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Abstract— From mobile sensor networks to autonomous
transportation systems, multi-agent solutions have been pro-
posed to accomplish a variety of tasks. However, these systems
typically require satisfaction of multiple constraints, such as
safety or connectivity maintenance, while completing their
primary objectives. Barrier functions represent one method
to enforce such constraints via forward set invariance, and
this work extends recent results on Boolean composition of
nonsmooth barrier functions by explicitly addressing controlled
systems, resulting in nonsmooth control barrier functions. The
presented results permit a discontinuous controller, which is
particularly amenable to control synthesis, and this paper
develops an almost-active gradient for Boolean compositions of
nonsmooth control barrier functions, which, when included as
a constraint to a quadratic program, yields a valid controller.
To verify these theoretical findings, the experimental results
encode a series of constraints and synthesize a controller for a
leader-follow team of mobile robots in real time.

I. INTRODUCTION

Multi-agent systems have emerged as a method for ac-
complishing complex tasks, from mobile sensor networks to
coverage control [1], [2], [3], [4]. However, the usage of
these systems typically introduces a number of constraints
that must be respected, such as collision avoidance and
connectivity maintenance [5]. For example, consider a team
of leader and follower robots. The leaders must traverse an
obstacle-covered workspace to pre-specified goal positions,
and each follower must stay close to one of the leaders.
Additionally, all robots must avoid inter-agent collisions and
obstacle collisions. In fact, this example motivates the objec-
tive of this work: synthesize a controller that satisfies these
constraints in the context of a pre-specified objective. As
such, this work encompasses two main theoretical aspects:
constraints and control synthesis.

The above-mentioned constraints, among others, may be
encoded as forward-set-invariance requirements, and barrier
functions represent one method to enforce this property [6],
[7]. Barrier functions have been applied to a variety of
practical challenges, including avionics and remote-access
robotics testbeds [8], [9]. However, composing multiple set-
based constraints (e.g., connectivity and collision avoidance)
typically involves set intersections and unions, which gen-
erally result in nonsmooth functions. Accordingly, a single
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smooth barrier function may not effectively encode these
requirements.

Previous work on Nonsmooth Barrier Functions (NBFs)
has expanded this theory to include nonsmooth functions
[10]. Tools from nonsmooth analysis, as in [11], [12],
[13], enable a Boolean logic system for these NBFs via
max and min operators, which encapsulate set unions and
intersections, respectively. However, this previous work does
not explicitly consider controlled systems, which becomes
necessary for control synthesis.

A related body of prior work has shown that control
synthesis via Quadratic Programs (QPs) can be used to
minimally modify an existing controller such that a barrier
function remains valid [6], [14], [15], [16], [17], and such
methods have seen success on large-scale multi-robot sys-
tems but have yet to be extended to Boolean composition
of NBFs [8]. In particular, this technique involves taking
a derivative along trajectories, considering a sufficient rate
function, and generating an inequality constraint for a QP.
If this constraint is satisfied at all points, then the forward-
set-invariance property holds. However, the nonsmooth case
correspondingly requires a generalized derivative, which
results in a discontinuous constraint; as such, a discontinuous
control inputs may result from this process and must be
considered.

By combining and extending the previous work on
Boolean composition of NBFs and control synthesis via
QPs, this paper develops a constraint satisfaction and control
synthesis framework that can be deployed onto multi-robot
systems. As in [16], [8], [17], this framework can operate
in real time and can be combined with existing controllers.
For validation, the proposed framework solves the aforemen-
tioned leader-follower problem.

To enable the above-mentioned framework, this paper
provides the following theoretical results. Considering a class
of control-affine systems and allowing discontinuities in the
control input, this work formulates NBFs with respect to this
system, resulting in Nonsmooth Control Barrier Functions
(NCBFs), and extends the results on NBFs to NCBFs using
the techniques from [11], [13], [18], [10].

