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Abstract 29 

The meroplanktonic larvae of many invertebrate and vertebrate species rely on physical 30 

transport to move them across the shelf to their adult habitats. One potential mechanism 31 

for cross-shore larval transport is Stokes drift in internal waves. Here we develop theory 32 

to quantify the Stokes velocities of neutrally buoyant and depth-keeping organisms in 33 

linear internal waves in shallow water. We apply the analyses to theoretical and measured 34 

internal wave fields, and compare results with a numerical model. Near the surface and 35 

bottom boundaries, both neutrally buoyant and depth-keeping organisms were transported 36 

in the direction of the wave’s phase propagation. However, neutrally buoyant organisms 37 

were transported in the opposite direction of the wave’s phase at mid depths, while depth-38 

keeping organisms had zero net transport there. Weakly depth-keeping organisms had 39 

Stokes drifts between the perfectly depth-keeping and neutrally buoyant organisms. For 40 

reasonable wave amplitudes and phase speeds, organisms would experience horizontal 41 

Stokes speeds of several centimeters per second – or a few kilometers per day in a 42 

constant wave field. With onshore-polarized internal waves, Stokes drift in internal 43 

waves presents a predictable mechanism for onshore transport of meroplanktonic larvae 44 

and other organisms near the surface, and offshore transport at mid depths.   45 

 46 

  47 
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Introduction 48 

Fluctuations of coastal invertebrate and vertebrate populations are often driven by the 49 

supply of larvae to the adult habitat (Gaines and Roughgarden 1985). Many 50 

commercially and ecologically important species have planktonic larval stages, and these 51 

larvae are moved across the shelf at the whim of horizontal currents. Physical transport 52 

may be a key process connecting offshore larval populations with near-coastal settlement 53 

locations, thereby influencing adult populations (e.g., Pineda 1999, Shanks 1983, 2009, 54 

Shanks et al. 2000, Shanks and Brink 2005). Investigation of the physical dynamics of 55 

cross-shore transport is therefore an essential element in understanding fluctuations of 56 

coastal populations with meroplanktonic larvae. 57 

 58 

Numerous studies have associated the cross-shelf transport of both phytoplankton (e.g., 59 

Omand et al. 2011) and meroplanktonic larvae (Shanks 1983, Shanks and Wright 1987, 60 

Pineda 1999, Shanks et al. 2014) with internal waves. Theoretical studies suggest that 61 

transport in internal waves would be enhanced with certain swimming behaviors such as 62 

depth-keeping or floating (Lamb 1997, Scotti and Pineda 2007). Moreover, such 63 

behaviors are predicted to lead to accumulation of surface plankton in internal wave 64 

troughs (Franks 1997, Lennert-Cody and Franks 1999, Jaffe et al. 2017).  65 

 66 

The idea of plankton being transported across the shelf by internal waves associated with 67 

the internal tide has a long history. Kamykowski (1974) was one of the first to model the 68 

transport of swimming plankton in an internal tide, showing that over a tidal cycle, 69 

organisms could be displaced by a kilometer or more. Shanks (1983) tracked Styrofoam 70 

cups weighted with sand as they were transported (or not) in surface slicks formed by 71 

internal waves associated with the internal tide. On some occasions the cups both 72 

accumulated in the slicks, and were transported onshore 1-2 km. Coincident sampling 73 

showed meroplanktonic larvae to have higher concentrations in the slicks than outside the 74 

slicks, suggesting that the internal waves served as a concentrating and transport 75 

mechanism for the larvae.  76 

 77 
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Pineda (1999) used a combination of moorings and small-boat sampling in La Jolla Cove, 78 

California, to show that several types of meroplanktonic larvae were concentrated in the 79 

nonlinear waves associated with the internal tide; interestingly, other meroplanktonic 80 

larvae were not concentrated. The data collected supported the inference that the 81 

meroplanktonic larvae – particularly those swimming upward – were transported onshore 82 

in the nonlinear waves, providing a temporally discrete (internal tide period) mechanism 83 

driving local pulses of recruitment. More recently Shanks et al. (2014) concluded from 84 

correlation analyses that barnacle larvae at Carmel River State Beach, CA, were 85 

transported onshore by internal tides. 86 

 87 

Lamb (1997) was one of the first to calculate theoretical transport distances of surface-88 

trapped plankton in solitary nonlinear waves. He showed that displacement varied 89 

nonlinearly with the wave’s maximum horizontal velocity; net displacements of a few 90 

hundred meters were expected for wave phase speeds of ~0.25 m s-1, while maximum 91 

displacements >3 km were predicted for phase speeds >0.5 m s-1. Scotti and Pineda 92 

(2007) showed that organisms with stronger depth-keeping abilities could travel greater 93 

distances in nonlinear fronts than weaker depth-keeping organisms. 94 

 95 

Curiously, in spite of the considerable body of work exploring planktonic transport in 96 

linear and nonlinear internal waves, little attention has been paid to investigating 97 

transport of plankton by the Stokes velocity driven by the linear internal wave field. 98 

Stokes velocity is the velocity following a fluid parcel as it moves with the wave-induced 99 

velocities, averaged over a wave period. It arises from the difference between the average 100 

Lagrangian velocity of the parcel, and the average Eulerian velocity at a fixed location 101 

(summarized nicely in Craik 2005). Stokes drift has been well described for surface 102 

waves, in which a fluid parcel moves in the direction of the wave’s phase propagation, 103 

with its horizontal displacement depending on depth below the free surface. Previous 104 

work has explored the Stokes velocities driven by linear internal waves over a sloping 105 

bottom (Wunsch, 1971), and in lakes (Henderson, 2016). These papers support our results 106 

