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Abstract We consider scenarios where a swarm of un-
manned vehicles (UxVs) seek to satisfy a number of di-
verse, spatially distributed objectives. The UxVs strive
to determine an efficient plan to service the objectives
while operating in a coordinated fashion. We focus
on developing autonomous high-level planning, where
low-level controls are leveraged from previous work in
distributed motion, target tracking, localization, and
communication. We rely on the use of state and ac-
tion abstractions in a Markov decision processes frame-
work to introduce a hierarchical algorithm, Dynamic
Domain Reduction for Multi-Agent Planning, that en-
ables multi-agent planning for large multi-objective en-
vironments. Our analysis establishes the correctness of
our search procedure within specific subsets of the envi-
ronments, termed ‘sub-environment’ and characterizes
the algorithm performance with respect to the optimal
trajectories in single-agent and sequential multi-agent
deployment scenarios using tools from submodularity.
Simulated results show significant improvement over us-
ing a standard Monte Carlo tree search in an environ-
ment with large state and action spaces.
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Systems.
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1 Introduction

Recent technology has enabled the deployment of UxVs
in a wide range of applications involving intelligence
gathering, surveillance and reconnaissance, disaster re-
sponse, exploration, and surveying for agriculture. In
many scenarios, these unmanned vehicles are controlled
by one or, more often than not, multiple human oper-
ators. Reducing UxV dependence on human effort en-
hances their capability in scenarios where communica-
tion is expensive, low bandwidth, delayed, or contested,
as agents can make smart and safe choices on their
own. In this paper we design a framework for enabling
multi-agent autonomy within a swarm in order to sat-
isfy arbitrary spatially distributed objectives. Planning
presents a challenge because the computational com-
plexity of determining optimal sequences of actions be-
comes expensive as the size of the swarm, environment,
and objectives increase.

Literature review

Recent algorithms for decentralized methods of multi-
agent deployment and path planning enable agents to
use local information to satisfy some global objective.
A variety of decentralized methods can be used for de-
ployment of robotic swarms with the ability to mon-
itor spaces, see e.g., [2–7] and references therein. We
gather motivation from these decentralized methods
because they enable centralized goals to be realized
with decentralized computation and autonomy. In gen-
eral, these decentralized methods provide approaches
for low-level autonomy in multi-agent systems, so we
look to common approaches used for high-level plan-
ning and scheduling algorithms.

Reinforcement learning is relevant to this goal be-
cause it enables generalized planning. Reinforcement
learning algorithms commonly use Markov decision pro-
cesses (MDP) as the standard framework for tem-
poral planning. Variations of MDPs exist, such as
semi-Markov decision processes (SMDP) and partially-
observable MDPs (POMDP). These frameworks are in-
valuable for planning under uncertainty, see e.g. [8–11].
Given a (finite or infinite) time horizon, the MDP
framework is conducive to constructing a policy for op-
timally executing actions in an environment [12–14].
Reinforcement learning contains a large ecosystem of
approaches. We separate them into three classes with
respect to their flexibility of problem application and
their ability to plan online vs the need to be trained
offline prior to use.

The first class of approaches are capable of run-
ning online, but are tailored to solve specific domain
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of objectives, such as navigation. The work [15] intro-
duces an algorithm that allows an agent to simultane-
ously optimize hierarchical levels by learning policies
from primitive actions to solve an abstract state space
with a chosen abstraction function. Although this al-
gorithm is implemented for navigational purposes, it
can be tailored for other objective domains. In con-
trast, our framework reasons using higher levels of ab-
straction over different types of multiple objectives. In
our formulation, we assume agents have the ability to
use preexisting algorithms, such as [15–18], as actions
that an agent utilizes in a massive environment. The
dec-POMDP framework [19] incorporates joint deci-
sion making and collaboration of multiple agents under
uncertain and high-dimensional environments. Masked
Monte Carlo Search is a dec-POMDP algorithm [20]
that determines joint abstracted actions in a centralized
way for multiple agents that plan their trajectories in
a decentralized POMDP. Belief states are used to con-
tract the expanding history and curse of dimensionality
found in POMDPs. Inspired by Rapidly-Exploring Ran-
domized Trees [16], the Belief Roadmap [17] allows an
agent to find minimum cost paths efficiently by finding
a trajectory through belief spaces. Similarly, the algo-
rithm in [18] creates Gaussian belief states and exploits
feedback controllers to reduce POMDPs to MDPs for
tractability in order to find a trajectory. Most of the
algorithms in this class are not necessarily comparable
to each other due to the specific context of their prob-
lem statements and type of objective. For that reason,
we are motivated to find an online method that is still
flexible and can be utilized for a large class of objec-
tives.

The second class of approaches have flexible use
cases and are most often computed offline. These for-
mulations include reinforcement learning algorithms for
value or policy iteration. In general, these algorithms
rely on MDPs to examine convergence, although the
model is considered hidden or unknown in the al-
gorithm. An example of a state-of-the-art reinforce-
ment model-free learner is Deep Q-network (DQN),
which uses deep neural networks and reinforcement
learning to approximate the value function of a high-
dimensional state space to indirectly determine a policy
afterwards [21]. Policy optimization reinforcement algo-
rithms focus on directly optimizing a policy of an agent
in an environment. Trust Region Policy Optimization
(TRPO) [22] enforces constraints on the KL-divergence
between the new and old policy after each update
to produce more incremental, stable policy improve-
ment. Actor-Critic using Kronecker-factored Trust Re-
gion (ACKTR) [23] is a hybrid of policy optimization
and Q-learning which alternates between policy im-

provement and policy evaluation to better guide the
policy optimization. These techniques were successfully
applied to a range of Atari 2600 games, with results
similar to advanced human players. Offline, model-free
reinforcement algorithms are attractive because they
can reason over abstract objectives and problem state-
ments, however, they do not take advantage of inherent
problem model structure. Because of this, model-free
learning algorithms usually produce good policies more
slowly than model-based algorithms, and often require
offline computation.

The third class of algorithms are flexible in applica-
tion and can be used online. Many of these algorithms
require a model in the form of a MDP, or other vari-
ations. Standard algorithms include Monte Carlo tree
searches (MCTS) [24] and modifications such as the
upper confidence bound tree search [25]. Many works
under this category attempt to address the curse of di-
mensionality by lowering the state space through ei-
ther abstracting the state space [26], the history in
POMDPs [27], or the action space [28]. These algo-
rithms most closely fit our problem statement, because
we are interested in online techniques for optimizing
across a large domain of objectives.

In the analysis of our algorithm, we rely on the no-
tion of submodular set functions and the character-
ization of the performance of greedy algorithms, see
e.g., [29, 30]. Even though some processes of our al-
gorithm are not completely submodular, we are able
to invoke these results by resorting to the concept of
submodularity ratio [31], that quantifies how far a set
function is from being submodular, using tools from
scenario optimization [32].

Statement of contributions

Our approach seeks to bridge the gap between the
MDP-based approaches described above. We provide a
framework that remains general enough to reason over
multiple objective domains, while taking advantage of
the inherent spatial structure and known vehicle model
of most robotic applications to efficiently plan. Our goal
is to synthesize a multi-agent algorithm that enables
agents to abstract and plan over large, complex en-
vironments taking advantage of the benefits resulting
from coordinating their actions. We determine mean-
ingful ways to represent the environment and develop
an algorithm that reduces the computational burden
on an agent to determine a plan. We introduce meth-
ods of generalizing positions of agents, and objectives
with respect to proximity. We rely on the concept of
‘sub-environment’, which is a subset of the environ-
ment with respect to proximity-based generalizations,
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Fig. 1.1 Workflow of the proposed hierarchical algorithm. A sub-environment is dynamically constructed as series of spatial-
based state abstractions in the environment in a process called SubEnvSearch. Given this sub-environment, an agent performs
tasks, which are abstracted actions constrained to properties of the sub-environment, in order to satisfy objectives. Once a
sub-environment is created, the process TaskSearch uses a semi-Markov decision process to model the sub-environment and
determine an optimal ‘task’ to perform. Past experiences are recycled for similar looking sub-environments allowing the agent
to quickly converge to an optimal policy. The agent dedicates time to both finding the best sub-environment and evaluating
that sub-environment by cycling through SubEnvSearch and TaskSearch.

and use high-level actions, with the help of low-level
controllers, designed to reduce the action space and
plan in the sub-environments. The main contribution
of the paper is an algorithm for splitting the work of
an agent between dynamically constructing and evalu-
ating sub-environments and learning how to best act in
that sub-environment, cf. Figure 1.1. We also introduce
modifications that enable multi-agent deployment by
allowing agents to interact with the plans of other team
members. We provide convergence guarantees on key
components of our algorithm design and identify met-
rics to evaluate the performance of the sub-environment
selection and sequential multi-agent deployment. Using
tools from submodularity and scenario optimization, we
establish formal guarantees on the suboptimality gap of
these procedures. We illustrate the effectiveness of dy-
namically constructing sub-environments for planning
in environments with large state spaces through sim-
ulation and compare our proposed algorithm against
Monte Carlo tree search techniques.