Next, we focus on providing a system of Boolean logic
with Boolean NCBFs (BNCBFs), which are Boolean com-
binations of NCBFs. This framework leverages the work in
[10] and extends it by explicitly considering discontinuous
control inputs. This formulation supports the main result
of this work: the development of an almost-active gradient
for BNCBFs that is suited for control synthesis via a QP.
The main result proves that this object, when used as a



constraint to a QP, provides a validating, though potentially
discontinuous, controller.

The paper is organized as follows. Sec. II introduces
the problem statement and offers some background material
for differential inclusions and nonsmooth analysis. Sec. III
develops NCBFs, notes some Boolean composability require-
ments, formulates the almost-active gradient, and constructs
a control synthesis algorithm via a QP, providing the main
results of this paper. Accordingly, Sec. IV shows the deploy-
ment of a Boolean NCBF onto a multi-robot system with
leader-follower constraints, and Sec. V concludes the paper.

II. PROBLEM STATEMENT AND BACKGROUND MATERIAL

This section presents the particular application that this
paper seeks to solve and discusses relevant background
material, including differential inclusions, nonsmooth anal-
ysis, NBFs, and analysis along trajectories for nonsmooth
functions.

A. Notation

For k > 0, the abbreviation [k] represents the set
{1, . . . , k}. The notation R≥0 corresponds to the set of non-
negative real numbers; a.e. means almost everywhere in the
sense of Lebesgue measure. The function 〈· , ·〉 symbolizes
the inner product of two vectors. The operation co represents
the convex hull of a set. A function α : R→ R is extended
class-K if α is continuous, strictly increasing, and α(0) = 0.
An extended class-K function is class-K when restricted to
R≥0. A function β : R≥0 ×R≥0 → R≥0 is class-KL if it is
class-K in its first argument and, for each fixed r, β(r, ·) is
continuous, strictly decreasing, and lims→∞ β(r, s) = 0.

B. Problem Statement

As a motivating example, consider a leader-follower team
of N robots with planar states xi ∈ R2, i ∈ [N ], where
the leaders must perform a task; but, at the same time, all
robots must satisfy a collection of constraints. For example,
the robots must not collide. Pairwise, the inequality

‖xi − xj‖ ≥ δcol

encodes this constraint, for some δcol > 0. Furthermore, the
function

hij(xi, xj , δcol) = ‖xi − xj‖2 − δ2col, i, j ∈ [N ],

captures this inequality (i.e., consider hij(xi, xj , δcol) ≥ 0).
The robots must also avoid collisions with a fixed number,

O, of obstacles, which can be captured by the function

hij(xi, oj , δobs), i ∈ [N ], j ∈ [O], (1)

where the fixed value oj ∈ R2 represents the known location
of the obstacle and δobs > 0 indicates the size of the obstacle.

The subset of leader robots, denoted by NL ⊂ [N ], must
travel to pre-specified goal points xi,g ∈ R2, i ∈ NL. The
rest of the robots, the followers, denoted by NF ⊂ [N ], must
remain close to one of the leaders. Pairwise, the inequality

‖xi − xj‖ ≤ δcon, i ∈ NL, j ∈ NF ,

represents this criterion. In terms of (1), the function

−hij(xi, xj , δcon)

encapsulates this connectivity constraints. This symbol rep-
resents a Boolean ¬ (NOT) operation.

Using these pairwise constraints and a system of Boolean
logic, the above barrier functions may be composed to
satisfy the system-wide constraints. In particular, the Boolean
compositions

hcol =

N−1∧
i=1

N∧
j=i+1

hij(·, ·, δcol), hobs =

N∧
i=1

∧
j∈O

hij(·, oj , δcol)

encapsulate all of the collision constraints, where the large
∧ symbol refers to Boolean ∧ (AND) and the large ∨
symbol refers to Boolean ∨ (OR). Similarly, the Boolean
composition

hcon =
∧
i∈NF

∨
j∈NL

¬hij(·, ·, δcon)

captures the followers’ connectivity constraint to the leaders,
and taking

h = hcol ∧ hobs ∧ hcon (2)

yields the all-encompassing constraint.
The resulting function begs the question: how does one

enforce the Boolean compositions encoded by (2)? As such,
the main contribution of this paper shows how to synthesize
an appropriate controller from (2) for a team of mobile robots
by considering it as an NCBF.