(below) that for a linear internal wave in a stratified fluid, the magnitude, and in 107 

particular the direction of the Stokes velocity, depend on the stratification. In the present 108 
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analysis we show in addition that the Stokes velocity experienced by an organism 109 

depends on the organism’s behavior.  110 

 111 

Near a boundary, any onshore Stokes flow must be balanced by an offshore Eulerian 112 

mean flow or vertical mixing, in order to satisfy continuity (e.g., Wunsch, 1971; Ou and 113 

Maas, 1986). Where the Eulerian mean flow cancels the Stokes drift, passive organisms 114 

would not experience any net horizontal transport. Organisms that can move relative to 115 

the water, however, can escape this constraint, and experience net cross-shore 116 

displacements in periodic waves, as discussed below. However, with mixing, 117 

intermittency of the internal waves, and set-up time, the Eulerian mean flow may not 118 

exactly balance the Stokes drift at any given time and location. Thus, internal waves have 119 

the potential to persistently transport swimming plankton onshore, even though long-term 120 

average mass or momentum balances limit net water transport.  121 

 122 

Here we consider two extremes of organism behavior: neutrally buoyant and depth-123 

keeping. Neutrally buoyant organisms follow the water parcels perfectly, while depth-124 

keeping organisms maintain a particular depth (pressure) surface, swimming perfectly 125 

against any vertical currents. We will show below that weaker swimmers experience 126 

Stokes drifts somewhere between passive and depth-keeping organisms, depending on 127 

their maximum swimming speeds. We build on theory presented by Thorpe (1968) for 128 

passive particles in linear internal waves, and a subsequent derivation by Dewar (1980) 129 

who explored the Stokes drift of passive and depth-keeping floats, using the general 130 

equations of Henderson (2016) to derive solutions giving the Stokes velocity for neutrally 131 

buoyant and depth-keeping plankton in linear internal waves with varying stratification. 132 

We derive general expressions for the Stokes velocity, allowing the incorporation of 133 

arbitrary measured profiles of density and vertical velocity (for example, from upward-134 

looking Acoustic Doppler Current Profilers (ADCPs) or time-series of fluctuations of the 135 

depths of isopycnals). We test our analytical solutions using the MITgcm numerical 136 

model configured to simulate a 2-D (depth, cross-shore distance) section containing 137 

organisms with swimming abilities ranging from fully passive (neutrally buoyant) to 138 

perfectly depth-keeping, being moved by linear internal waves. We show that for 139 
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reasonable wave amplitudes and phase speeds, the cross-shore Stokes velocity is a few 140 

centimeters per second – or a few kilometers per day in a constant wave field. However, 141 

it is the depth-dependence of the direction of the Stokes velocity that is particularly 142 

intriguing, and its dependence on stratification and organism behavior. 143 

 144 

Internal wave stream function 145 

We describe the water motions in continuously stratified, mode-1 linear internal waves 146 

using a stream function y(x,z,t) (e.g., Thorpe 1968, Lennert-Cody and Franks 1999): 147 

 148 

.      (1) 149 

 150 

Here Amax is the maximum vertical displacement of a water parcel from its equilibrium 151 

depth as the wave passes by (i.e., the wave’s maximum amplitude), having dimensions of 152 

length. The vertical dependence of the wave’s vertical velocity is given by the structure 153 

function Sw(z) which is dimensionless, and varies between 0 at the upper and lower 154 

boundaries and 1 at the depth of maximum vertical displacement for a mode-1 wave. The 155 

wave has frequency w and horizontal wavenumber k, and is periodic in the horizontal 156 

direction. The wave’s phase speed is c= w/k. Contours of this stream function (1) in 157 

(x,z,t) give the paths of water parcels – and neutrally buoyant organisms – as the wave 158 

propagates.  159 

 160 

The wave’s horizontal (u(x,z,t)) and vertical (w(x,z,t)) velocities can be found from the 161 

stream function (1) as: 162 

 
163 

.      (2) 
164 

 
165 

Stokes Velocities: General Solutions 166 

Here we calculate general analytical solutions for the Stokes velocities of neutrally 167 

buoyant and depth-keeping organisms in linear internal waves. As we show below, these 168 

ψ(x, z, t) = Amax
ω
k
Sw (z)cos(kx −ωt)

u(x, z, t) = ∂ψ
dz
, w(x, z, t) = −∂ψ

∂x
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cases represent two extremes of organism behavior. Neutrally buoyant organisms would 169 

be wafted around by the ambient currents, not moving relative to the fluid around them. 170 

Depth-keeping organisms exactly balance the wave’s vertical motions to maintain a 171 

particular depth in the water column. Though this latter case may not be realistic (c.f. 172 

Lennert-Cody and Franks 2002), the conditions for most organisms will lie somewhere 173 

between these two cases, as we show below. 174 

 175 

Neutrally buoyant organisms are assumed to follow the trajectories of water parcels, both 176 

vertically and horizontally. To find the general form of the Stokes velocity for neutrally 177 

buoyant organisms in the internal wave (Eq. 1) we follow Thorpe (1968) and others in 178 

defining x = x0 + x1 and z = z0 + z1, where (x0, z0) is assumed to be independent of t, and 179 

(x1, z1) is small in magnitude. Noting that, in the absence of any non-wave-driven 180 

Eulerian mean flow, and taking only leading-order wave fluctuations, 181 

 182 

        (3) 

183 

 184 

the Stokes velocity is given by (e.g., Henderson, 2016) 185 

 186 

!"#$ = 〈'( )*)+〉 + 〈.(
)*
)/〉,        (4) 187 

 188 

where the subscript “Snb” denotes “Stokes, neutrally buoyant”, and the angle brackets 189 

indicate an average over a wave period: 190 

 191 

 〈∙〉 = 1
23 ∫ 	∙ 67.