Organization

The paper is organized as follows. Section 2 presents
preliminaries on Markov decision processes. Section 3
introduces the problem of interest. Section 4 describes
our approach to abstract states and actions with re-
spect to spatial proximity, and Section 5 builds on these
models to design our hierarchical planning algorithm.
Section 6 presents analysis on algorithm convergence
and performance, and Section 7 shows our simulation
results. We gather our conclusions and ideas for future
work in Section 8.

Notation

We use Z, Z≥1, R, and R>0 to denote integer, positive
integer, real, and positive real numbers, respectively.
We let |Y | denote the cardinality of an arbitrary set Y .
We employ object-oriented notation throughout the pa-
per; b.c, means that c belongs to b, for arbitrary objects
b and c. For reference, Appendix C presents a list of
commonly used symbols.

2 Preliminaries on Markov decision processes

We follow the exposition from [15] to introduce basic
notions on Markov decision processes (MDPs). A MDP
is a tuple 〈S,A,Prs, R〉, where S and A are the state
and action spaces, respectively; Prs(s′|a, s) is a tran-
sition function that returns the probability that state
s ∈ S becomes state s′ after taking action a ∈ A; and
R(s, a, s′) is the reward that an agent gets after tak-
ing action a from state s to reach state s′. A policy is
a feedback control that maps each state to an action,
π : s → a, for each s. The value of a state under a
given policy is

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Prs(s′|π(s), s)V π(s′),

where γ ∈ (0, 1) is the discount factor. The value func-
tion takes finite values. The solution to the MDP is
an optimal policy that maximizes the value function,
π∗(s) = argmaxπ V

π(s) for all s. The value of taking
an action at a given state under a given policy is

Q(s, a) = R(s, a) + γ
∑
s′∈S

Prs(s′|a, s)V π(s′).
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Usual methods for obtaining π∗ require a tree search of
the possible states that can be reached by taking a series
of actions. The rate at which the tree of states grows
is called the branching factor. This search is a chal-
lenge for solving MDPs with large state spaces and ac-
tions with low-likelihood probabilistic state transitions.
A technique often used to decrease the size of the state
space is state abstractions, where a collection of states
are clustered into one in some meaningful way. This can
be formalized with a state abstraction function of the
form φs : s → sφ. Similarly, actions can be abstracted
with an action abstraction function φa : a → aφ. Ab-
stracting actions is used to decrease the action space,
which can make π∗ easier to calculate. In MDPs, actions
take one time step per action. However, abstracted ac-
tions may take a probabilistic amount of time to com-
plete, Prt(t|aφ, s). When considering the problem using
abstracted actions aφ ∈ Aφ in 〈S,Aφ,Prs, R〉, the pro-
cess becomes a semi-Markov Decision Process (SMDP),
which allows for probabilistic time per abstracted ac-
tion. The loss of precision in the abstracted actions
means that an optimal policy for an SMDP with ab-
stracted modifications may not be optimal with respect
to the original MDP.

Determining π∗ often involves constructing a tree
of reachable MDP/SMDP states determined through
simulating actions from an initial state. Dynamic pro-
gramming is commonly used for approximating π∗ by
using a Monte Carlo tree search to explore the MDP
for the initial state. The action with the maximum up-
per confidence bound (UCB) [25] of the approximated
expected value for taking the action at a given state,

argmaxa∈A

{
Q̂(s, a) + C

√
ln(Ns)

Ns,a

}
,

is often used to efficiently explore the MDP. Here, Ns is
the number of times a state has been visited, Ns,a is the
number of times that action a has been taken at state s
and C is a constant. Taking the action that maximizes
this quantity balances between exploiting actions that
previously had high reward and exploring actions with
uncertain but potentially higher reward.

3 Problem statement

Consider a set of agents A indexed by α ∈ A. We as-
sume agents are able to communicate with each other
and have access to each other’s locations. An agent oc-
cupies a point in Zd, and has computational, commu-
nication, and mobile capabilities. A waypoint o ∈ Zd
is a point that an agent must visit in order to serve
an objective. Every waypoint then belongs to a class of

objective of the form Ob = {o1, . . . , o|Ob|}. Agents are
able to satisfy objectives when waypoints are visited
such that o ∈ Ob is removed from Ob. When Ob = ∅ the
objective is considered ‘complete’. An agent receives a
reward rb ∈ R for visiting a waypoint o ∈ Ob. Define the
set of objectives to be O = {O1, . . . ,O|O|}, and assume
agents are only able to service one Ob ∈ O at a time.
We consider the environment to be E = O × A, which
contains information about all objectives and agents.
The state space of E increases exponentially with the
number of objectives |O|, the cardinality of each objec-
tive |Ob|, for each b, and the number of agents |A|.

We strive to design a decentralized algorithm that
allows the agents in A to individually approximate the
policy π∗ that optimally services objectives in O in sce-
narios where E is very large. To tackle this problem, we
rely on abstractions that reduce the stochastic branch-
ing factor to find a good policy in the environment. We
begin our strategy by spatially abstracting objectives in
the environment into convex sets termed ‘regions’. We
dynamically create and search subsets of the environ-
ment to reduce dimensions of the state that individual
agents reason over. Then we structure a plan of high-
level actions with respect to the subset of the environ-
ment. Finally, we specify a limited, tunable number of
interactions that must be considered in the multi-agent
joint planning problem, leading up to the Dynamic Do-
main Reduction for Multi-Agent Planning algorithm to
approximate the optimal policy.

4 Abstractions

In order to leverage dynamic programming solutions to
approximate a good policy, we reduce the state space
and action space. We begin by introducing methods of
abstraction with respect to spatial proximity for a single
agent, then move on to the multi-agent case.

4.1 Single-agent abstractions

To tackle the fact that the number of states in the
environment grows exponentially with respect to the
number of agents, the number of objectives, and their
cardinality, we cluster waypoints and agent locations
into convex sets in space, a process we term region ab-
straction. Then, we construct abstracted actions that
agents are allowed to execute with respect to the re-
gion abstractions.
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4.1.1 Region abstraction

We define a region to be a convex set x ⊆ Rd. Let Ωx
be a set of disjoint regions where the union of all re-
gions in Ωx is the entire space that agents reason over
in the environment. We consider regions to be equal
in size, shape, and orientation, so that the set of re-
gions creates a tessellation of the environment. This
makes the presentation simpler, albeit our framework
can be extended to handle regions that are non-regular
by including region definitions for each unique region
in consideration.

Furthermore, let Obi be the set of waypoints of ob-
jective Ob in region xi, i.e., such that Obi ⊆ xi. We use
an abstraction function, φ : Obi → sbi , to get the ab-
stracted objective state, sbi , which enables us to general-
ize the states of an objective in a region. In general, the
abstraction function is designed by a human user that
distinguishes importance of an objective in a region.

We define a regional state, si = (s1i , . . . , s
|O|
i ), to be the

Cartesian product of sbi for all objectives, Ob ∈ O, with
respect to xi.

4.1.2 Action abstraction

We assume that low-level feedback controllers allow-
ing for servicing of waypoints are available. We next
describe how we use low-level controllers as compo-
nents of a ‘task’ to reason over. We define a task to be
τ = 〈sbi , s′bi , xi, xj , b〉, where sbi and s′bi are abstracted
objective states associated to xi, xj is a target region,
and b is the index of a target objective. Assume that
low-level controllers satisfy the following requirements:

– Objective transition: low-level controller executing
τ drives the state transition, τ.sbi → τ.s′bi .

– Regional transition: low-level controller executing τ
drives the agent’s location to xj after the objective
transition is complete.