C. Differential Inclusions

In this work, the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0 (3)

becomes of interest, where D ⊂ Rn is an open, connected
set and F : D ⊂ Rn → 2R

n

is an upper semi-continuous,
nomempty, compact, convex set-valued map. These condi-
tions ensure that Carathéodory solutions to the differential
inclusion exist [19]. A set-valued map G : Y ⊂ Rn → 2R

n

is upper semi-continuous if for every y ∈ Y and every ε > 0
there exists a δ > 0 such that G(z) ⊂ G(y) + B(0, ε),
for every z ∈ B(y, δ); and a Carathéodory solution is an
absolutely continuous function x : [0, t1] → D ⊂ Rn
such that ẋ(t) ∈ F (x(t)) almost everywhere on the interval
[0, t1] 3 t and x(0) = x0. For a comprehensive survey of
set-valued maps and discontinuous differential equations, see
[19].

More specifically, we consider control-affine systems of
the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), (4)

where f : D ⊂ Rn → Rn, g : D ⊂ Rn × Rm → Rn are
continuous. The controller u : D ⊂ Rn → Rm is assumed to
be a feedback control; however, this treatment only requires
u to be measurable and locally bounded.



To create a system for which solutions exist, a discontin-
uous dynamical system, such as in (4), can be turned into a
differential inclusion via Filippov’s operator

ẋ(t) ∈ K[f + gu](x(t)) = coL[f + gu](x(t)) (5)
= co{ lim

i→∞
f(xi) + g(xi)u(xi) : xi → x(t), xi /∈ Sf , S},

where Sf is a particular zero-measure set that depends on
the system and S is any zero-measure set. The resulting set-
valued map, K[f + gu] : D ⊂ Rn → 2R

n

satisfies the
aforementioned sufficient conditions to permit existence of
solutions to (3) with F = K[f + gu].

D. Nonsmooth Analysis

This articles utilizes −, max, and min functions for
Boolean composition of barrier functions, as in [10]. These
operations generally introduce points of nondifferentiability.
Fortunately, nonsmooth analysis objects, such as the general-
ized gradient, have been developed to handle these functions.

Definition 1 ([11, Theorem 2.5.1]): Let f be Lipschitz near
x′, and suppose S is any set of Lebesgue measure zero in
Rn. Then, the generalized gradient of a function ∂f(x′) is

∂f(x′) = co{ lim
i→∞

∇f(xi) : xi → x′, xi /∈ S,Ωf},

where Ωf represents the zero-measure set where f is non-
differentiable. •

Combining the generalized gradient and a differential
inclusion into a set-valued inner product

〈∂h(x′) , F (x′)〉 = (6)
{a ∈ R : ∃v ∈ F (x′),∃z ∈ ∂h(x′) 〈v , z〉 = a}

becomes useful for analysis along Carathéodory solutions.
However, as the eventual goal in this work considers

robotic systems, the computational burden of calculating the
generalized gradient becomes relevant. Moreover, calculating
the set-valued inner product in (6) also becomes a concern.

Toward alleviating these computational issues, the work
in [11] develops an extensive calculus for min and max
functions, which enable the Boolean composition of NBFs.
In such cases, the generalized gradients of the components
functions (i.e., ∂fi) may be explicitly known, making ∂f(·)
straightforward to compute. Note that the following propo-
sition has been modified to fit the terminology of this work.

