for µ ∈ (0, 1] (this follows by observing that Ip � 0 and the Schur
complement [29] of Ip in P , denoted P/Ip = 1

µA
>A + In − A>I−1p A, is positive definite).

Since (x, λ) ∈ Rn × Rp is arbitrary, it follows

V (x, λ) ≥ 1

2
λmin(P ) dist((x, λ), sp(L))2.
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Thus, we have V (x, λ) > 0 for all (x, λ) /∈ sp(L) and V (x, λ) = 0 if (x, λ) ∈ sp(L). Moreover,
V is coercive with respect to sp(L), that is, V (x, λ) → +∞ whenever dist((x, λ), sp(L)) →
+∞.

We continue by studying the evolution of V along the solutions of the saddle-point dy-
namics (SPD). Let (x, λ) ∈ Rn×Rp and let (x?, λ?) be defined by (6). Take ψ ∈ LSPDV (x, λ).
By definition of the set-valued Lie derivative, there exists (πx, πλ) ∈ (∂xL,−∂λL)(x, λ)
such that ψ = −〈(ξx, ξλ), (πx, πλ)〉 for all (ξx, ξλ) ∈ (∂xV, ∂λV )(x, λ). Taking in particular,
(ξx, ξλ) = (πx,−πλ) + (x− x?, λ− λ?), we obtain

ψ = −〈(ξx, ξλ), (πx, πλ)〉 = −‖πx‖2 + ‖πλ‖2 − 〈(πx, πλ), (x− x?, λ− λ?)〉

We focus on the last term. Noting that πx = πf + 1
µA
>h(x) +A>λ+ κ

∑
k∈{1,...,m} π

+
gk

, for
some πf ∈ ∂f(x) and π+gk ∈ ∂[gk(x)]+, and πλ = −h(x), we have

−〈(πx, πλ), (x− x?, λ− λ?)〉 = 〈πf , x? − x〉+ κ〈
∑

k∈{1,...,m}

π+gk , x
? − x〉

+ 〈 1
µ
A>h(x) +A>λ, x? − x〉+ 〈h(x), λ− λ?〉.

Using the first-order condition (1) of convexity for f and 〈1m, [g]+〉 and the fact that x? ∈ S,
we deduce

−〈(πx, πλ), (x− x?, λ− λ?)〉 ≤ f(x?)− f(x) + κ〈1m, [g(x?)]+〉 − κ〈1m, [g(x)]+〉

− 〈 1
µ
A>h(x) +A>λ, x〉+ 〈h(x), λ− λ?〉

= f(x?)− f(x)− 〈λ?, h(x)〉 − κ〈1m, [g(x)]+〉

− 〈 1
µ
h(x) + λ, h(x)〉+ 〈h(x), λ〉,

where in the last equality we have used the fact that h(x) = Ax. Substituting this into
the expression for ψ above and using again the fact that f(x?) ≤ f(x) + 〈λ?, h(x)〉 +
κ〈1m, [g(x)]+〉, we obtain

ψ ≤−
∥∥∥ 1

µ
A>h(x) +A>λ+ πf + κ

∑
k∈{1,...,m}

π+gk

∥∥∥2 − ( 1

µ
− 1
)
‖h(x)‖2

≤−min
{

1,
1

µ
− 1
}∥∥∥( 1

µ
A>h(x) +A>λ+ ξf + κ

∑
k∈{1,...,m}

ξ+gk , h(x)
)∥∥∥2. (8)

Since µ ∈ (0, 1), and using the fact that sp(L) = (∂xL,−∂λL)−1(0n, 0p), we deduce that
the right-hand-side of (8) equals to zero if and only if (x, λ) ∈ sp(L). Since (x, λ) ∈
Rn × Rp and ψ ∈ LSPDV (x, λ) are arbitrary, it follows LSPDV (x, λ) ⊂ (−∞, 0) for all
(x, λ) /∈ sp(L). Hence, the set of saddle points sp(L) is strongly globally asymptotically
stable under (SPD), concluding the proof.
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Remark 3.3 (Alternative convergence proof via the LaSalle Invariance Principle). The strong
global asymptotic stability of sp(L) under (SPD) can also be established using the alterna-
tive non-strict Lyapunov function