9:
;
<         (5) 192 

 193 

The first term on the right-hand side of (4) gives the horizontal movement of a neutrally 194 

buoyant organism driven by horizontal gradients of the horizontal velocity – the 195 

horizontal strain, ∂u/∂x. This horizontal strain generates regions of convergence and 196 

dx1
dt

= u = ∂ψ
∂z

dz1
dt

= w = −∂ψ
∂x
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divergence that propagate with the wave. The second term on the right-hand side of (4) 197 

gives the depth-dependency of the horizontal displacement of an organism. Here, the 198 

vertical shear of the horizontal velocity, ∂u/∂z, drives varying horizontal displacements 199 

with depth. For weakly nonlinear waves, we can evaluate (4) at leading order by noting 200 

 201 

 '( = ∫!67 202 

 .( = ∫=67         (6) 203 

 204 

and calculating u and w from (2) and (3). Substituting those into (4) and averaging over a 205 

wave period 2p/w we obtain 206 

 207 

 !"#$ = >?@A9

2
1
B CD

)"E(/)
)/ H

2
+ IJ )9"E(/)

)/9 K.     (7) 208 

 209 

This is the general formulation for the second-order horizontal Stokes velocity for a 210 

neutrally buoyant organism in a linear internal wave described by (2) (Thorpe, 1968). 211 

 212 

The horizontal Stokes velocity for a depth-keeping organism, uSd-k (where the subscript 213 

“Sd-k” denotes “Stokes, depth-keeping”) can be found from (4) by noting that a depth-214 

keeping organism will not experience any vertical displacement. Thus z1=0, and the 215 

second term on the right-hand side of (4) is zero. This gives 216 

 217 

 !"LMB = 〈'( )*)+〉        (8) 218 

 219 

and, with substitution of (2), (3), and (6), 220 

 221 

 !"LMB = >?@A9

2
1
B D

)"E(/)
)/ H

2
.       (9) 222 

 223 

This gives the second-order Stokes velocity of a depth-keeping organism in the internal 224 

wave described by (2).  225 
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 226 

Vertical Structure of the Internal Wave: Sw(z) 227 

We will consider three wave forms derived from different vertical density profiles: linear, 228 

pycnocline, and measured.  229 

 230 

Linear density profile 231 

For a mode-1 wave, a linear density profile gives the structure function (Thorpe 1968): 232 

 233 

         (10)
 234 

 235 

where H is the water depth (Fig. 1a-c). 236 

 237 

Pycnocline density profile 238 

We can produce an analytical density profile r(z) with a pycnocline using the hyperbolic 239 

tangent function: 240 

 241 

      (11)
 242 

 243 

where ro is a reference density, Dr is the density difference from the surface to the 244 

bottom, zpyc is the depth of the pycnocline, and zscale scales the vertical thickness of the 245 

pycnocline and thus the local density gradient. Using this density profile gives a structure 246 

function for the mode-1 internal wave (Thorpe 1968) (Fig. 1e-g) 247 

 248 

IJ(.) = NOPℎB/RS@TU D/M/VWS/RS@TU
H.       (12) 249 

  250 

Measured velocity profile 251 

Field measurements for Sw(z) were obtained offshore of the Scripps Pier in San Diego, 252 

CA. A Teledyne Sentinel V 5-beam acoustic Doppler current profiler (ADCP) was 253 

Sw (z) = sin
π z
H

ρ(z) = ρo 1+Δρ tanh
z− zpyc
zscale

#

$
%

&

'
(

)

*
+

,

-
.
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mounted on the bottom in ~18 m of water, recording velocities at 2 Hz over 21 d. 254 

Vertical profiles of temperature were obtained from RBRsolo temperature loggers placed 255 

with 1 m separation on a mooring, and sampling at 2 Hz. In this region, temperature is the 256 

dominant determinant of vertical density variations, with salinity playing a very minor 257 

role (e.g., Lucas et al., 2011). 258 

 259 

Between the near-surface and 2 m above the bottom, 26 0.6-m-thick depth bins were used 260 

to evaluate the vertical structure of the vertical velocity over 12.42 hour time periods (one 261 

M2 tidal period). Three tidal periods with differing vertical stratification were chosen for 262 

analysis. The vertical velocities, measured by the vertical-looking fifth beam of the 263 

ADCP, were averaged over 30 s intervals and decomposed using empirical orthogonal 264 

functions (EOFs). The first EOF of vertical velocity typically represents the vertical 265 

velocity structure of the mode-1 waves, particularly when the barotropic signal is weak. 266 

The mode-1 vertical velocity (the first EOF) explained 30-57% of the variance in the 267 

measured vertical velocity. For our analyses, we chose time periods when the first EOFs 268 

represented the structure of mode-1 waves. This EOF was scaled to have values between 269 

0 and 1, and was used as the estimate of the vertical structure function Sw(z) for the 270 

measured wave field. 271 

 272 

In order to estimate Sw(z), the values of the first EOF of vertical velocity were fit with a 273 