Proposition 1 ([11, Proposition 2.3.12]): Let {fi} be a finite
collection of functions (i = 1, 2, . . . , k) Lipschitz near x′.
Then, the function f defined by

f(x′) = max
i∈[k]
{fi(x′)}

is Lipschitz near x′ as well. Let I(x′) denote the set of
indices i for which fi(x′) = f(x′). Then,

∂f(x′) ⊂ co{∂fi(x′) : i ∈ I(x′)}.
•

E. Forward Invariance and Nonsmooth Barrier Functions
Barrier functions focus on guaranteeing forward invariance

of a set (i.e., all Carathéodory solutions that start in the set
stay in the set). In particular, given a continuous function
h : D ⊂ Rn → R, the so-called safe set is defined as

C = {x′ ∈ D : h(x′) ≥ 0}.
As such, a candidate NBF is defined as follows. Note

that the definition from [10] has been modified to fit the
terminology of this work

Definition 2 ([10, Definition 3]): A locally Lipschitz function
h : D ⊂ Rn → R, where D is an open, connected set, is a
candidate NBF (NCBF) if the set C is nonempty. •

The goal becomes to ensure forward invariance of C. This
articles considers a set C to be forward invariant with respect
to a differential inclusion (e.g., (3)) if every Carathéodory
solution starting in C remains in C. That is,

x0 ∈ C =⇒ x(t) ∈ C,∀t ∈ [0, t1].

Sometimes this property is referred to as strong forward
invariance, owing to the nonuniqueness of solutions to (3).
As such, a valid NBF is defined as follows.

Definition 3 ([10, Definition 4]): A candidate NBF h : D ⊂
Rn → R is a valid NBF for (3) if x0 ∈ C implies that there
exists a class-KL function β : R≥0×R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x0), t),∀t ∈ [0, t1],

for all Carathéodory solutions x : [0, t1]→ D ⊂ Rn starting
from x0. •

Note that, by definition of class-KL functions, h(x(t)) ≥
0, for all t ∈ [0, t1]. Thus, C is forward invariant. For NBFs,
the work in [10] shows the following result, which has been
modified to fit the notation of this paper.

Theorem 1 ([10, Theorem 3]): Let h : D ⊂ Rn → R be a
candidate NBF. If there exists a locally Lipschitz extended
class-K function α : R→ R such that

min〈∂h(x′) , F (x′)〉 ≥ −α(h(x′)),∀x′ ∈ D,

then h is a valid NBF for (3).

F. Calculating the Set-Valued Inner Product
Even though Prop. 1 simplifies the calculation of the

generalized gradient, validating NBFs still requires consid-
eration of the set-valued inner product in (6). However,
directly constructing the set in (6) may be computationally
prohibitive, as ∂h(x′) and F (x′) are convex, compact sets.
Previous work has addressed this issue, formulating results
that simplify the analysis and computation of this set-valued
inner product. The notation of the following theorem has
been modified to fit this paper.

Theorem 2 ([10, Theorem 4]): Let h : D ⊂ Rn → R be a
candidate NBF, and let Φ1,Φ2 : D ⊂ Rn → 2R

n

be set-
valued maps such that

∂h(x′) ⊂ co Φ1(x′), F (x′) ⊂ co Φ2(x′)



for all x′ ∈ D. If there exists a locally Lipschitz extended
class-K function α : R → R such that for every x′ ∈ D,
z ∈ Φ1(x′), and v ∈ Φ2(x′),

〈z , v〉 ≥ −α(h(x′)),

then h is a valid NBF for (3).

III. NONSMOOTH CONTROL BARRIER FUNCTIONS

This section contains the main results of this work: formu-
lating Nonsmooth Control Barrier Functions (NCBFs); pro-
viding a Boolean logic system for them, resulting in Boolean
NCBFs (BNCBFs); and addressing control synthesis. As
such, we identify composability requirements for BNCBFs,
which make them amenable to control synthesis via a QP.
Using these requirements, the almost-active gradient is for-
mulated. This object, when used as a constraint to a QP,
ensures that the resulting controller validates the BNCBF.