V (x, λ) =
1

2
‖x− x?‖2 +

1

2
‖λ− λ?‖2, (9)

where (x?, λ?) ∈ sp(L) is arbitrary. In fact, from the proof of Theorem 3.2, one can deduce
that the Lie derivative of V along (SPD) is only negative semidefinite, implying stability,
albeit not asymptotic stability. To conclude the latter, one can invoke the LaSalle Invariance
Principle for differential inclusions [3] to identify the limit points of the trajectories as the
set of saddle points. In fact, this is the approach traditionally taken in the literature char-
acterizing the convergence properties of saddle-point dynamics, see e.g., [13, 20, 24, 28, 54]
and references therein. This approach has the disadvantage that V , not being a strict Lya-
punov function, cannot be used to characterize properties of the solutions of (SPD) beyond
asymptotic convergence. By contrast, the Lyapunov function (5) identified in the proof of
Theorem 3.2 is strict. Albeit this observation might seem like a minor point, it is actu-
ally quite significant, as no such function has been identified in the study of primal-dual
dynamics, going back to the seminal works [1, 32]. The availability of a strict Lyapunov
function opens the way to the study of other properties of the solutions such as the charac-
terization of the rate of convergence (the subject of our next section), the robustness against
disturbances via the notion of input-to-state stability, or the design of opportunistic state-
triggered implementations that naturally result in aperiodic discrete-time algorithms. For
general saddle-point dynamics, not necessarily arising from convex optimization prob-
lems, the work [12] shows that the function (9) is a Lyapunov function under the stringent
condition that the Lagrangian giving rise to the dynamics is strongly convex in x and
strongly concave in λ (which does not hold for Lagrangians arising from optimization
problems, which are linear in the dual variable). •

It is worth noticing that the convergence argument with the non-strict Lyapunov func-
tion (9) of Remark 3.3 ensures the strong global asymptotic stability of sp(L) under (SPD)
for any value of the parameter κ > 0. However, only when this parameter is exact, cf.
Lemma 3.1, it is guaranteed that saddle points correspond to (primal) solutions of (P).

Point-wise convergence of the solutions of (SPD) in the set sp(L) follows from the sta-
bility of the each individual saddle point and the asymptotic stability of the set sp(L) estab-
lished in Theorem 3.2, as stated in the following result. The proof is analogous to the case
of ordinary differential equations, cf. [8, Corollary 5.2]), and hence we omit it for reasons
of space.

Corollary 3.4 (Point-wise asymptotic convergence). Any solution (x, λ) ∈ AC([0,+∞),Rn×
Rp) of (SPD) starting from Rn × Rp converges asymptotically to a point in the set sp(L).

3.2 Performance Characterization for Equality-Constrained Problems

In this section, we characterize the exponential convergence rate of solutions of the saddle-
point dynamics (SPD) for the case when the convex optimization problem (P) is subject to
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equality constraints only. In order to do so, we pose additional convexity and regularity
assumptions on the objective function of (P). We have gathered in the Appendix various
intermediate results to ease the exposition of the following result.

Theorem 3.5 (Exponential convergence). Let L : Rn × Rp → R with µ ∈ (0, 1). Suppose
that f ∈ C1,1(Rn,R) and ∂(∇f) � 0. Then, the (singleton) set sp(L) is exponentially stable
under (SPD).

Proof. Under the assumptions of the result, note that the dynamics (SPD) take the form of
a differential equation, {

(ẋ, λ̇) = −(∇xL,−∇λL)(x, λ),

(x(0), λ(0)) = (x0, λ0) ∈ Rn × Rp.

Let L : Rn × Rp → R with µ ∈ (0, 1). Since ∂(∇f) � 0, it follows that ∇f is strictly
monotone [27, Example 2.2]. Therefore, for any fixed λ, the mapping x 7→ ∇xL(x, λ) is
strictly monotone as well. Thus, by assumption (A1), the set of saddle points of L is a
singleton, i.e., sp(L) = {x?} × {λ?}, where λ? = −(AA>)−1A∇f(x?). In this case, the
Lyapunov function V as defined in (5) reads

V (x, λ) = f(x)− f(x?) +
1

2µ
‖h(x)‖2 + 〈λ, h(x)〉+

1

2
dist((x, λ), sp(L))2.

and we readily obtain from the proof of Theorem 3.2 that

V (x, λ) ≥ 1

2
λmin(P ) dist((x, λ), sp(L))2,

for all (x, λ) ∈ Rn × Rp, where P ∈ R(n+p)×(n+p) is defined as in (7).

Our next objective is to upper bound the evolution of V along the solutions of (SPD) in
terms of the distance to sp(L). Let (x, λ) ∈ Rn × Rp and consider the Lie derivative of V
with respect to (SPD) at (x, λ), i.e.,

LSPDV (x, λ) = −〈x− x?,∇f(x)−∇f(x?)〉 − ‖∇xL(x, λ)‖2 −
( 1

µ
− 1
)
‖−∇λL(x, λ)‖2,

where we have used the fact that 0 = ∇xL(x?, λ?) = ∇f(x?) + 1
µA
>h(x?) + A>λ? and

0 = ∇λL(x?, λ?) = h(x?). Now, since f ∈ C1,1(Rn,R), the gradient ∇f is locally Lipschitz
and thus, the extended Mean-Value Theorem, cf. Proposition 2.2, yields

∇f(x)−∇f(x?) ∈ co
{
∂(∇f([x, x?]))