5th order polynomial, and interpolated and extrapolated to depths from the shallowest bin 274 

resolved (1.75 m) to the bottom (18 m) with 0.25 m resolution using the boundary 275 

condition Sw(z) = 0 at z = 0 m and z = 16.25 m. The polynomial was then differentiated to 276 

obtain dSw(z)/dz and d2Sw(z)/dz2 for calculating the Stokes velocities (7) and (9).  277 

 278 

Numerical Model 279 

To support the analytical analyses and field data, we configured the MITgcm to explore 280 

Stokes drift of particles with behaviors ranging from neutrally buoyant to depth-keeping 281 

in a linear internal wave field. The internal wave flow field was generated in a 2D model 282 

domain with a 50.5 m deep water column that covered 2 km in the horizontal direction. 283 

The grid resolution was 0.5 m in the vertical and 0.3 m in the horizontal. The left and 284 
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right domain boundaries were open, each with a sponge layer. A free-slip condition was 285 

imposed at the bottom boundary, and the surface was free. Note that the actual water 286 

depth is relatively unimportant in these models, as the depth-dependence of the Stokes 287 

velocities does not depend on the thickness of the water column, just the shape of Sw(z) 288 

(1, 7 and 9). 289 

 290 

Internal waves were generated within part of the domain by nudging density toward the 291 

linear solution for a rightward-propagating mode-1 wave with no rotation: 292 

 293 
L9"E(/)
L/9 + X9(/)M19

19 IJ(.) = 0
.     (13)  

294 

The region of internal wave generation spanned two wavelengths in width and covered 295 

the entire water column, immediately to the right of the left-hand sponge layer. To the 296 

right (onshore) of this region, waves propagated freely. In the model, the buoyancy 297 

frequency N(z) was set to be constant with depth (linear stratification), the non-298 

hydrostatic properties of the model were turned off, and the Coriolis parameter f was set 299 

to zero (no rotation). Motivated by the data (below), internal waves at a 25-minute 300 

forcing period (ω ≈ 4.2×10-3 rad/s) were generated in stratifications of N ≈ 8.7×10-3 rad/s, 301 

which corresponds to a temperature difference of ~2 °C over 50 m depth. Because of the 302 

linear stratification and small wave amplitude, the wave elevations that were generated 303 

were sinusoidal horizontally. The model was configured with a 1 s time step, and the 304 

flow field was saved every 20 s.  305 

 306 

Columns of depth-keeping and passive particles were seeded offline, every 0.5 meter in 307 

the vertical, eight wavelengths away from the wave generation region, and advected 308 

using linear interpolations of the flow field output. Horizontal displacements averaged 309 

over one wave period were used to calculate Stokes velocities; wave properties were 310 

extracted for comparison with the general solutions presented below. Particles with 311 

variable maximum swimming speeds, expressed as a fraction of the maximum wave 312 

vertical velocities, were included to further explore the effects of swimming behavior on 313 

Stokes drift. Swimming particles were coded to have the same target depth as the depth-314 
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keeping particles; they opposed displacing vertical currents exactly until the vertical 315 

currents exceeded their maximum swimming speed, at which point they swam at their 316 

maximum speed.  317 

 318 

Results and Discussion 319 

Using (7) and (9), and the theoretical (10, 12) or measured Sw(z) we can now calculate the 320 

horizontal Stokes velocities of neutrally buoyant and depth-keeping plankton in a variety 321 

of continuously stratified mode-1 linear internal waves (Table 1). The drift patterns of 322 

neutrally buoyant and depth-keeping organisms show some similarities, and some 323 

perhaps surprising differences (Fig. 1d, h). In general, the Stokes velocity for both types 324 

of organism is low in regions where the stratification is low, or more specifically, where 325 

the vertical gradient of Sw(z) is small. The Stokes velocity also tends to be similar for the 326 

two organism behaviors near the boundaries, where Sw(z) goes to zero. The presence of a 327 

boundary at the surface and the bottom ensures that there are no vertical internal-wave-328 

driven velocities there, and vertical swimming is inhibited by the boundary. Thus, by 329 

continuity, the horizontal Stokes velocities are often strongest in these regions, though 330 

this depends on the shape of Sw(z). 331 

 332 

Because deep-water linear internal waves can become nonlinear in shallow water, the 333 

waves simulated using the MITgcm needed to have small amplitudes to remain linear; the 334 

waves selected showed a maximum amplitude (isotherm displacement) of 0.6 m, a 335 

wavelength of 210 m, and a maximum vertical velocity of 2.7×10-3 m s-1. These values 336 

were used in conjunction with the structure of the waves’ vertical velocities Sw(z) (linear 337 

stratification, Fig.1b) to calculate analytical predictions of Stokes velocities. Agreement 338 

between model results and analytical predictions (7, 9) is nearly perfect (Fig. 2), with 339 

small differences near the boundary, likely due to the offline interpolation scheme and the 340 

approximations made to derive (7) and (9).  341 

 342 

The field data provide an example of realistic wave properties; they show that the 343 

measured maximum vertical velocities (the amplitudes of the first EOF at each time 344 

point) were normally distributed with a mean of -0.89 cm/s and a standard deviation of 345 
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4.54 cm/s over the course of the 21-day deployment. A power spectrum of the first EOF 346 

vertical velocities was calculated as the average of nine 1024-point (512 min) sections 347 

from nine separate 12.42 h data periods. The power spectrum had a pronounced high-348 

frequency internal wave peak with 20 to 30 min periods (Fig. 3). To calculate 349 

approximate Stokes velocities from the observations we assumed a wave with a 25 min 350 