A. Boolean Nonsmooth Control Barrier Functions

This section defines NCBFs and BNCBFs. In particular,
the definition of NCBFs ensures validation via Thm. 1,
guaranteeing the desired forward invariance property.

Definition 4: A candidate NCBF h : D ⊂ Rn → R is a valid
NCBF for (5) if there exists a locally Lipschitz extended
class-K function α : R → R and a measurable, locally
bounded u : D ⊂ Rn → Rm such that

min〈∂h(x′) ,K[f + gu](x′)〉 ≥ −α(h(x′)), ∀x′ ∈ D.
•

We next provide a system of logic for NCBFs to create
BNCBFs and note some relevant regularity assumptions for
BNCBFs, toward control synthesis in Sec. III-B.

Definition 5: For a pair of candidate NCBFs, h1, h2 : D ⊂
Rn → R, a Boolean Nonsmooth Control Barrier Function
(BNCBF) is given by

h(x′) = min{h1(x′), h2(x′)} := h1 ∧ h2
h(x′) = max{h1(x′), h2(x′)} := h1 ∨ h2
h(x′) = −h1(x′) := ¬h1,

at each x′ ∈ D. •

In general, a BNCBF h : D ⊂ Rn → R can be comprised
of a finite number of component functions with the above-
noted Boolean operators. In this case, h is denoted

h = B(h1, . . . , hk),

where B represents a Boolean logic expression containing
the operators in Def. 5. An important class of BNCBFs are
those composed of smooth functions.

Definition 6: A candidate BNCBF h : D ⊂ Rn → R
defined by h = B(h1, . . . , hk) is smoothly composed if
each component candidate NCBF hi : D ⊂ Rn → R is
continuously differentiable. •

Def. 6 implies, from Prop. 1, that, at a point x′ ∈ D,
∂h(x′) ⊂ co{∇hi(x′) : i ∈ I ⊂ [k]}, for some appro-
priate index set I , where ∇ denotes the usual gradient.

This encapsulating set becomes particularly important when
synthesizing controllers with a QP in Sec. III-B.

B. Control Synthesis via Quadratic Programs

To enable control synthesis via a QP, this section defines
some useful objects. These tools capture the composability
requirements outlined in Sec. III and ensure that synthesized
controllers validate the requisite BNCBF.

To motive the following discussion, consider the following
argument. When validating NCBFs, the inequality

〈∂h(x′) ,K[f + gu](x′)〉 ≥ −α(h(x′)) (7)

must be satisfied for every x′ ∈ D. As such, the behavior of
the controller around the point x′ becomes crucial. Moreover,
(7) combines all possible directions between the dynamics
and the generalized gradient. As such, any active function
in ∂h(x′), where h is a BNCBF, must be included in a
neighborhood of x′. This criterion motivates the following
developments.

Definition 7: Given ε > 0 and two candidate NCBFs h1, h2 :
D ⊂ Rn → R, the almost-active set of functions for a
candidate BNCBF given by h = h1 ∧ h2 or h = h1 ∨ h2 is
defined at each x′ ∈ D as

Iε(x
′) = {i : |hi(x′)− h(x′)| ≤ ε}.

The almost-active gradient of a BNCBF, denoted by ∂εh :
D ⊂ Rn → 2R

n

, at a point x′ ∈ D is

∂εh(x′) = co
⋃

i∈Iε(x′)

∂hi(x
′).

•

The following results shows that QPs with an almost-
active-gradient constraint generate validating controllers for
smoothly composed BNCBFs. To do so, the behavior of the
almost-active gradient becomes relevant.

Lemma 1: Let h : D ⊂ Rn → R be a candidate BNCBF as
in Def. 7, and let ε > 0. At every x ∈ D, if hi(x) = h(x),
then there exists δ > 0 such that the almost-active set of
functions satisfies i ∈ Iε(x′), for all x′ ∈ B(x, δ).