}
(x− x?),

where [x, x?] = {x + θ(x? − x) | θ ∈ [0, 1]}. By Lemma A.1, there exists a symmetric and
positive definite matrix H(x) ∈ co

{
∂(∇f([x, x?]))

}
such that∇f(x)−∇f(x?) = H(x)(x−

x?). Hence, after some computations, one can obtain

LSPDV (x, λ) = −
〈
Q(x)(x− x?, λ− λ?), (x− x?, λ− λ?)

〉
,
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where the symmetric matrix Q(x) ∈ R(n+p)×(n+p) is given by

Q =

H +
(
H +

1

µ
A>A

)>(
H +

1

µ
A>A

)
+
( 1

µ
− 1
)
A>A H>A> +

1

µ
A>AA>

AH +
1

µ
AA>A AA>

 .

By assumption (A1), we have that AA> � 0. The Schur complement of AA> in Q(x),
denoted by Q(x)/AA>, reads

Q(x)/AA> = H(x) +H(x)>
(
In −A>(AA>)−1A

)
H(x) +

( 1

µ
− 1
)
A>A.

Since In − A>(AA>)−1A is a projection matrix, i.e., symmetric and idempotent, it fol-
lows that In − A>(AA>)−1A � 0. Moreover, since H(x) � 0 (cf. Lemma A.1) and
µ ∈ (0, 1), we conclude that Q(x)/AA> is positive definite, and so is Q(x). Thus, we
have LSPDV (x, λ) ≤ −λmin(Q(x)) dist((x, λ), sp(L))2. More generally, since any γ-sublevel
set lev≤γ V is compact and positively invariant under (SPD), and co

{
∂(∇f([x, x?]))

}
� 0

for all x, x? ∈ Rn (cf. Lemma A.1), we conclude

LSPDV (x, λ) ≤ −η dist((x, λ), sp(L))2,

for all (x, λ) ∈ lev≤γ V , where

η = min
(x,λ)∈lev≤γ V

min
H(x)∈co{∂(∇f([x,x∗]))}

λmin(Q(x)) > 0.

Note that both minima are attained since lev≤γ V and co
{
∂(∇f([x, x?]))

}
are compact sets,

cf. Lemma A.2.

We now proceed to quadratically upper bound the function V . By convexity of f and
h, we obtain

V (x, λ) ≤ 〈x− x?,∇f(x)−∇f(x?)〉+
1

2µ
‖h(x)‖2 + 〈λ− λ?, h(x)〉

+
1

2
dist((x, λ), sp(L))2

=
1

2

〈
R(x)(x− x?, λ− λ?), (x− x?, λ− λ?)

〉
,

where the symmetric and positive definite matrix R(x) ∈ R(n+p)×(n+p) is given by

R(x) =

2H(x) +
1

µ
A>A+ In A>

A Ip

 .

Similar arguments as above yield

V (x, λ) ≤ 1

2
ϑ dist((x, λ), sp(L))2
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for all (x, λ) ∈ lev≤γ V , where

ϑ = max
(x,λ)∈lev≤γ V

max
H(x)∈co{∂(∇f([x,x∗]))}

λmax(R(x)) > 0.

Note again that both maxima are attained since lev≤γ V and co
{
∂(∇f([x, x?]))

}
are com-

pact sets, cf. Lemma A.2.

Since
d

dt
V (x(t), λ(t)) = LSPDV (x(t), λ(t)) for all t ∈ [0,+∞), we have

d

dt
V (x(t), λ(t)) ≤ −η dist((x(t), λ(t)), sp(L))2 ≤ −2η

ϑ
V (x(t), λ(t)),

for all t ∈ [0,+∞). Integration yields

V (x(t), λ(t)) ≤ V (x0, λ0) exp

(
−2η

ϑ
t

)
,

and therefore,

dist((x, λ), sp(L)) ≤

√
ϑ

λmin(P )
dist((x0, λ0), sp(L)) exp

(
−η
ϑ
t
)
,

for all t ∈ [0,+∞). Therefore, the singleton set sp(L) is exponentially stable and the con-
vergence rate of solutions of (SPD) is upper bounded by η/ϑ.

The exponential convergence rate in Theorem 3.5 depends not only on the initial con-
dition (x0, λ0) ∈ Rn × Rp, but also on the convexity and regularity assumptions on the
objective function. However, if f ∈ C2(Rn,R) is quadratic, then the convergence rate is
determined by λmin(Q)/λmax(R), independently of x ∈ Rn. We also note that the ex-
ponential convergence guarantee does not rule out the possibility of complex dynamical
behavior of the algorithm trajectories, possibly involving chaotic transients, depending on
the complexity of the optimization problems, and in particular, the network constraints,
see e.g. [19].