period, a 200 m horizontal wavelength, and amplitude of 2 m (Fig. 4). The 2 m amplitude 351 

was chosen to ensure that the modeled waves were linear (i.e., Amax ≈ 10% of the water 352 

depth). 353 

 354 

The main difference between the Stokes velocities of neutrally buoyant and depth-355 

keeping organisms is that depth-keeping organisms always move in the direction of the 356 

wave’s phase propagation, whereas neutrally buoyant organisms can move either with the 357 

wave, or in the opposite direction of the wave, depending on the organism’s depth in 358 

relation to the structure of Sw(z). This is particularly apparent at mid-depths, where 359 

neutrally buoyant organisms will drift in the opposite direction of the internal wave, 360 

while depth-keeping organisms will oscillate around their mean position. Integrating (7) 361 

from the surface (z=0) to the bottom (z=H) with boundary conditions Sw(0) = Sw(H) = 0 362 

shows that the vertically integrated Stokes drift of neutrally buoyant organisms is zero. It 363 

is difficult to perform a similar integration of (9), though it is clear that there is a 364 

vertically integrated net flux of depth-keeping organisms in the direction of the wave’s 365 

phase. 366 

 367 

Neutrally buoyant organisms 368 

The general form for the Stokes velocity of neutrally buoyant organisms is given by (4), 369 

and for this stream function (1) by (7) (Table 1). Near the boundaries, neutrally buoyant 370 

organisms will drift in the direction of the wave’s phase propagation. At the depth of the 371 

maximum vertical velocity (usually the mean pycnocline depth), however, such 372 

organisms will travel in the opposite direction of the wave’s phase (Figs. 1d, h). This 373 

conclusion is consistent with other author’s analyses (e.g., Wunsch, 1971; Henderson, 374 

2016). Near the coast, internal waves tend to be refracted to propagate onshore-offshore, 375 

with offshore-directed waves originating mainly from reflected onshore waves that did 376 
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not lose their energy to mixing. Furthermore, even waves propagating obliquely to the 377 

coast will have a cross-shore component to the Stokes drift. Given this predominant 378 

onshore polarization of the internal wave field, the pycnocline presents a pathway for 379 

predictable offshore transport of neutrally buoyant organisms, while the near-surface and 380 

near-bottom layers are regions of predictable onshore transport (Fig. 1d, h). 381 

 382 

In the measured wave fields, the predicted Stokes velocity for neutrally buoyant 383 

organisms was strongly onshore (in the direction of the wave’s phase propagation) in the 384 

upper few meters (above the pycnocline), offshore between ~10-14 m above bottom, and 385 

very weakly onshore below (Fig. 4c, f, i), consistent with the vertical structure of the 386 

theoretical density distributions above (10 and 12) (Fig. 1d, h). Because of the vertical 387 

asymmetry of the observed vertical velocity structure function Sw(z), the Stokes velocities 388 

were much stronger in the surface waters (onshore), and at the pycnocline (offshore), 389 

than the rest of the water column below. 390 

 391 

Stokes velocities predicted from the data were a few cm/s through most of the water 392 

column, but reached up to 5 cm/s near the surface. These large surface values should be 393 

viewed with some skepticism, as the EOF of vertical velocity is not well defined in this 394 

region due to limitations of the ADCP. Though small, these horizontal drift speeds would 395 

result in cross-shore displacements of several kilometers per day.  396 

 397 

Depth-keeping organisms 398 

The Stokes velocity of depth-keeping organisms is given by (9) (Table 1). The 399 

fundamental difference between the drifts of depth-keeping and neutrally buoyant 400 

organisms is that depth-keeping organisms always drift in the direction of the wave 401 

propagation throughout the water column. The Stokes velocity of depth-keeping 402 

organisms is zero at the depth of the maximum vertical velocity (where dSw(z)/dz = 0), 403 

with peak drift speeds displaced above and below the vertical velocity maximum (Figs. 404 

1d, h and 4c, f, i). At these mid depths, where neutrally buoyant organisms have a 405 

maximum offshore Stokes velocity, the depth-keeping behavior counteracts the offshore 406 

Stokes drift, keeping the organisms relatively stationary (horizontally and vertically) over 407 
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a wave period. At the surface and bottom boundaries the Stokes velocities for neutrally 408 

buoyant and depth-keeping organisms are the same: in this region the internal-wave 409 

vertical velocities are small compared to the horizontal velocities that drive the Stokes 410 

drift, making it a more one-dimensional (horizontal) system in which organisms always 411 

drift in the direction of the wave’s phase propagation.  412 

 413 

The inferred Stokes velocities for depth-keeping organisms in the measured velocity field 414 

(Fig. 4c, f, i) were strongly in the direction of the wave’s phase in the upper few meters, 415 

and weak through the rest of the water column. The predicted strong near-surface drift 416 

speeds (up to 5 cm/s) were partly a consequence of the limited spatial sampling range of 417 

the ADCP, which presents problems in measuring velocities near the surface and bottom 418 

boundaries. However, these strong surface drift speeds are also a consequence of the 419 

steep gradients of Sw(z) in the upper water column relative to the deeper water column. 420 

This asymmetry is not obviously related to the stratification, and seemed to persist in 421 

both weakly and strongly stratified conditions (Fig. 4). No matter the source of the 422 

asymmetry, the consequence was that organisms within 3-5 m of the surface – regardless 423 

of their swimming behavior – would experience much stronger Stokes drift speeds in the 424 

direction of wave propagation than organisms in the rest of the water column. 425 