Proof. Let x ∈ D, and let i be such that hi(x) = h(x). By
continuity of hi, h there exists δ > 0 such that

|hi(x′)− hi(x)| ≤ ε/2, |h(x′)− h(x)| ≤ ε/2,

for all x′ ∈ B(x, δ). Then,

|hi(x′)− h(x′)| = |hi(x′)− h(x′)− hi(x) + h(x)|
≤ |hi(x′)− hi(x)|+ |h(x)− h(x′)| ≤ ε.

Therefore, i ∈ Iε(x′), for all x′ ∈ B(x, δ).

Applying Lem. 1 on a smoothly composed BNCBF yields
the main result on controllers resulting from QPs with the
almost-active gradient as a constraint.

Theorem 3: Let h : D ⊂ Rn → R be a smoothly composed
candidate BNCBF, as in Def. 7. If there exists ε > 0 and a



Fig. 1. A group of 5 differential-drive robots in the Robotarium execute the experiment detailed in Sec. IV. In particular, all robots avoid inter-agent
collisions and obstacle collisions; each of the three follower robots maintain connectivity to one of the leader robots; and the leader robots successfully
achieve their pre-specified goal position. These results show that the synthesized controller satisfies the constraints and completes the pre-existing objective.

locally Lipschitz extended class-K function α : R→ R such
that the Quadratic Program (QP)

u∗(x′) ∈ arg min
u∈Rm

u>A(x′)u+ b(x′)>u

s.t. 〈∂εh(x′) , f(x′) + g(x′)u〉 ≥ −α(h(x′)),

with A : D ⊂ Rn → Rm×m, b : D ⊂ Rn → Rm continuous,
has a solution for every x′ ∈ D and u∗ is measurable and
locally bounded, then h is a valid NCBF for (5).

Proof. Let x′ ∈ D. Since h is smoothly composed,

∂h(x′) ⊂ co{∇hi(x′) : i ∈ I(x′)},

by Prop. 1. By Thm. 2, showing that

〈∇hi(x′) , L[f + gu]〉 ≥ −α(h(x′))

for each i ∈ I(x′) suffices to achieve the desired result. Take
i ∈ I(x′). By definition, h(x′) = hi(x

′), so applying Lem. 1
implies that there exists δ > 0 such that i ∈ Iε(z), for all
z ∈ B(x′, δ). As such, u∗ satisfies

〈∇hi(z) , f(z) + g(z)u∗(z)〉 ≥ −α(h(z)),

for all z ∈ B(x′, δ).
Let v ∈ L[f + gu]. Then, there exists a sequence xj →

x′ such that f(xj) + g(xj)u
∗(xj) → v. Moreover, the

existence of the limit implies that the same limit holds for
any subsequence. Since xj → x′, there exists a k such that
‖xj − x′‖ ≤ δ for all j ≥ k so, reusing notation, consider a
subsequence xj → x′ with j ≥ k.

Because ∇hi, α, and 〈· , ·〉 are continuous

〈∇hi(x′) , v〉+ α(h(x′)) =

〈 lim
j→∞

∇hi(xj) , lim
j→∞

(f(xj) + g(xj)u
∗(xj))〉+ lim

j→∞
α(h(xj))

= lim
j→∞
〈∇hi(xj) , f(xj) + g(xj)u

∗(xj)〉+ lim
j→∞

α(h(xj))

= lim
j→∞

(〈∇hi(xj) , f(xj) + g(xj)u
∗(xj)〉+ α(h(xj)))

= lim
j→∞

aj ,

where aj = 〈∇hi(xj) , f(xj)+g(xj)u
∗(xj)〉+α(h(xj)). By

assumption, aj ≥ 0 for all j, since ‖xj −x′‖ ≤ δ; therefore,

lim
j→∞

aj ≥ 0,

implying that

〈∇hi(x′) , v〉 ≥ −α(h(x′))

and completing the proof.