Remark 3.6 (Connection with discrete-time algorithms). Compared to discrete-time solvers
such as the augmented Lagrangian method (originally known as the method of multipli-
ers), the exponential convergence rate for the continuous-time dynamics here corresponds
to a linear convergence rate for its first-order Euler discretization. It is worth mentioning
that, exclusively for the case of equality-constrained problems, we obtain the exponential
rate under slightly weaker conditions than the ones usually stated in the literature for the
augmented Lagrangian method, namely Lipschitz continuity of ∇f and strong convexity
of f . •

Remark 3.7 (Performance analysis under inequality and equality constraints). Our per-
formance analysis here only considers convex optimization scenarios subject to equality
constraints. A natural question is whether this analysis can be extended to the general
case including both inequality and equality constraints. Clearly, the performance bound
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derived in Theorem 3.5 holds true whenever the inequality constraints are inactive. How-
ever, one faces various technical challenges in what concerns the analysis of the nonsmooth
Lyapunov function (5) whenever the `1-exact-penalty terms kick in. For example, given a
large value of the penalty parameter κ, it is challenging to quadratically upper bound the
function V . The performance characterization in the presence of inequality constrains re-
mains an open question. •

4 Convex Optimization via Saddle-Point-Like Dynamics

As we noted in Section 3, the condition identified in Lemma 3.1 for the penalty parameter κ
to be exact relies on knowledge of the dual solution set. In turn, exactness is required to
ensure that the saddle-point dynamics (SPD) converges to a solution of (P). Motivated by
these observations and building on our results above, in this section we propose discon-
tinuous saddle-point-like dynamics that do not rely on a priori knowledge of the penalty
parameter κ. We establish that these new dynamics are also correct, i.e., converge to a so-
lution of the optimization problem and discuss conditions under which the dynamics can
be implemented in a distributed fashion.

Let G = {x ∈ Rn | g(x) ≤ 0m} denote the inequality constraint set associated with the
convex program (P). Define the set-valued flow F : G× Rp ⇒ Rn,

F (x, λ) = −∇
( 1

2µ
‖h(x)‖2

)
−∇x〈λ, h(x)〉 − ∂f(x).

The choice is motivated by the fact that, for (x, λ) ∈ intG × Rp, we have −∂xL(x, λ) =
F (x, λ). Consider now the saddle-point-like dynamics defined over G× Rp,{

(ẋ, λ̇) ∈ (PTG(F ), ∂λL)(x, λ),

(x(0), λ(0)) = (x0, λ0) ∈ G× Rp,
(SPLD)

where the projection operator PTG is defined in (2). Since the mapping (x, λ) 7→ F (x, λ) is
locally bounded, upper semi-continuous and takes nonempty, convex and compact values,
Lemma 2.4 guarantees the existence of local solutions (x, λ) ∈ AC([0, t+), G×Rp) of (SPLD).

4.1 Convergence Analysis

Our strategy to show that the saddle-point-like dynamics (SPLD) also converge to the set
of saddle points is to establish that, in fact, its solutions are also solutions of the saddle-
point dynamics (SPD) if the penalty parameter κ is sufficiently large. We establish this
formally in the following result.

Proposition 4.1 (Relationship of solutions). Let (x, λ) : [0,+∞) → G × Rp be a solution
of (SPLD) starting from (x0, λ0) ∈ G×Rp. Then, there exists κ > 0 such that the solution is also
a solution of (SPD).
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Proof. Since (SPD) and (SPLD) are identical on intG× Rp, it suffices to focus our attention
on showing PTG(x)(F (x, λ)) ⊂ −∂xL(x, λ) for points (x, λ) ∈ bdG × Rp. Let the set of
unit outward normals to G at x ∈ bdG be defined by N ]

G(x) = NG(x) ∩ bdB(0, 1). Take
ξ ∈ F (x, λ) and suppose {ξ} ∩ TG(x) 6= ∅. In this case, it follows sup

n∈N]
G(x)
〈ξ, n〉 ≤ 0, and

by definition of PTG , we have PTG({ξ}) = ξ. Clearly,

PTG({ξ}) ∈ ξ − κ
∑

k∈K◦(x)

co{{0}, ∂gk(x)},

for any κ > 0, where K◦(x) = {k ∈ {1, . . . ,m} | gk(x) = 0}. Suppose now {ξ} ∩ TG(x) = ∅,
i.e., sup

n∈N]
G(x)
〈ξ, n〉 > 0. By Lemma A.3, there exists a unique n?(x, ξ) ∈ N ]

G(x) maximiz-

ing (12) such that PTG({ξ}) = ξ −max
{

0, 〈ξ, n?(x, ξ)〉
}
n?(x, ξ). Now, by re-scaling n?(x, ξ)

by some constant σ?(x, n?) > 0 minimizing

min
{
σ
∣∣∣ 1

σ
n?(x, ξ) ∈

∑
k∈K◦(x)

co{{0}, ∂gk(x)}
}
,

the choice κ ≥ σ?(x, n?) max
{

0, 〈ξ, n?(x, ξ)〉
}

guarantees that

PTG({ξ}) ∈ ξ − κ
∑

k∈K◦(x)

co{{0}, ∂gk(x)}.