Candidates for low-level controllers include policies
determined using the approaches in [15,25] after setting
up the region as a MDP, modified traveling salesper-
son [33], or path planning-based algorithms interfaced
with the dynamics of the agent. Agents that start a
task are required to continue working on the task until
requirements are met. Because the tasks are dependent
on abstracted objectives states, the agent completes a
task in a probabilistic time, given by Prt(t|τ), that is
determined heuristically. The set of all possible tasks is
given by Γ . If an agent begins a task such that the fol-
lowing properties are not satisfied, then Prt(∞|τ) = 1
and the agent never completes it.

4.1.3 Sub-environment

In order to further alleviate the curse of dimensionality,
we introduce sub-environments, a subset of the environ-
ment, in an effort to only utilize relevant regions. A sub-
environment is composed of a sequence of regions and
a state that encodes proximity and regional states of
those regions. Formally, we let the sub-environment re-
gion sequence, −→x , be a sequence of regions of length up
to Nε ∈ Z≥1. The kth region in −→x is denoted with −→x k.
The regional state of −→x k is given by s−→x k . For example,
−→x = [x2, x1, x3] is a valid sub-environment region se-
quence with Nε ≥ 3, the first region in −→x is −→x 1 = x2,
and the regional state of −→x 1 is s−→x 1

= sx2
. In order

to simulate the sub-environment, the agent must know
if there are repeated regions in −→x . Let ξ(k,−→x ), return
the first index h of −→x such that −→x h = −→x k. Define the
repeated region list to be ξ−→x = [ξ(1,−→x ), . . . , ξ(Nε,

−→x )].
Let φt(xi, xj) : xi, xj → Z be an abstracted amount
of time it takes for an agent to move from xi to xj ,
or ∞ if no path exists. Let s = [s−→x 1

, . . . , s−→x Nε ] ×
ξ−→x × [φt(

−→x 1,
−→x 2), . . . , φt(

−→x Nε−1,,−→x Nε)] be the sub-
environment state for a given −→x , and let Sε be the
set of all possible sub-environment states. We define a
sub-environment to be ε = 〈−→x , s〉.

In general, we allow a sub-environment to con-
tain any region that is reachable in finite time. How-
ever, in practice, we only allow agents to choose sub-
environments that they can traverse within some rea-
sonable time in order to reduce the number of pos-
sible sub-environments and save onboard memory. In
what follows, we use the notation ε.s to denote the sub-
environment state of sub-environment ε.

4.1.4 Task trajectory

We also define an ordered list of tasks that the agents
execute with respect to a sub-environment ε. Let −→τ =
[−→τ 1, . . . ,

−→τ Nε−1] be an ordered list of feasible tasks
such that −→τ k.xi = ε.−→x k, and −→τ k.xj = ε.−→x k+1 for
all k ∈ {1, . . . , Nε − 1}, where xi and xj are the re-
gions in the definition of task −→τ k. Agents generate this
ordered list of tasks assuming that they will execute
each of them in order. The probability distribution on
the time of completing the kth task in −→τ (after com-

pleting all previous tasks in −→τ ) is given by
−→
Prtk. We

define
−→
Prt = [

−→
Prt1, . . . ,

−→
PrtNε−1] to be the ordered list

of probability distributions. We construct the task tra-

jectory to be ϑ = 〈−→τ ,
−→
Prt〉, which is used to determine

the finite time reward for a sub-environment.
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4.1.5 Sub-environment SMDP

As tasks are completed, the environment evolves, so we
denote E ′ as the environment after an agent has per-
formed a task. Because the agents perform tasks that
reason over abstracted objective states, there are many
possible initial, and outcome environments. The exact
reward that an agent receives when acting on the en-
vironment is a function of E and E ′, which is complex
to determine by our use of abstracted objective states.
We determine the reward an agent receives for complet-
ing τ as a probabilistic function Prr that is determined
heuristically. Let rε be the abstracted reward function,
determined by

rε(τ) =
∑
r∈R

Prr(r|τ)r, (4.1)

which is the expected reward for completing τ given
the state of the sub-environment. Next we define the
sub-environment evolution procedure. Note that agents
must begin in the region ε.−→x 1 and end up in region
ε.−→x 2 by definition of task. Evolving a sub-environment
consists of 2 steps. First, the first element of the sub-
environment region sequence is removed. The length
of the sub-environment sequence ε.−→x is reduced by 1.
Next, the sub-environment state ε.s is recalculated with
the new sub-environment region sequence. To do this,
we draw the sub-environment state from a probability
distribution and we determine the sub-environment af-
ter completing the task

ε′ = 〈−→x = [−→x 2, . . . ,
−→x Nε ], s = Prs(ε′.s|ε.s, τ)〉.

(4.2)

Finally, we can represent the process of execut-
ing tasks in sub-environments as the sub-environment
SMDP M = 〈Sε, Γ, Prsε , rε,Prt〉. The goal of the agent
is to determine a policy πε : ε.s → τ that yields the
greatest rewards inM. The state value under policy πε
is given by

V πε(ε.s)= rε+
∑
tε∈R

Prt
ε

γt
ε ∑
ε.s∈Sε

PrsV πε(ε.s′)

(4.3)

We strive to generate a policy that yields optimal state
value

π∗ε (ε.s) = argmax
πε

V πε(ε.s),

with associated optimal value V πε∗(ε.s) =
max
πε

V πε(ε.s).

Remark 4.1 (Extension to heterogeneous swarms) The
framework described above can also handle UxV agents

with heterogeneous capabilities. In order to do this, one
can consider the possibility of any given agent having a
unique set of controls which allow it to complete some
tasks more quickly than others. The agents use our
framework to develop a policy that maximizes their re-
wards with respect to their own capability, which is im-
plicitly encoded in the reward function. For example, if
an agent chooses to serve some objective and has no low

level control policy that can achieve it,
−→
Prtk(∞) = 1,

and the agent will never complete it. In this case, the
agent would naturally receive a reward of 0 for the re-
mainder of the trajectory. •

4.2 Multi-agent abstractions

Due to the large environment induced by the action
coupling of multi-agent joint planning, determining the
optimal policy is computationally unfeasible. To reduce
the computational burden on any given agent, we re-
strict the number of coupled interactions. In this sec-
tion, we modify the sub-environment, task trajectory,
and rewards to allow for multi-agent coupled interac-
tions. The following discussion is written from the per-
spective of an arbitrary agent labeled α in the swarm,
where other agents are indexed with β ∈ A.

4.2.1 Sub-environment with interaction set

Agent α may choose to interact with other agents in
its interaction set Iα ⊆ A while executing −→τ α in or-
der to more effectively complete the tasks. The inter-
action set is constructed as a parameter of the sub-
environment and indicates to the agent which tasks
should be avoided based on the other agents’ trajec-
tories. Let N be a (user specified) maximum num-
ber of agents that an agent can interact with (hence
|Iα| ≤ N at all times). The interaction set is updated
by adding another agent β and their interaction set,
Iα = Iα ∪ {β} ∪ Iβ . If |Iα ∪ {β} ∪ Iβ | > N , then we
consider agent β to be an invalid candidate. Adding
β’s interaction set is necessary because tasks that af-
fect the task trajectory ϑβ may also affect all agents
in Iβ . Constraining the maximum interaction set size
reduces the large state size that occurs when agents’
actions are coupled. To avoid interacting with agents
not in the interaction set, we create a set of waypoints
that are off-limits when creating a trajectory.

We define a claimed regional objective as θ =
〈Ob, xi〉. The agent creates a set of claimed region ob-
jectives Θα = {θ1, . . . , θNε−1} that contains a claimed
region objective for every task in its trajectory and de-
scribes a waypoint in Ob in a region that the agent is
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planning to service. We define the global claimed ob-
jective set to be ΘA = {Θ1, . . . , Θ|A|}, which contains
the claimed region objective set for all agents. Lastly,
let Θ′α = ΘA \

{⋃
β∈Iα Θβ

}
be the complete set of

claimed objectives an agent must avoid when planning
a trajectory. The agent uses Θ′α to modify its perception
of the environment. As shown in the following function,
the agent sets the state of claimed objectives in Θ′α to 0,
removing appropriate tasks from the feasible task set.

sbΘ′α,
−→x k =

{
0 if 〈Ob, εα.−→x k〉 ∈ Θ′α,
sb−→x k otherwise.