 426 

Dependence on wave properties 427 

The theoretical calculations predict that, for a given frequency and amplitude, a stronger 428 

pycnocline can support larger vertical velocities of an internal wave, and these increased 429 

vertical velocities will generate stronger Stokes velocities. Stokes velocities are directly 430 

proportional to the wave’s phase speed w/k, and increase as the square of the wave 431 

amplitude for both depth-keeping and neutrally buoyant organisms (7) and (9). 432 

 433 

The dependence of the Stokes velocity on the density structure of the water column is not 434 

obvious from equations (7) and (9). It is clear that stronger vertical gradients of the 435 

vertical velocity (large dSw(z)/dz) will tend to generate stronger speeds for depth-keeping 436 

organisms. However, the Stokes velocity for neutrally buoyant organisms depends 437 

additionally on the local curvature of Sw(z).  438 
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 439 

Weakly depth-keeping organisms 440 

That neutral buoyancy and depth-keeping are two ends of a continuum of swimming 441 

strategies is well demonstrated by the numerical model results (Fig. 5). Here, weakly 442 

depth-keeping organisms were programmed to counteract the vertical velocities until the 443 

wave-driven vertical velocities were stronger than the organism’s maximum swimming 444 

speed. At this point the Stokes velocities of the organisms tend toward those of neutrally 445 

buoyant organisms. The lower the organism’s maximum vertical swimming speed, the 446 

more closely its Stokes velocity profile resembled that of a neutrally buoyant organism 447 

(Fig. 5). This is most noticeable in the mid water column where the wave’s vertical 448 

velocities are highest.  449 

 450 

Swimming strategies for transport 451 

As demonstrated above, neutrally buoyant and depth keeping represent end-members of a 452 

spectrum of a plankter’s ability to swim against ambient vertical velocities (Fig. 5). The 453 

local magnitude of Sw(z) is proportional to the local standard deviation of the vertical 454 

velocity: a wave’s vertical velocities are maximum at mid depths, and decay to zero at the 455 

boundaries (Fig. 1b, f). This implies that depth-keeping plankton require increasingly 456 

greater swimming abilities as they approach mid depths to be able to oppose the wave 457 

velocities and maintain depth.  458 

 459 

At the surface and bottom boundaries, vertical currents are negligible, and by continuity 460 

the horizontal currents the strongest. Here the neutrally buoyant, weakly depth-keeping, 461 

and fully depth-keeping organisms’ Stokes velocities all converge: they are maximal, and 462 

aligned with the phase propagation of the wave, driving a predictable transport of 463 

organisms. Near the coast, the onshore-offshore polarization of internal waves would 464 

give a tendency for onshore Stokes velocities near the surface, in the direction of the 465 

wave propagation. Because of the weak vertical wave velocities near the surface, even 466 

weak swimmers such as dinoflagellates or ciliates would be able to exploit this wave-467 

driven onshore transport (although see Eulerian mean flows below). Meroplanktonic 468 

larvae with large amounts of lipids, such as asteroids, holothurians, and anthozoans, or 469 
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some nectochaete polychaete larvae with large oil droplets (Chia et al. 1984) will tend to 470 

float. Trapped at the surface, floating organisms are effectively depth keepers, giving 471 

them a predictable mechanism to move them toward their nearshore adult habitat. 472 

Similarly, sinking organisms will tend to be moved onshore close to the bottom.  473 

 474 

In the middle of the water column it will take considerably more effort for an organism to 475 

counteract the internal-wave-driven vertical velocities, which can reach a few centimeters 476 

per second. Neutrally buoyant meroplanktonic larvae will tend to be transported offshore 477 

in onshore-propagating internal waves, giving a predictable pathway for offshore 478 

dispersion of weak-swimming meroplanktonic larvae. Stronger swimmers that can depth-479 

keep against the internal wave vertical velocities will tend to have little horizontal 480 

displacement near the pycnocline. Such a strategy does not seem to have much practical 481 

benefit, however, given the more predictable cross-shore transports of passive organisms 482 

near the pycnocline (offshore) or surface (onshore). 483 

 484 

Eulerian mean flows 485 

In theory, if there is a steady Stokes flow of water toward a boundary, at equilibrium an 486 

Eulerian mean return flow should set up that would exactly oppose the Stokes flow (e.g., 487 

Wunsch 1971). Without mixing, water parcels would flow back along the same 488 

isopycnals; thus, at equilibrium, water parcels or passive organisms would experience no 489 

net transport. In an open channel, the Coriolis effect can produce similar results. This 490 

setup of an Eulerian mean flow was recently observed in situ where internal waves 491 

intersected the slope of a narrow lake (Henderson 2016).  492 

 493 

In this non-mixing context, the net transport experienced by any organism that can move 494 

with respect to water parcels will be given by the sum of the Stokes drift they experience, 495 

and the displacement associated with the Eulerian mean flow at their depths. 496 

Interestingly, therefore, in the parts of the water column where passive and depth-keeping 497 

organisms experience similar Stokes drift (i.e., near the boundaries), the Eulerian mean 498 

flow will cancel both the passive and depth-keepers’ Stokes drift. However, in mid water 499 

column, depth-keeping organisms experience no Stokes drift. This means that – in this 500 
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equilibrium, non-mixing situation – the total transport of mid-depth depth keepers will be 501 

exclusively due to the Eulerian mean flow: it will be maximum at this depth, and in the 502 

opposite direction to that predicted by the Stokes drift of passive organisms. Thus, on 503 

average in this equilibrium situation, depth-keeping organisms at mid-depths in the water 504 