Now, since ξ ∈ F (x, λ) is arbitrary, if κ ≥ maxξ∈F (x,λ) σ
?(x, n?) max

{
0, 〈ξ, n?(x, ξ)〉

}
, where

F (x, λ) is nonempty, convex and compact, we conclude that PTG(x)(F (x, λ)) ⊂ −∂xL(x, λ).
More generally, let V be defined as in Remark 3.3 for some primal-dual solution (x?, λ?)
of (P). Then, any choice

κ ≥ max
(x,λ)∈lev≤γ V ∩(G×Rp)

max
ξ∈F (x,λ)

σ?(x, n?) max{0, 〈ξ, n?(x, ξ)〉},

guarantees that any solution of (SPLD) starting in lev≤γ V ∩ (G × Rp) is also a solution
of (SPD), concluding the proof.

The arbitrariness of the choice of γ in Proposition 4.1 ensures that, given any solution
of (SPLD), there exists κ such that the solution is also a solution of (SPD). Note that, in
general, the set of solutions of (SPD) is richer than the set of solutions of (SPLD). Figure 1
illustrates the effect of an increasing penalty parameter κ on (SPD). The combination of
Theorem 3.2 and Proposition 4.1 leads immediately to the following result.

Corollary 4.2 (Asymptotic convergence). Any solution (x, λ) ∈ AC([0,+∞), G×Rp) of (SPLD)
starting from a point inG×Rp converges asymptotically to a point in the set S×Rp, where S ⊂ Rn
is the set of solutions of (P).

16



G

x

k

N

F

P

(a) κ �
max

ξ∈F (x,λ)
σ?(x, n?)max

{
0, 〈ξ, n?(x, ξ)〉

}
.

G

x

k

N

F

P

(b) κ ≥
max

ξ∈F (x,λ)
σ?(x, n?)max

{
0, 〈ξ, n?(x, ξ)〉

}
.

Figure 1: Illustration of the effect of an increasing penalty parameter κ > 0 on (SPD).
For a fixed (x, λ) ∈ bdG × Rp, the set −∂xL(x, λ) = F (x, λ) − κ

∑m
k=1 co{{0}, ∂gk(x)}

enlarges as the penalty parameter κ > 0 increases (a), until the exact-penalty value is
reached/exceeded (b) where the inclusion PTG(x)(F (x, λ)) ⊂ −∂xL(x, λ) holds.

4.2 Distributed Implementation

In this section, we discuss conditions under which the proposed dynamics can be imple-
mented in a distributed way over a multi-agent system. First, we note that the implemen-
tation of (SPD) requires the use of an exact penalty parameter κ, whose determination in
turn requires a dedicated distributed algorithm to ensure that agents collectively compute
a value that satisfies the condition of Lemma 3.1. By contrast, the fact that the saddle-
point-like dynamics (SPLD) do not incorporate any knowledge of the penalty parameter
κ makes them more easily amenable to distributed implementation. We next describe in
detail the requirements on the problem data that ensure that this is the case.

Consider a network of n ∈ N agents whose communication topology is represented
by an undirected and connected graph G = (V, E), where V = {1, . . . , n} is the vertex set
and E ⊂ V × V is the (symmetric) edge set. The objective of the agents is to cooperatively
solve the constraint minimization problem (P). We assume that the aggregate objective
function f is additively separable, i.e., f(x) =

∑n
i=1 fi(xi), where fi and xi ∈ R denote the

local objective function and state associated with agent i ∈ {1, . . . , n}, respectively. Addi-
tionally, we assume that the constraints of (P) are compatible with the network topology
described by G. Formally, we say the inequality constraints gk(x) ≤ 0, k ∈ {1, . . . ,m}, are
compatible with G if gk can be expressed as a function of some components of the network
state x = (x1, . . . , xn) ∈ Rn, which induce a complete subgraph of G. A similar defini-
tion can be stated for the equality constraints h`(x) = 0, ` ∈ {1, . . . , p}. We assume that
individual agents either have access to or enjoy enough computational capabilities to com-
pute closed-form expressions for the (generalized) gradients of functions they are involved
with.
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In this network scenario, if (x, λ) ∈ intG × Rp, then each agent i ∈ {1, . . . , n} imple-
ments its primal dynamics (SPLD), where PTG(x)(F (x, λ)) = F (x, λ), i.e.,