(4.4)

Let
−→
S Θ′α,−→x =

−→
S Θ′α,−→x 1

× . . . ×
−→
S Θ′α,−→x Nε , where

−→
S Θ′α,−→x k = (sO

1

Θ′α,
−→x k , . . . , s

O|O|
Θ′α,
−→x k). In addition to

the modified sub-environment state, we include
the partial trajectories of other agents being in-
teracted with. Consider β’s trajectory ϑβ and an
arbitrary εα. Let ϑpβ,k = 〈ϑβ .−→τ k.sbi , ϑβ .

−→τ k.b〉.
The partial trajectory, ϑpβ = [ϑpβ,1, . . . , ϑ

p
β,|ϑβ |] de-

scribes β’s trajectory with respect to εα.
−→x . Let

ξ(k, εα, εβ) return the first index of εα.
−→x , h, such that

εβ .
−→x h = εα.

−→x k, or 0 if there is no match. Each agent
in the interaction set creates a matrix Ξ of elements,
ξ(k, εα, εβ), for k ∈ {1, . . . , Nε} and β ∈ {1, . . . , |Iα|}.
We finally determine the complete multi-agent

state, s =
−→
S Θ′α,−→x ×

{
〈ϑp1, Ξ1〉 , . . . , 〈ϑp|Iα|, Ξ|Iα|〉

}
×

[φt(−→x 1,−→x 2), . . . , φt(−→xNε−1,
−→xNε)]. With these modi-

fications to the sub-environment state, we define the
(multi-agent) sub-environment as εα = 〈−→x , s, Iα〉.

4.2.2 Multi-agent action abstraction

We consider the effect that an agent α has on another
agent β ∈ A when executing a task that affects sbi in β’s
trajectory. Some tasks will be completed sooner with
two or more agents working on them, for instance. For
all β ∈ Iα, let tβ be the time that β begins a task
that transitions sbi → s′bi . If agent β does not con-
tain such a task in its trajectory, then tβ = ∞. Let
TAIα = [t1, . . . , t|Iα|]. We denote by PrtIα(t|τ, TAIα) the
probability that τ is completed at exactly time t if
other agents work on transitioning sbi → s′bi . We re-

define here the definition of
−→
Prt in Section 4.1.4, as−→

Prt = [
−→
Prt1,Iα , . . . ,

−→
PrtNε−1,Iα ], which is the probability

time set of α modified by accounting for other agents
trajectories. Furthermore, if an agent chooses a task
that modifies agent α’s trajectory, we define the prob-

ability time set to be
−→
Prt′ = [

−→
Prt′1,Iα , . . . ,

−→
Prt′Nε−1,Iα ].

With these modifications, we redefine the task trajec-

tory to be ϑ =
〈−→τ ,−→Prt

〉
. Finally, we designate Xϑ to

be the set that contains all trajectories of the agents.

4.2.3 Multi-agent sub-environment SMDP

We modify the reward abstraction so that each agent
takes into account agents that it may interact with.
When α interacts with other agents, it modifies the ex-
pected discounted reward gained by those agents. We
define the interaction reward function, which returns a
reward based on whether the agent executes a task that
interacts with one or more other agents. The interaction
reward function is defined as

rφ(τ,Xϑ) =

{
R(τ,Xϑ) if τ ∈ ϑpβ for any β,

rε(τ) otherwise.

(4.5)

Here, the term R represents a designed reward that that
the agent receives for completing τ when it is shared
by by other agents. This expression quantifies the ef-
fect that an interacting task has on an existing task.
If a task helps another agent trajectory in a significant
way, the agent may choose a task that aids the global
expected reward amongst the agents. Let the multi-
agent sub-environment SMDP be defined as the tuple
M = 〈Sε, Γ, Prs, rφ,PrtIα〉. The state value from (4.3)
is updated using (4.5)

V πε(ε.s)=rφ+
∑
tε∈R

Prt
ε

γt
ε ∑
ε.s∈S′ε

PrsV πε(ε.s′).

(4.6)

We strive to generate a policy that yields optimal state
value

π∗ε (ε.s) = argmax
πε

V πε(ε.s),

with associated optimal value V πε∗(ε.s) =
max
πε

V πε(ε.s). Our next section introduces an al-

gorithm for approximating this optimal state value.

5 Dynamic Domain Reduction for Multi-Agent
Planning

This section describes our algorithmic solution to ap-
proximate the optimal policy π∗ε . The Dynamic Do-
main Reduction for Multi-Agent Planning algorithm
consists of three main functions: DDRMAP, TaskSearch,
and SubEnvSearch1. Algorithm 1 presents a formal de-
scription in the multi-agent case, where each agent can
interact with a maximum of N other agents for plan-
ning purposes. In the case of a single agent, we take
N = 0 and refer to our algorithm as Dynamic Domain

1 pseudocode of functions denoted with † is omitted but
described in detail
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Reduction Planning (DDRP). In what follows, we first
describe the variables and parameters employed in the
algorithm and then discuss each of the main functions
and the role of the support functions.

Algorithm 1: : Dynamic Domain Reduction for

Multi-Agent Planning

1 Ωx =
⋃
{x} ∀x

2 E ← current environment
3 ΘA ←

⋃
Θβ , ∀β ∈ A

4 Q̂, Vx, Nε.s, Nb ← loaded from previous trials

5 DDRMAP (Ωx, Nε, E, ΘA, Q̂, Vx, Nε.s, Nb,M):
6 Yϑ = ∅
7 while run time < step time:
8 ε←SubEnvSearch (Ωx, E, ΘA, Vx)

9 TaskSearch (Q̂,Nε.s, Nb, ε)
10 Yϑ = Yϑ ∪ {MaxTrajectory(ε)}
11 return Yϑ

12 TaskSearch (Q̂,Nε.s, Nb, ε)
13 if ε.−→x is empty
14 return 0

15 τ ← max
τ∈M.Γ

{
Q̂[ε.s][τ.b] + 2Cp

√
lnNε.s[ε.s]
Nb[ε.s][τ.b]

}
16 t← Sample† M.Prt(t|τ, ε)
17 ε′ = 〈[ε.−→x 2 . . . , ε

−→x Nε ],Sample† M.P rs(ε.s, τ)〉
18 r =M.rε(τ, ε)+γtTaskSearch (Q̂,Nε.s, Nb, ε′)

19 TaskValueUpdate (Q̂,Nε.s, Nb, ε.s, τ.b, r)
20 return r

21 TaskValueUpdate (Nε.s, Nb, Q̂, ε.s, τ.b, r)
22 Nε.s[ε.s] = Nε.s[ε.s] + 1
23 Nb[ε.s][τ.b] = Nb[ε.s][τ.b] + 1

24 Q̂[ε.s][τ.b] = Q̂[ε.s][τ.b] + 1
Nb[ε.s][τ.b]

(r − Q̂[ε.s][τ.b])

25 SubEnvSearch (Ωε, E, ΘA, Vx)
26 Xx = ∅
27 while |Xx| < Nε:
28 for x ∈ Ωε:
29 if Vx[Xx ∪ {x}] is empty:
30 Vx[Xx ∪ {x}] ={

max
τ∈M.Γ

Q̂[InitSubEnv(Xx, E, ΘA).S][τ ]
}

31 x = argmax
x∈Ωε

Vx[Xx ∪ {x}]

32 Xx = Xx ∪ {x}
33 return InitSubEnv(Xx, E, ΘA)

34 InitSubEnv (Xx, E, ΘA)
35

−→x =

argmax
−→x∈

(
Xx
|Xx|

)
\Vε

{
max
τ∈M.Γ

Q̂[GetSubEnvState(−→x ,ΘA)][τ ]

36 ε = 〈−→x , GetSubEnvState(−→x ,ΘA)〉
37 return ε

The following variables are common across the
multi-agent system: the set of regions Ωx, the cur-
rent environment E , the claimed objective set ΘA, and
the multi-agent sub-environment SMDPM. Some vari-
ables can be loaded, or initialized to zero such as the
number of times an agent has visited a state Nε.s, the

number of times an agent has taken an action in a state
Nb, the estimated value of taking an action in a state
Q̂, and the estimated value of selecting a region in the
sub-environment search process Vx. The set Vε contains
sub-environments as they are explored by the agent.