column with onshore-propagating waves would be moved toward shore. 505 

 506 

However, it remains unclear whether this theoretical equilibrium situation would occur in 507 

a realistic, time-dependent, mixing, topographically constrained ocean. For instance, 508 

internal waves may dissipate before reaching the seabed, while mixing may prevent 509 

isopycnals from intersecting the slope and/or allow for a return flow that is not along the 510 

original isopycnals. Both these situations would weaken or eliminate the balance between 511 

the local Stokes drift and the Eulerian mean flow. Furthermore, the Eulerian mean flow 512 

sets up at equilibrium; internal waves, however, are often intermittent (e.g., associated 513 

with the internal tide), with changing background stratification and flow conditions 514 

leading to a variable internal-wave climate (Nash et al. 2012). These spatial and temporal 515 

variations in the Stokes flow are not likely to be exactly balanced by the equilibrium 516 

Eulerian flow, allowing organisms to be transported with the Stokes flow generated by 517 

internal waves.  518 

 519 

Given the potential for an Eulerian mean flow opposing the internal-wave-driven Stokes 520 

drift, the Stokes drift predictions presented in this study should be considered in the 521 

larger context of the local mean flows. For instance, recent observations showed that a 522 

swarm of underwater, depth-keeping larval mimics experienced net onshore transport 523 

during the passage of an internal wave interacting with a mean flow (Garwood et al., 524 

unpubl.). In this context, it is worth noting that the numerical model used in the present 525 

study had no boundaries, so no Eulerian mean flow was set up. The set-up timescale 526 

would be expected to depend on achieving a geostrophic balance through Coriolis, thus 527 

about an inertial period. The question is whether the balancing Eulerian mean flow would 528 

set up within a time scale that would cancel the net transport of larvae: the organisms 529 

might reach their nearshore adult habitat before such an Eulerian mean flow affected 530 

them. The opposing dynamics of the Stokes drift and the opposing Eulerian mean flow 531 
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need to be more carefully considered in the context of a space- and time-dependent ocean 532 

wave field. 533 

 534 

Transport in nonlinear waves 535 

Using a 25-minute wave period, the displacements derived from in situ profiles of Sw 536 

(Fig. 4) ranged from -44-144 m for passive organisms, and 0-153 m for depth-keeping 537 

organisms over a single wave. The largest displacements were near the surface and 538 

bottom boundaries, and were in the direction of wave propagation. Passive organisms 12-539 

15 m above the bottom tended to be transported offshore over a wave period. These 540 

results are comparable to estimates of surface transport by nonlinear internal waves on 541 

the New Jersey’s shelf (Shroyer et al. 2010), where the first three waves of numerous 542 

wave packets were found to induce surface transports of a few hundred meters. Transport 543 

integrated vertically over the surface layer can be calculated by integrating velocities in 544 

depths shallower than the maximum value of Sw(z). Extrapolating Stokes velocities 545 

calculated from our shallowest ADCP bin to the surface, and vertically integrating 546 

velocities over the surface layer yielded transport estimates of 0.007-0.16 m2/s for passive 547 

organisms, and 0.03-0.23 m2/s for depth-keeping organisms over a wave period. These 548 

values are considerably lower than estimates of 5 m2/s during wave events and 0.2-0.5 549 

m2/s over the course of a day estimated by Inall et al. (2001), Shroyer et al. (2010), and 550 

Zhang et al. (2015). Although the wave amplitude to water depth ratios were similar in all 551 

studies, the surface layer in our study was much thinner: it extended down to 7 m, on 552 

average, in 18 m of water, compared to 20-50 m in 100-150 m of water for other studies. 553 

The maximum wave-induced velocities and wave propagation speeds associated with our 554 

data-based simulations were of order 0.1 m/s, while those measured for the large, 555 

nonlinear internal waves referenced above were approximately 5 times larger. The ratio 556 

of maximum wave-induced velocities and wave propagation speeds were thus similar. 557 

 558 

Comparing transport observed in internal waves on the Malin shelf with theoretical 559 

predictions, Inall et al. (2001) found the linear terms of a weakly nonlinear solution 560 

accounted for 70% of the observed transport, while nonlinear terms accounted for the 561 

remaining 30%. Though linear solutions generate conservative estimates of transport – 562 
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especially in shallow waters where internal waves steepen and become highly nonlinear – 563 

Inall et al.’s solutions suggest that linear waves can drive a significant fraction of the total 564 

transport. The linear approximations presented here, however, include organism behavior 565 

in response to the waves, and the fact that organisms travel with the wave; it is often the 566 

case that velocity measurements are integrated over time at a point (e.g., a mooring or 567 

ADCP), without propagating organisms with the flow field. Given that most waves in 568 

relatively shallow waters near the coast are nonlinear to some degree, both our linear 569 

estimates and Eulerian observations are likely to underestimate the actual transport 570 

experienced by organisms. One particularly large, highly nonlinear wave event captured 571 

on the New Jersey shelf was associated with onshore displacements of up to 2 km 572 

(Shroyer et al. 2010). Because larger waves have larger vertical velocities, stronger 573 

swimming abilities would be required to regulate an organism’s depth. In such large 574 

waves, depth-keeping may not be a very effective strategy relative to depth-keeping in 575 

linear or weakly nonlinear internal waves. 576 

 577 

 578 

Conclusions 579 

We have derived general equations for the Stokes velocities of neutrally buoyant (4, 7) 580 

and depth-keeping (8, 9) organisms in linear internal waves. The vertical structure of the 581 