ẋi +
∑

{`:a`i 6=0}

a`i

(
1

µ

( ∑
{j:a`j 6=0}

a`jxj − b`
)

+ λ`

)
∈ −∂fi(xi),

and some dual dynamics (SPLD), i.e.,

λ̇` =
∑

{i:a`i 6=0}

a`ixi − b`,

where ` ∈ {1, . . . , p}, corresponding to the Lagrange multipliers for the constraints that the
agent is involved in (alternatively)

Hence, in order for agent i to be able to implement its corresponding primal dynamics,
it also needs access to certain dual components λ` for which a`i 6= 0. If (x, λ) ∈ bdG× Rp,
then each agent i ∈ {1, . . . , n} implements the locally projected dynamics (SPLD), i.e.,

ẋi ∈
⋃

ξi∈Fi(x,λ)

ξi −max

{
0,
∑

{j:n?j 6=0}

ξjn
?
j (x, ξ)

}
n?i (x, ξ),

and the dual dynamics (SPLD) described above. Hence, if the states of some agents are,
at some time instance, involved in the active inequality constraints, the respective agents
need to solve (12). We say that the saddle-point-like algorithm (SPLD) is distributed over
G = (V, E) when the following conditions are satisfied:

(C1) The network constraints h and g are compatible with the graph G;

(C2) Agent i knows its state xi ∈ R and its objective function fi;

(C3) Agent i has access to its neighbors’ states xj ∈ R, their objective functions fj , and

(i) the non-zero elements of every row of A ∈ Rp×n, and every b` ∈ R for which
a`i 6= 0, and

(ii) the active inequality constraints gk in which agent i and its neighbors are in-
volved.

(Note that, under these assumptions, it is also possible to have, for each Lagrange mul-
tiplier, only one agent implement the corresponding dual dynamics and then share the
computed value with its neighboring agents – which are the ones involved in the corre-
sponding equality constraint).

Note that the saddle-point-like algorithm (SPLD) can solve optimization scenarios where
the agents’ states belong to an arbitrary Euclidean space. In contrast to consensus-based
distributed algorithms where each agent maintains, communicates and updates an esti-
mate of the complete solution vector of the optimization problem, the saddle-point-like
algorithm (SPLD) only requires each agent to store and communicate its own component
of the solution vector. Thus, the algorithm scales well with respect to the number of agents
in the network. The following examples illustrate an application of the above results to
nonsmooth convex optimization scenarios over a network of agents.

18



Example 4.3 (Saddle-point-like dynamics for nonsmooth convex optimization). Consider
a network of n = 50 agents that seek to cooperatively solve the nonsmooth convex opti-
mization problem

minimize
x∈Rn

∑
i∈{1,...,n}

x4i /4 + |xi|

subject to Circn(0, 1, 1/2)x = 1n/5,

xi ≤ 1/2, i ∈ {1, . . . , n},

(10)

where xi ∈ R denotes the state associated with agent i ∈ {1, . . . , n}, and Circn(0, 1, 1/2) is
the tridiagonal circulant matrix [10] encoding the network topology in its sparsity struc-
ture. Although this specific example is academic, examples belonging to the same class of
optimization problems arise in a variety of networked scenarios, see e.g. [53]. The gener-
alized gradient of fi at xi ∈ R is

∂fi(xi) =


{x3i + 1}, if xi > 0,

[−1, 1], if xi = 0,

{x3i − 1}, if xi < 0.

Figure 2 illustrates the asymptotic convergence of solutions of the saddle-point-like dy-
namics (SPLD) to the set sp(L) = {x?} ×M , where

M = {λ? ∈ Rp | λ? ∈ −(Circn(0, 1, 1/2) Circn(0, 1, 1/2)>)−1 Circn(0, 1, 1/2)∂f(x?)}.

Following up on our observations in Remark 3.7, it is interesting to observe that, even
though the inequality constraints become active during the evolution, cf. Figure 2(a), the
convergence is exponential, cf. Figure 2(c). •

(a) Network state evolution (b) Multiplier evolution

0 5 10 15 20 25

-4

-3

-2

-1

0

1

2

(c) Convergence

Figure 2: (a) The network state evolution of algorithm (SPLD) solving the nonsmooth con-
vex program (10). The projection operator prevents the solutions of (SPLD) from violating
the inequality constraints (depicted with a dashed line) of (10). (b) The Lagrange multi-
plier evolution associated with the equality constraints of (10). The initial conditions are
randomly chosen from the interval [−3/2, 1/2]. (c) Since the aggregate objective function
of (10) is strictly convex, the solutions of (SPLD) converge asymptotically to the set sp(L).
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Example 4.4 (Saddle-point dynamics for equality constrained optimization). Consider a
network of n = 50 agents whose objective is to cooperatively the convex optimization
problem

minimize
x∈Rn

∑
i∈{1,...,n}

fi(xi)