The main function DDRMAP structures Q-learning
with domain reduction of the environment. In essence,
DDRMAP maps the environment into a sub-environment
where it can use a pre-constructed SMDP and upper
confidence bound tree search to determine the value
of the sub-environment. DDRMAP begins by initializing
the set of constructed trajectories Yϑ as an empty
set. The function uses SubEnvSearch to find a suit-
able sub-environment from the given environment, then
TaskSearch is used to evaluate that sub-environment.
MaxTrajectory constructs a trajectory using the sub-
environment, which is added to Yϑ. This process is re-
peated for an allotted amount of time. The function
returns the set of constructed trajectories Yϑ.

TaskSearch is a modification on Monte Carlo tree
search. Given sub-environment ε, the function finds an
appropriate task ϑ to exploit and explore the SMDP.
On line 15 we select a task based on the upper confi-
dence bound of Q̂. We simulate executing the task by
sampling Prt for the amount of time it takes to com-
plete the task. We then evolve the sub-environment
to get ε′ by following the sub-environment evolution
procedure (4.2). On line 18, we get the discounted re-
ward of the sub-environment by summing the reward
for the current task using (4.1,4.5) and the reward re-
turned by recursively calling TaskSearch with the sam-
pled evolution of the sub-environment ε′ at a discount.
The recursive process is terminated at line 13 when
the sub-environment no longer contains regions in ε.−→x .
TaskValueUpdate is called after each recursion and up-
datesNε.s,Nb, and Q̂. On line 24, Q̂ is updated by recal-
culating the average reward over all experiences given
the task and sub-environment state, which is done by
using N−1b as the learning rate. The time complexity
of TaskSearch is O(|Γ |Nε) due to the task selection
on Line 15 and the recursive depth of the size of the
sub-environment Nε.

We employ SubEnvSearch to explore and find the
value of possible sub-environments in the environment.
The function InitSubEnv maps a set of regions Xx ⊆
Ωx (we use subindex ‘x’ to emphasize that this set con-
tains regions) to the sub-environment with the highest
expected reward. We do this by finding the sequence of
regions −→x given a Xx that maximizes maxτ∈Γ Q̂[ε.s][τ ]
on line 35. We keep track of the expected value of choos-
ing Xx and the sub-environment that is returned by
InitSubEnv with Vx. SubEnvSearch begins by initializ-
ing Xx to empty. The region that increases the value Vx
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the most when appended to Xx is then appended to Xx.
This process is repeated until the length of Xx is Nε.
Finally, the best sub-environment given Xx is returned
with InitSubEnv. The time complexity of InitSubEnv
and SubEnvSearch is O(N !) and O(|Ωx|Nε log(Nε!)),
respectively. InitSubEnv requires iteration over all pos-
sible permutations of Xx, however in practice we use
heuristics to reduce the time of computation.

6 Convergence and performance analysis

In this section, we look at the performance of indi-
vidual elements of our algorithm. First, we establish
the convergence of the estimated value of performing a
task determined over time using TaskSearch. We build
on this result to characterize the performance of the
SubEnvSearch and of sequential multi-agent deploy-
ment.

6.1 TaskSearch estimated value convergence

We start by making the following assumption about the
sub-environment SMDP.

Assumption 6.1 There always exists a task that an
agent can complete in finite time. Furthermore, no task
can be completed in zero time steps.

Assumption 6.1 is reasonable because if not true,
then the agent’s actions are irrelevant and the scenario
is trivial. The following result characterizes long term
performance of the function TaskSearch which is neces-
sary for the analysis of other elements of the algorithm.

Theorem 6.1 Let Q̂ be the estimated value of perform-
ing a task determined over time using TaskSearch. Un-
der Assumption 6.1, Q̂ converges to the optimal state
value V ∗ε of the sub-environment SMDP with probabil-
ity 1.

Proof. SMDP Q-learning converges to the optimal
value under the following conditions [34], rewritten here
to match our notation:

(i) State and action spaces are finite;
(ii) Var{rε} is finite;

(iii)
∞∑
p=1

αp(ε.s, τ) = ∞ and
∞∑
p=1

α2
p(ε.s, τ) < ∞ uni-

formly over ε.s, τ ;
(iv) 0 < Bmax = max

ε.s∈Sε,τ∈Γ

∑
Prt(t|ε.sτ)γt < 1 .

In the construction of the sub-environment SMDP,
we assume that sub-environment lengths and number
of objectives are finite, satisfying (i). We reason over

the expected value of the reward in R, that is deter-
mined heuristically, which implies that Var{rε} = 0
satisfying (ii). From TaskValueUpdate on line 24, we
have that αp(ε.s, τ) = 1/p if we substitute p for Nb.

Therefore, (iii) is satisfied because
∞∑

Nb=1

1
Nb

= ∞ and

∞∑
Nb=1

( 1
Nb

)2 = π2/6 (finite). Lastly, to satisfy (iv), we

use Assumption 6.1 (there always exists some τ such
that Prt(∞|ε.s, τ) < 1) and the fact that γ ∈ (0, 1) to
ensure that Bmax will always be greater than 0. We use
Assumption 6.1 (for all ε.s, τ Prt(t > 0|ε.sτ) = 1) to
ensure that Bmax is always less than 1. •

In the following, we consider a version of our algo-
rithm that is trained offline called Dynamic Domain Re-
duction Planning:Online+Offline (DDRP-OO). DDRP-OO
utilizes data that it learned from previous experiments
in similar environments. In order to do this, we train
DDRP offline and save the state values for online use.
We use the result of Theorem 6.1 as justification for
the following assumption.

Assumption 6.2 Agents using DDRP-OO are well-
trained, i.e., Q̂ = V ∗ε.

In practice, we accomplish this by running DDRP on
randomized environments until Q̂ remains unchanged
for a substantial amount of time, an indication that
it has nearly converged to V ∗ε. The study of DDRP-OO

gives insight on the tree search aspect of finding a sub-
environment in DDRP and gives intuition on its long-
term performance.

6.2 Sub-environment search by a single agent

We are interested in how well the sub-environments
are chosen with respect to the best possible sub-
environment. In our study, we make the following as-
sumption.

Assumption 6.3 Rewards are positive. Objectives are
uncoupled, meaning that the reward for completing
one objective is independent of the completion of any
other objective. Furthermore, objectives only require
one agent’s service for completion.

Our technical approach builds on the submodular-
ity framework, cf. Appendix A, to establish analytical
guarantees of the sub-environment search. The basic
idea is to show that the algorithmic components of this
procedure can be cast as a greedy search with respect
to a conveniently defined set function. Let Ωx be a fi-
nite set of regions. InitSubEnv takes a set of regions
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Xx ⊆ Ωx and returns the sub-environment made up of
regions in Xx in optimal order. We define the power set
function fx : 2Ωx → R, mapping each set of regions to
the discounted reward that an agent expects to receive
for choosing the corresponding sub-environment

fx(Xx) = max
τ∈Γ

Q̂[InitSubEnv(Xx).s][τ ]. (6.1)

For convenience, let X∗x = argmaxXx∈Ωx fx(Xx) de-
note the set of regions that yields the sub-environment
with the highest expected reward amongst all possible
sub-environments. The following counterexample shows
that fx is, in general, not submodular.

Lemma 6.1 Let fx be the discounted reward that an
agent expects to receive for choosing the correspond-
ing sub-environment given a set of regions, as defined
in (6.1). Under Assumptions 6.2-6.3, fx is not submod-
ular.