The experimental results in Sec. IV rely on a slightly gen-
eralized version of Thm. 3, which is not given in this work.
The exact proof of this result would involve a generalization
of the almost-active set of functions and Lem. 1 to BNCBFs
with nested component functions. However, Thm. 3 lays a
significant portion of the groundwork for such a result.

IV. EXPERIMENTAL RESULTS

This experiment solves the problem posed in Sec. II-B,
utilizing the same notation. Consider N = 5 robots with
planar states and dynamics

ẋi = ui.

This experiment also references the ensemble state x ∈ R2N

with input u ∈ R2N . Moreover, NL = {1, 2} and NF =
{3, 4, 5}.

Robots 1 and 2 travel from a specified initial condition to
a pre-specified goal point xi,g ∈ R2 with the controller

ui,nom(xi) = xi,g − xi,

for i ∈ NL. Meanwhile, robots 3, 4, and 5 must remain
close to either the first or the second robot. While traveling,
all robots must avoid collisions with each other and a pair
of obstacles with known location. The BNCBF in Sec. II-B
(i.e., h) captures these constraints.

This experiment solves the QP indicated in Thm. 3.
Since h is smoothly composed, calculating the almost-active
gradient involves only the gradient of hi,j , which is

∇xihi,j(xi, xj , ·) = 2(xi − xj) = −∇xjhi,j(xi, xj , ·). (8)

As required, these gradients are continuous, and the requisite
QP, in the format of Thm. 3, is

u∗(x) ∈ arg min
u∈R2N

u>u− 2u>nom(x)u

s.t. 〈∂εh(x) , u〉 ≥ −γh(x)3,

where γ > 0 and h(x) → h(x)3 is the selected extended
class-K function. In this case, ∂εh(x) can be calculated
by considering the active expressions and substituting an



Fig. 2. Numerical results from the team of mobile robots. The left image displays the value of the BNCBF over the course of the experiment. Because
the value is always positive, all constraints are satisfied. The middle and right images display the synthesized linear and angular velocities of the mobile
robots. Though discontinuous, these control inputs ensure that the constraints are met and the objective is completed.

appropriate gradient in (8). Note that the above QP mini-
mizes the objective function ‖u− unom‖2, ensuring that u∗

respects the leaders’ primary objective. The parameters for
this experiment were chosen as

δcon = 0.35, δobs = 0.1, δcol = 0.08, γ = 1000, ε = 0.007.

For deployment, this experiment utilizes the Robotar-
ium, a remotely accessible swarm robotics testbed [8]. The
differential-drive robots utilized in the Robotarium have
nonlinear unicycle dynamics, which are controlled by linear
and angular velocity. However, the single-integrator model
may be mapped onto such a system using a number of
techniques, and this experiment employs the transformation
in [4].

Fig. 1 displays the resulting trajectories of the robots
under the controller u∗. Due to the minimally invasive
QP formulation and the results of Sec. III-B, the team of
robots complete the objective while respecting the desired
constraints. In particular, Fig. 2 indicates that the BNCBF, h,
remains positive over the course of the experiment, implying
that the synthesized controller respects all of the constraints.
Additionally, the leader robots successfully achieve their pre-
specified goal positions.

Fig. 2 displays the linear and angular velocities of the
robots during the experiment. As expected, the control inputs
are discontinuous. However, as predicted by the results of
Sec. III-B, the synthesized controller still ensures that the
BNCBF remains positive, meaning that all constraints are
satisfied.

V. CONCLUSION

This paper proposed and theoretically validated a frame-
work for constraint composition and control synthesis. Com-
position of these constraints was obtained through Boolean
operators, and their application resulted in nonsmooth func-
tions. As such, this paper presented nonsmooth control
barrier functions, which were formulated with respect to
controlled systems. Accordingly, we developed an almost-
active gradient for nonsmooth functions, and, when included
as a constraint to a quadratic program, this object permitted
the synthesis of discontinuous but valid controllers. Exper-
imental results on a leader-follower team of mobile robots
demonstrated the efficacy of these results.
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