subject to Ax = 1n,

(11)

where fi ∈ C1,1(R,R) defined by

fi(xi) =

{
x2i , if xi ≥ 0,

x2i /2, if xi < 0,

is the objective function associated with agent i ∈ {1, . . . , n}. We consider two cases
for the matrix A (whose sparsity structure encodes the network topology): in the first
case, Tridn(1/2, 1,−1/10) is the tridiagonal Toeplitz matrix [10] of dimension n × n; in
the second case, we modify the tridiagonal Toeplitz matrix, setting to 1/10 its entries at
positions (11, 19), (21, 28), (31, 39), (2, 40) and (5, 49). This addition has the effect of signif-
icantly increasing the connectivity of the network topology (effectively reducing the graph
diameter from 49 in the first case to 23 in the second). The gradient of fi at xi ∈ R is
∇fi(xi) = max{xi, 2xi}, and the generalized Hessian of fi at xi ∈ R is

∂(∇fi)(xi) =


{2}, if xi > 0,

[1, 2], if xi = 0,

{1}, if xi < 0.

Figures 3 and 4 illustrate the convergence and performance of solutions of the saddle-point
dynamics (SPD) to the singleton set sp(L) for the first and second selection of constraint
matrix, respectively. •

5 Conclusions

We have investigated the design of continuous-time solvers for a class of nonsmooth con-
vex optimization problems. Our starting point was an equivalent reformulation of this
problem in terms of finding the saddle points of an augmented Lagrangian function. This
reformulation has naturally led us to study the associated saddle-point dynamics, for
which we established convergence to the set of solutions of the nonsmooth convex pro-
gram. The novelty of our analysis relies on the identification of a global Lyapunov function
for the saddle-point dynamics. Based on these results, we have introduced a discontinu-
ous saddle-point-like algorithm that enjoys the same convergence properties and is fully
amenable to distributed implementation over a group of agents that seeks to collectively
solve the optimization problem. With respect to consensus-based approaches, the novelty
of our design is that it allows each individual agent to asymptotically find its component
of the solution by interacting with its neighbors, without the need to maintain, communi-
cates, or update a global estimate of the complete solution vector. We also established the
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Figure 3: (a) The network state evolution of algorithm (SPD) solving the convex pro-
gram (11) withA = Tridn(1/2, 1,−1/10). (b) The Lagrange multiplier evolution associated
with the equality constraints of (11). The initial conditions are randomly chosen in the in-
terval (0, 1]. (c) Since ∂(∇f) � 0 (in fact, the aggregate objective function of (11) is strongly
convex), the hypothesis of Theorem 3.5 is satisfied and thus, the solutions of (SPD) con-
verge to the singleton set sp(L) within the exponential performance bound (depicted by
the dashed line).

performance properties of the proposed coordination algorithms for convex optimization
scenarios subject to equality constraints. In particular, we explicitly characterized the expo-
nential convergence rate under mild convexity and regularity conditions on the objective
functions. Future work will characterize the rate of convergence for nonsmooth convex op-
timization problems subject to both inequality and equality constraints, study the robust-
ness properties of the proposed algorithms against disturbances and link failures, identify
suitable (possibly aperiodic) stepsizes that guarantee convergence of the discretization of
our dynamics, design opportunistic state-triggered implementations to efficiently use the
capabilities of the network agents, and explore the extension of our analysis and algorithm
design to optimization problems defined over infinite-dimensional state spaces.

Appendix

We gather in this appendix various intermediate results used in the derivation of the main
results of the paper.

Auxiliary Results for Performance Characterization

The following two results characterize properties of the generalized Hessian of C1,1 func-
tions. In each case, let f ∈ C1,1(Rn,R) and consider the set-valued map ∂(∇f) : Rn ⇒ Rn×n
as defined in Section 2.1. For x, y ∈ Rn, we let [x, y] = {x+ θ(y − x) | θ ∈ [0, 1]} and study
the set

∂(∇f([x, y])) =
⋃

z∈[x,y]

∂(∇f)(z).
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Figure 4: (a) The network state evolution of algorithm (SPD) solving the convex pro-
gram (11), where A is obtained by modifying various entries of Tridn(1/2, 1,−1/10). (b)
The Lagrange multiplier evolution associated with the equality constraints of (11). (c) The
solutions of (SPD) converge to the singleton set sp(L) within the exponential performance
bound (depicted by the dashed line).

Lemma A.1 (Positive definiteness). Let f ∈ C1,1(Rn,R) and suppose ∂(∇f) � 0. Then,
co
{
∂(∇f([x, y]))

}
� 0 for all x, y ∈ Rn.