Proof. We provide a counterexample to show that fx
is not submodular in general. Consider a 1-dimensional
environment. For simplicity, let regions be singletons,
where Ωx = {x0 = {0}, x1 = {−1}, x2 = {1}, x3 =
{2}}. Assume that only one objective exists, which is
to enter a region. For this objective, agents only get
rewarded for entering a region the first time. Let the
time required to complete a task be directly propor-
tional to the distance between region, t = |τ.xi − τ.xj |.
Let Xx = {x1} ⊂ Yx = (x1, x3) ⊂ Ωx. fx is submodu-
lar only if the marginal gain including {x2} is greater
for Xx than Yx. Assuming that the agent begins in x0,
one can verify that the region sequences of the sub-
environments returned by InitSubEnv are as follows:

InitSubEnv(Xx)→ −→x = [x1]

InitSubEnv(Xx ∪ {x2})→ −→x = [x1, x2]

InitSubEnv(Yx)→ −→x = [x1, x3]

InitSubEnv(Yx ∪ {x2})→ −→x = [x2, x3, x1]

Assuming that satisfying each task yields the same re-
ward r we can calculate the marginal gains as

fx(Xx ∪ {x2})− fx(Xx) =

(γt1r + γt1γt2r)− (γt1r) ≈ .73r,

evaluated at t1 = x1 − x0 = 1 and t2 = x2 − x1 = 2.
The marginal gains for appending {x2} to Yx is

fx(Yx ∪ {x2})− fx(Yx) =

(γt3r + γt3γt4r + γt3γt4γt5r)− (γt1r + γt1γt2r) ≈ .74r,

evaluated at t1 = x1 − x0 = 1, t2 = x3 − x1 = 3,
t3 = x2−x0 = 1, t4 = x3−x2 = 1, and t5 = x1−x3 = 3,
showing that the marginal gain for including {x2} is
greater for Yx than Xx. Hence, fx is not submodular.•

Even though fx is not submodular in general, one
can invoke the notion of submodularity ratio to provide
a guaranteed lower bound on the performance of the
sub-environment search. According to (A.4), the sub-
modularity ratio of a function fx is the largest scalar
λ ∈ [0, 1] such that

λ ≤

∑
z∈Zx

fx(Xx ∪ {z})− fx(Xx)

fx(Xx ∪ Zx)− fx(Xx)
(6.2)

for all Xx, Zx ⊆ Ωx. This ratio measures how far the
function is from being submodular. The following re-
sult provides a guarantee on the expected reward with
respect to the optimal sub-environment choice in terms
of the submodularity ratio.

Theorem 6.2 Let Xx be region set returned by the
sub-environment search algorithm in DDRP-OO. Under
Assumptions 6.2-6.3, it holds that fx(Xx) ≥ (1 −
e−λ)fx(X∗x).

Proof. According to Theorem A.3, we need to show
that fx is a monotone set function, that fx(∅) = 0, and
that the sub-environment search algorithm has greedy
characteristics. Because of Assumption 6.3, adding re-
gions to Xx monotonically increases the expected re-
ward, hence equation (A.2) is satisfied. Next, we note
that if Xx = ∅, then InitSubEnv returns an empty sub-
environment, which implies from equation (6.1) that
fx(∅) = 0. Lastly, by construction, the first iteration
of the sub-environment search adds regions to the sub-
environment one at a time in a greedy fashion. Because
the sub-environment search keeps in memory the sub-
environment with the highest expected reward, the en-
tire algorithm is lower bounded by the first iteration
of the sub-environment search. The result now follows
from Theorem A.3. •

Given the generality of our proposed framework, the
submodularity ratio of fx is in general difficult to de-
termine. To deal with this, we resort to tools from sce-
nario optimization, cf. Appendix B, to obtain an es-
timate of the submodularity ratio. The basic observa-
tion is that, from its definition, the computation of the
submodularity ratio can be cast as a robust convex op-
timization problem. Solving this optimization problem
is difficult given the large number of constraints that
need to be considered. Instead, the procedure for es-
timating the submodularity ratio samples the current
environment that an agent is in, randomizing optimiza-
tion parameters. The human supervisor chooses con-
fidence and violation parameters, $ and ε, that are
satisfactory. submodulariyRatioEstimation, cf. Algo-
rithm 2, iterates through randomly sampled parame-
ters, while maintaining the maximum submodularity
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Algorithm 2: : Submodularity ratio estimation

1 ∆← set of all possible pairs of Xx, Zx.
2 Prδ ← probability distribution of sampling δ from ∆.

3 submodulariyRatioEstimation ($, ε,Ωx,∆, Prδ)
4 λ+ = 1, d = 1, h = ∅
5 NSCP = 2

ε
(ln 1

$
+ d)

6 for n = 0;n++;n < NSCP

7 Xx, Zx =Sample† (Prδ)

8 λδ =

∑
z∈Zx

fx(Xx∪{z})−fx(Xx)

fx(Xx∪Zx)−fx(Xx)

9 if λδ < λ+

10 λ+ = λδ

11 h.append(λδ, n)
12 a, b = argmin

a,b∈R

∑
λδ,n∈h

(λ+ − a− bn)2

13 λ̂ = a+ b|∆|
14 return λ̂

ratio that does not violate the sampled constraints.
Once the agent has completed NSCP number of sam-
ple iterations, we extrapolate the history of evolution
of the submodularity ratio to get λ̂, the approximate
submodularity ratio. We do this by using a simple lin-
ear regression in lines 12-13 and evaluate the expression
at n = |∆|, the cardinality of the constraint parameter
set, to determine an estimate for the robust convex op-
timization problem.

The following result justifies to what extent the ob-
tained ratio is a good approximation of the actual sub-
modularity ratio.

Lemma 6.2 Let λ̂ be the approximate submodularity
ratio returned by submodulariyRatioEstimation with
inputs $ and ε. With probability, 1−$, up to ε-fraction
of constraints will be violated with respect to the robust
convex optimization problem (B.1).

Proof. First, we show submodulariyRatioEstimation

can be formulated as a scenario convex program and
that it satisfies the convex constraint condition in The-
orem B.1. Lines 6-11 provide a solution, λ+, to the fol-
lowing scenario convex program.

λ+ =argmin
λ−∈R

− λ−

s.t. fδi(λ
−) ≤ 0, i = 1, . . . , NSCP,

where line 8 is a convex function that comes from equa-
tion (6.2). Since fδi is a convex function, we can apply
Theorem B.1; with probability, 1 − $, λ+ violates at
most ε-fraction of constraints in ∆.

The simple linear regression portion of the algo-
rithm, lines 12-13, uses data points λδ, n that are only
included in h when λδ < λ+. Therefore, the slope of

the linear regression b is strictly negative. On line 13,
λ̂ is evaluated at n = NSCP which implies that λ̂ ≤ λ+
and that with probability, 1 − $, λ̂ violates at most
ε-fraction of constraints in ∆. •

Note that $ and ε can be chosen as small as de-
sired to ensure that λ̂ is a good approximation of λ.
As λ̂ approaches λ, our approximation of the lower
bound performance of the algorithm with respect to
fx becomes more accurate. We conclude this section
by studying whether the submodularity ratio is strictly
positive. First, we prove it is always positive in non-
degenerate cases.

Theorem 6.3 Under Assumptions 6.1-6.3, fx is a
weakly submodular function.

Proof. We need to establish that the submodularity ra-
tio of fx is positive. We reason by contradiction, i.e.,
assume that the submodularity ratio is 0. This means
that there exist Xx and Zx such that the righthand side
of expression (6.2) is zero (this rules out, in particular,
the possibility of either Xx or Zx being empty). In par-
ticular, this implies that fx(Xx ∪ {z}) − fx(Xx) = 0
for every z ∈ Zx and that fx(Xx ∪ Zx) − fx(Xx) > 0.
Assume that InitSubEnv(Xx ∪ {z}) yields an ordered
region list [x1, x2, . . . , z] for each z. Let rx and tx de-
note the reward and time for completing a task in a
region x conditioned by the generated sub-environment
InitSubEnv(Xx ∪ {z}). Then,

fx(Xx) = γtx1 rx1
+ γtx2 rx2

+ . . . ,

fx(Xx ∪ {z}) = γtx1 rx1
+ γtx2 rx2

+ . . .+ γtzrz,

fx(Xx ∪ {z})− fx(Xx) = γtzrz,

for each z ∈ Zx conditioned by the generated sub-
environment InitSubEnv(Xx ∪ {z}). Under Assump-
tion 6.3, the term fx(Xx∪{z})−fx(Xx) equals 0 when
tz is infinite. On the other hand, let r′x and t′x de-
note the reward and time for completing a task in re-
gion x conditioned by the generated sub-environment
InitSubEnv(Xx ∪ Zz). The denominator is nonzero
when t′z is finite. This cannot hold when tz is infinite
for each z ∈ Zx without contradicting Assumption 6.3,
concluding the proof. •

The next remark discusses the challenge of deter-
mining an explicit lower bound on the submodularity
ratio.