Stokes velocity depends on the structure function of the vertical velocities, Sw(z), which 582 

can be measured in the field with an ADCP (a 5 beam ADCP being especially attractive 583 

for this purpose). Our analyses show that near the surface and bottom, both behaviors 584 

lead to Stokes transports in the direction of the phase propagation of the wave. At mid 585 

depths, however, where vertical velocities are maximal, neutrally buoyant organisms drift 586 

in the opposite direction of the wave’s phase, while depth-keeping organisms are 587 

stationary. Organisms that are weakly depth keeping will have transport speeds and 588 

directions between those of neutrally buoyant and perfectly depth-keeping organisms. 589 

The Stokes velocities increase with the wave’s phase speed and amplitude, generating 590 

speeds of a few centimeters per second or a few kilometers per day. Near the coast, where 591 

internal waves tend to be onshore-offshore polarized, internal-wave-driven Stokes drift 592 
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presents a predictable cross-shore transport pathway for meroplanktonic larvae to travel 593 

toward or away from coastal adult habitats. 594 
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Table 1. Stream functions and Stokes velocities for neutrally buoyant organisms, and depth-keeping organisms in linear internal waves 

of general form, with linear stratification, and waters with a pycnocline. 

 
Case Stream function y(x,z) Neutrally buoyant Stokes velocity uSnb Depth-keeping Stokes velocity uSd-k 
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Figure Captions 
 
Figure 1. Stokes velocity in linear internal waves. (a,e) Density profile, (b,f) structure of 
the vertical velocity Sw(z), (c,g) vertical displacement of evenly spaced tracer lines (wave 
is propagating to the right, as shown by the arrow), (d,h) vertical profile of the Stokes 
velocity of neutrally buoyant organisms (dashed line) and depth-keeping organisms (solid 
line). Negative values indicate velocity to the left, positive to the right (in the direction of 
wave propagation). (a-d) Linear stratification, (e-h) analytical pycnocline. 
 
Figure 2. Comparison of numerical and analytical Stokes velocities. Stokes velocities for 
neutrally buoyant (solid line from model, dashed from equations 7 and 10) and depth-
keeping (solid with circles from model, dotted from equations 9 and 10) organisms in the 
linear stratification of figure 1. Positive values show transport in the direction of the 
wave’s phase. Agreement is such that numerical and analytical results are almost 
completely superimposed.  
 
Figure 3. Power spectrum of the first EOF of vertical velocity. The high-frequency 
internal waves have periods of 20-30 minutes. Thin vertical line shows the 25-minute 
period used for the Stokes velocity calculations of figure 4. 
 
Figure 4. Stokes velocities calculated from in situ data. (a,d,g) Temperature profiles at the 
beginning, middle, and end of a 12.42 hour M2 tidal period. (b,e,h) First EOF of vertical 
velocities (Sw(z), circles), and the polynomial fit to the data (solid line). (c,f,i) Stokes 
velocities calculated from the EOFs for neutrally buoyant organisms (dashed lines, 
equation 7), and depth-keeping organisms (solid lines, equation 9). Positive velocities are 
in the direction of the phase propagation of the wave. 
 
Figure 5. Stokes velocities associated with a range of swimming abilities. Maximum 
swimming velocities for various particles are represented as a fraction of the maximum 
wave vertical velocity (wmax = 0.0027 m s-1). Stratification and wave properties are the 
same as for figure 2. Positive values show transport in the direction of the wave’s phase. 
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Figure 1. Stokes velocity in linear internal waves. (a,e) Density profile, (b,f) structure of the 

vertical velocity Sw(z), (c,g) vertical displacement of evenly spaced tracer lines (wave is 

propagating to the right, as shown by the arrow), (d,h) vertical profile of the Stokes velocity of 

neutrally buoyant organisms (dashed line) and depth-keeping organisms (solid line). Negative 

values indicate velocity to the left, positive to the right (in the direction of wave propagation). (a-d) 

Linear stratification, (e-h) analytical pycnocline.  

  



 28 

 

 
  
Figure 2. Comparison of numerical and analytical Stokes velocities. Stokes velocities for 

neutrally buoyant (solid line from model, dashed from equations 7 and 10) and depth-

keeping (solid with circles from model, dotted from equations 9 and 10) organisms in the 

linear stratification of figure 1. Positive values show transport in the direction of the 

wave’s phase. Agreement is such that numerical and analytical results are almost 

completely superimposed. 
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Figure 3. Power spectrum of the first EOF of vertical velocity. The high-frequency 

internal waves have periods of 20-30 minutes. Thin vertical line shows the 25-minute 

period used for the Stokes velocity calculations of figure 4. 
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Figure 4. Stokes velocities calculated from in situ data. (a,d,g) Temperature profiles at the 

beginning, middle, and end of a 12.42 hour M2 tidal period. (b,e,h) First EOF of vertical 

velocities (Sw(z), circles), and the polynomial fit to the data (solid line). (c,f,i) Stokes 

velocities calculated from the EOFs for neutrally buoyant organisms (dashed lines, 

equation 7), and depth-keeping organisms (solid lines, equation 9). Positive velocities are 

in the direction of the phase propagation of the wave. 
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Figure 5. Stokes velocities associated with a range of swimming abilities. Maximum 

swimming velocities for various particles are represented as a fraction of the maximum 

wave vertical velocity (wmax = 0.0027 m s-1). Stratification and wave properties are the 

same as for figure 2. Positive values show transport in the direction of the wave’s phase. 

 