Proof. Since ∂(∇f)(x) � 0 for all x ∈ Rn, it follows
⋃
z∈[x,y] ∂(∇f)(z) � 0. Moreover, since

the cone of symmetric positive definite matrices is convex itself, it contains all convex
combinations of elements in

⋃
z∈[x,y] ∂(∇f)(z), i.e., in particular co

{
∂(∇f([x, y]))

}
� 0,

concluding the proof.

Lemma A.2 (Compactness). Let f ∈ C1,1(Rn,R). Then, the set ∂(∇f([x, y])) and its convex
closure are both compact.

Proof. Boundedness of the set ∂(∇f([x, y])) follows from [50, Proposition 5.15]. To show
that ∂(∇f([x, y])) is closed, take ν ∈ cl ∂(∇f([x, y])). By definition, there exists {νn} ⊂
∂(∇f([x, y])) such that νn → ν. Since νn belongs to ∂(∇f([x, y])), let us denote νn ∈
∂(∇f)(zn), i.e., νn is a vector based at zn. Similarly, let z be the point at which the vec-
tor ν is based. Following the above arguments, we have zn → z. Since [x, y] is compact
and zn ∈ [x, y], we deduce z ∈ [x, y]. Assume, by contradiction, that ν /∈ ∂(∇f)(z). Then,
since ∂(∇f)(z) is closed, there exists ε > 0 such that {ν} ∩ ∂(∇f)(z) + B(0, ε) = ∅. Us-
ing upper semi-continuity, there exists N ∈ N such that if n ≥ N , then ∂(∇f)(zn) ⊂
∂(∇f)(z) + B(0, ε). This fact is in contradiction with νn → ν. Therefore, it follows ν ∈
∂(∇f)(z) ⊂ ∂(∇f([x, y])), and we conclude ∂(∇f([x, y])) is closed. Thus, ∂(∇f([x, y])) is
compact, and so is co

{
∂(∇f([x, y]))

}
, concluding the proof.

Auxiliary Results for Convergence Analysis of Saddle-Point-Like Dynamics

Here, we investigate the explicit computation of the projection operator PTG , which plays
a key role in the dynamics (SPLD). Recall that TG(x) and NG(x) denote the tangent and
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normal cone of G ⊂ Rn at x ∈ G, respectively. The following geometric interpretation of
PTG is well-known in the literature of locally projected dynamical systems [38, 45]:

(i) if (x, λ) ∈ intG× Rp, then PTG(x)(F (x, λ)) = F (x, λ);

(ii) if (x, λ) ∈ bdG× Rp, then

PTG(x)(F (x, λ)) =
⋃

ξ∈F (x,λ)

ξ −max
{

0, 〈ξ, n?(x, ξ)〉
}
n?(x, ξ),

where
n?(x, ξ) ∈ arg max

n∈N]
G(x)

〈ξ, n〉. (12)

Note that if {ξ}∩TG(x) 6= ∅ for some (x, λ) ∈ bdG×Rp and ξ ∈ F (x, λ), then sup
n∈N]

G(x)
〈ξ, n〉 ≤

0, and by definition of PTG , no projection needs to be performed. The following result es-
tablishes the existence and uniqueness of the maximizer n?(x, ξ) of (12) whenever {ξ} ∩
TG(x) = ∅.

Lemma A.3 (Computation of the projection operator). Let (x, λ) ∈ bdG×Rp. If there exists
ξ ∈ F (x, λ) such that sup

n∈N]
G(x)
〈ξ, n〉 > 0, then the maximizer n?(x, ξ) of (12) exists and is

unique.

Proof. Let (x, λ) ∈ bdG×Rp and suppose there exists ξ ∈ F (x, λ) such that sup
n∈N]

G(x)
〈ξ, n〉 >

0. By definition, the normal cone NG(x) of G at x ∈ bdG is closed and convex. Existence
of n?(x, ξ) follows from compactness of the set N ]

G(x). Now, let ñ?(x, ξ) and n̂?(x, ξ) be
two distinct maximizer of (12) such that 〈ξ, ñ?(x, ξ)〉 > 0 and 〈ξ, n̂?(x, ξ)〉 > 0. Convexity
implies (ñ?(x, ξ) + n̂?(x, ξ))/‖ñ?(x, ξ) + n̂?(x, ξ)‖ ∈ N ]

G(x). Therefore, it follows

〈ξ, ñ?(x, ξ) + n̂?(x, ξ)〉
‖ñ?(x, ξ) + n̂?(x, ξ)‖

=
2〈ξ, ñ?(x, ξ)〉

‖ñ?(x, ξ) + n̂?(x, ξ)‖
> 〈ξ, ñ?(x, ξ)〉,

which contradicts the fact that ñ?(x, ξ) maximizes (12).

We note that the computational complexity of solving (12) depends not only on the
problem dimensions n, p,m > 0, but also on the convexity and regularity assumptions of
the problem data, i.e., on f , h and g.
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