Remark 6.1 Beyond the result in Theorem 6.3, it is of
interest to determine an explicit positive lower bound
on the submodularity ratio. In general, obtaining such
a bound for arbitrary scenarios is challenging and likely
would yield overly conservative results. To counter this,
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we believe that restricting the attention to specific fami-
lies of scenarios may instead lead to informative bounds.
Our simulation results in Section 7.1 later suggest, for
instance, that the submodularity ratio is approximately
1 in common scenarios related to scheduling spatially
distributed tasks. However, formally establishing this
fact remains an open problem. •

6.3 Sequential multi-agent deployment

We explore the performance of DDRP-OO in an environ-
ment with multiple agents. We consider the following
assumption for the rest of this section.

Assumption 6.4 If an agent chooses a task that was al-
ready selected in Xϑ, none of the completion time prob-
ability distributions are modified. Furthermore, the ex-
pected discounted reward for completing task τ given
the set of trajectories Xϑ is

T (τ,Xϑ) = max
ϑ∈Xϑ

ϑ.
−−→
Prtkγ

trφ = max
ϑ∈Xϑ

T (τ, {ϑ}),

(6.3)

given that ϑ.−→τ k = τ .

This assumption is utilized in the following sequen-
tial multi-agent deployment algorithm.

Algorithm 3: : Sequential multi-agent deploy-

ment
1 Ωx =

⋃
{x} ∀x

2 E ← current environment

3 Q̂, Vx, Nε.s, Nb ← loaded from previous trials

4 Evaluate (ϑ,Xϑ):
5 val = 0
6 for −→τ k in ϑ.−→τ :

7 if T (−→τ k, Xϑ) < ϑ.
−−→
Prtk(t)γtrφ:

8 val = val+ ϑ.
−−→
Prtk(t)γtrφ − T (−→τ k, Xϑ)

9 return val

10 SequentialMultiAgentDeployment (E,A, Ωx)
11 ΘA = ∅
12 Xϑ = ∅
13 for β ∈ A
14 ΘA = ΘA ∪ {Θβ}
15 Zϑ = DDRMAP (Ωx, Nε, E, ΘA, Q̂, Vx, Nε.s, Nb,M)
16 ϑα = argmax

ϑ∈Zϑ
Evaluate(ϑ,Xϑ) Xϑ = Xϑ ∪ {ϑα}

17 return Xϑ

In this algorithm, agents plan their sub-
environments and task search to determine a task
trajectory ϑ one at a time. The function Evaluate

returns the marginal gain of including ϑ, which is the
added benefit of including ϑ in Xϑ. We define the set
function fϑ : 2Ωϑ → R to be a metric for measuring the

performance of SequentialMultiAgentDeployment as
follows:

fϑ(Xϑ) =
∑
∀τ

T (τ,Xϑ).

This function is interpreted as the sum of discounted
rewards given all a set of trajectories Xϑ. The defini-
tion of T from Assumption 6.4 allows us to state the
following result.

Lemma 6.3 Under Assumptions 6.3-6.4, fϑ is a sub-
modular, monotone set function.

Proof. With (6.3) and the fact that rewards are non-
negative (Assumption 6.3), we have that the marginal
gain is never negative, therefore the function is mono-
tone. For the function to be submodular, we show that
it satisfies the condition of diminishing returns, mean-
ing that fϑ(Xϑ ∪ {ϑα}) − fϑ(Xϑ) ≥ fϑ(Yϑ ∪ {ϑα}) −
fϑ(Yϑ) for any Xϑ ⊆ Yϑ ⊆ Ωϑ and ϑα ∈ Ωϑ \ Yϑ. Let

G(Xϑ, ϑα) = T (τ,Xϑ ∪ {ϑα})− T (τ,Xϑ) =

max
ϑ∈Xϑ∪{ϑα}

T (τ, {ϑ})− max
ϑ∈Xϑ

T (τ, {ϑ})

be the marginal gain of including ϑα in Xϑ. The max-
imum marginal gain of occurs when no ϑ ∈ Xϑ share
the same tasks as ϑα. We determine the marginal gains
G(Xϑ, ϑα) and G(Yϑ, ϑα) for every possible case and
show that G(Xϑ, ϑα) ≥ G(Yϑ, ϑα).

Case 1: ϑα = argmaxϑ∈Xϑ∪{ϑα} T (τ, {ϑ}) =
argmaxϑ∈Yϑ∪{ϑα} T (τ, {ϑ}). This implies that
T (τ,Xϑ ∪ {ϑα}) = T (τ, Yϑ ∪ {ϑα}).

Case 2: ϑ = argmaxϑ∈Xϑ∪{ϑα} T (τ, {ϑ}) =
argmaxϑ∈Yϑ∪{ϑα} T (τ, {ϑ}) such that ϑ ∈ Xϑ. This im-
plies that T (τ,Xϑ ∪ {ϑα}) = T (τ, Yϑ ∪ {ϑα}).

Case 3: ϑα = argmaxϑ∈Xϑ∪{ϑα} T (τ, {ϑ}), and ϑ =
argmaxϑ∈Yϑ∪{ϑα} T (τ, {ϑ}) such that ϑ ∈ Yϑ\Xϑ. Thus

G(Xϑ, ϑα) ≥ 0 and G(Yϑ, ϑα) = 0.

For both cases 1 and 2, since the function is monotone,
we have T (τ, Yϑ) ≥ T (τ,Xϑ). Therefore, the marginal
gain G(Xϑ, ϑα) ≥ G(Yϑ, ϑα) for all cases. •

Having established that fϑ is a submodu-
lar and monotone function, our next step is
to provide conditions that allow us to cast
SequentialMultiAgentDeployment as a greedy
algorithm with respect to this function. This would
enable us to employ Theorem A.1 to guarantee lower
bounds on fϑ(Xϑ), with Xϑ being the output of
SequentialMultiAgentDeployment.

First, when picking trajectories from line 16
in SequentialMultiAgentDeployment, all trajectories
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must be chosen from the same set of possible trajecto-
ries Ωϑ. We satisfy this requirement with the following
assumption.

Assumption 6.5 Agents begin at the same location in
the environment, share the same SMDP, and are capa-
ble of interacting with as many other agents as needed,
i.e., N = |A|. Agents choose their sub-environment tra-
jectories one at a time. Furthermore, agents are given
sufficient time for DDRP (line 15) to have visited all pos-
sible trajectory sets Ωϑ.

The next assumption we make allows agents to pick
trajectories regardless of order and repetition, which is
needed to mimic the set function properties of fϑ.

Assumption 6.6 R is set to the single agent reward rε.
As a result, the multi-agent interaction reward function
is rφ = rε.

This assumption is necessary because, if we instead
consider a reward R that is dependent on the num-
ber of agents acting on τ , the order of which the
agents choose their trajectories would affect their deci-
sion making. Furthermore, this restriction satisfies the
condition V ar(R) to be finite in Theorem 6.1. We are
now ready to characterize the lower bound performance
of SequentialMultiAgentDeployment with respect to
the optimal set of task trajectories. For convenience, let
X∗ϑ = argmax

Xϑ∈Ωϑ
fϑ(Xϑ) denote the optimal set of task

trajectories.

Theorem 6.4 Let Xϑ be the trajectory set returned by
SequentialMultiAgentDeployment. Under Assump-
tions 6.2-6.6, it holds that fϑ(Xϑ) ≥ (1− e−1)fϑ(X∗ϑ).

Proof. Our strategy relies on making sure we can invoke
Theorem A.1 for SequentialMultiAgentDeployment.
From Lemma 6.3, we know fϑ is submodular
and monotone. What is left is to show that
SequentialMultiAgentDeployment chooses trajecto-
ries from Ωϑ which maximize the marginal gain
with respect to fϑ. First, we have that the agents
all choose from the set Ωϑ as a direct result of
Assumptions 6.2 and 6.5. This is because Q̂ and
SMDP are equivalent for all agents and they all
begin with the same initial conditions. Now we
show that SequentialMultiAgentDeployment chooses
agents which locally maximizes the marginal gain of fϑ.
Given any set Xϑ and ϑα ∈ Ωϑ \Xϑ, the marginal gain
is

fϑ(Xϑ ∪ {ϑα})− fϑ(Xϑ) =∑
∀τ

T (τ,Xϑ ∪ {ϑα})−
∑
∀τ

T (τ,Xϑ) =

∑
∀τ

(T (τ,Xϑ ∪ {ϑα})− T (τ,Xϑ)).

The function Evaluate on lines 7 and 8 has the agent
calculate the marginal gain for a particular task, given
ϑ and Xϑ. Evaluate calculates the marginal gain for
all tasks as∑

∀τ∈ϑ.−→τ

max((T (τ, {ϑ}), T (τ,Xϑ))− T (τ,Xϑ)),

which is equivalent to
∑
∀τ

(T (Xϑ ∪{ϑ})−T (Xϑ)). Since

SequentialMultiAgentDeployment takes the trajec-
tory that maximizes Evaluate, the result now follows
from Theorem A.1. •

7 Empirical validation and evaluation of
performance

In this section we perform simulations in order to vali-
date our theoretical analysis and justify the use of DDRP
over other model-based and model-free methods. All
simulations were performed on a Linux-based worksta-
tion with 16 GB of RAM and a stock AMD Ryzen 1600
CPU. GPU was not utilized in our studies, but could be
implemented to improve sampling speed of some test-
ing algorithms. We first illustrate the optimality ratio
obtained by the sub-environment search in single-agent
and sequential multi-agent deployment scenarios. Next,
we compare the performance of DDRP, DDRP-OO, MCTS,
and ACKTR in a simple environment. Lastly, we study
the effect of multi-agent interaction on the performance
of the proposed algorithm.

7.1 Illustration of performance guarantees

Here we perform simulations that help validate the re-
sults of Section 6. We achieve this by determining Xx

from SubEnvSearch, which is an implementation of
greedy maximization of submodular set functions, and
the optimal region set X∗x , by brute force computa-
tion of all possible sets. In this simulation, we use 1
agent and 1 objective with 25 regions. We implement
DDRP-OO by loading previously trained data and com-
pare the value of the first sub-environment found to the
value of the optimal sub-environment. 1000 trials are
simulated by randomizing the initial state of the envi-
ronments. We plot the probability distribution function
of fx(Xx)/fx(X∗x) in Figure 7.1. The empirical lower
bound of fx(Xx)/fx(X∗x) is a little less than 1 − e−1,
consistent with the result, cf. Theorem 6.2, that the
submodularity ratio of SubEnvSearch may not be 1.
We believe that another factor for this empirical lower
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bound is that Assumption 6.2 is not fully satisfied in
our experiments. In order to perform the simulation,
we trained the agent on similar environments for 10
minutes. Because the number of possible states in this
simulation is very large, some of the uncommon states
may not have been visited enough for Q̂ to mature.

Fig. 7.1 Probability distribution function of fx(Xx)/fx(X∗x).

Next we look for empirical validation for the lower
bounds on fϑ(Xϑ)/fϑ(X∗ϑ). This is a difficult task be-
cause determining the optimal set of trajectories X∗ϑ
is combinatorial with respect to the trajectory size,
number regions, and number of agents. We simulate
SequentialMultiAgentDeployment in a 36 region en-
vironment with one type of objective where 3 agents
are required to start at the same region and share the
same Q̂, which is assumed to have converged to the
optimal value. 1000 trials are simulated by randomiz-
ing the initial state of the environments. As shown in
Figure 7.2, the lower bound on the performance with
respect to the optimal set of trajectories is greater than
1− e−1, as guaranteed by Theorem 6.4. This empirical
lower bound may change under more complex environ-
ments with an increased number of agents, more re-
gions, and longer sub-environment lengths. Due to the
combinatorial nature of determining the optimal set of
trajectories, it is difficult to simulate environments of
higher complexity.

7.2 Comparisons to alternative algorithms

In DDRP, DDRP-OO, and MCTS, the agent is given an
allocated time to search for the best trajectory. In
ACKTR, we look at the number of simulations needed
to converge to a policy comparable to the ones found
in DDRP, DDRP-OO, and MCTS. We simulate the same
environment across these algorithms. The environment
has |O| = 1, where objectives have a random number of
waypoints (|Ob| ≤ 15) placed uniformly randomly. The

Fig. 7.2 Probability distribution function of fϑ(Xϑ)/fϑ(X∗ϑ).

environment contains 100× 100 points in R2, with 100
evenly distributed regions. The sub-environment length
for DDRP and DDRP-OO are both 10 and the maximum
number of steps that an agent is allowed to take is
100. Furthermore, the maximum reward per episode is
capped at 10. We choose this environment because of
the large state space and action space in order to illus-
trate the strength of Dynamic Domain Reduction for
Multi-Agent Planning in breaking it down into compo-
nents that have been previously seen. Figure 7.3 shows
that MCTS performs poorly for the chosen environ-
ment because of the large state space and branching fac-
tor. DDRP initially performs poorly, but yields strong re-
sults given enough time to think. DDRP-OO performs well
even when not given much time to think. Theorem 6.2
helps give intuition to the immediate performance of
DDRP-OO. The ACKTR simulation, displayed in Fig-
ure 7.4, performs well, but only after several million
episodes of training, corresponding to approximately 2
hours using 10 CPU cores. This illustrates the inher-
ent advantage of model-based reinforcement learning
approaches when the MDP model is available. Data is
plotted to show the average and confidence intervals of
the expected discounted reward of the agent(s) found in
the allotted time. We perform 100 trials per data point
in the case studies.

We perform another study to visually compare tra-
jectories generated from DDRP, MCTS, and ACKTR as
shown in Figure 7.5. The environment contains three
objectives with waypoints denoted by ‘x’, ‘square’, and
‘triangle’ markers. Visiting ‘x’ waypoints yield a reward
of 3, while visiting ‘square’ or ‘triangle’ waypoints yield
a reward of 1. We ran both MCTS and DDRP for 3.16
seconds and ACKTR for 10000 trials, all with a dis-
count factor of γ = .99. The best trajectories found
by MCTS, DDRP, and ACKTR are shown in Figure 7.5
which yield discounted rewards of 1.266, 5.827, and
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Fig. 7.3 Performance of DDRP, DDRP-OO, and MCTS in ran-
domized 2D environments with one objective type.

Fig. 7.4 Performance of offline algorithm: ACKTR in ran-
domized 2D environments with one objective type.

4.58, respectively. It is likely that the ACKTR policy
converged to a local maximum because the trajecto-
ries generated near the ending of the 100000 trials had
little deviation. We use randomized instances of this
environment to show a comparison of DDRP, DDRP-OO,
and MCTS with respect to runtime in Figure 7.6 and
show the performance of ACKTR in a static instance
of this environment in Figure 7.7.

7.3 Effect of multi-agent interaction

Our next simulation evaluates the effect of multi-agent
cooperation in the algorithm performance. We consider
an environment similar to the one in Section 7.2, ex-
cept with 10 agents and |O| = 3, where objectives have
a random number of waypoints (|Ob| ≤ 5) that are
placed randomly. In this simulation we do not train
the agents before trials, and Dynamic Domain Reduc-
tion for Multi-Agent Planning is used with varying

Fig. 7.5 The trajectories generated from MCTS, DDRP, and
ACKTR are shown with dashed, solid, and dash-dot lines
respectively, in a 100 × 100 environment with 3 objectives.
The squares, x’s, and triangles represent waypoints of three
objective types. The agent (represented by a torpedo) starts
at the center of the environment.

Fig. 7.6 Performance of DDRP, DDRP-OO, and MCTS in ran-
domized 2D environments with three objective types.

N where agents asynchronously choose trajectories. In
Figure 7.8, we can see the benefit of allowing agents to
interact with each other. When agents are able to take
coupled actions, the expected potential discounted re-
ward is greater, a feature that becomes more marked
as agents are given more time T to think.

8 Conclusions

We have presented a framework for high-level multi-
agent planning leading to the Dynamic Domain Re-
duction for Multi-Agent Planning algorithm. Our de-
sign builds on a hierarchical approach that simul-



16 Aaron Ma Michael Ouimet Jorge Cortés

Fig. 7.7 Performance of ACKTR in a static 2D environment
with three objective types.

Fig. 7.8 Performance of multi-agent deployment using
DDRMAP in 2D environment.

taneously searches for and creates sequences of ac-
tions and sub-environments with the greatest ex-
pected reward, helping alleviate the curse of dimen-
sionality. Our algorithm allows for multi-agent inter-
action by including other agents’ state in the sub-
environment search. We have shown that the action
value estimation procedure in DDRP converges to the
optimal value of the sub-environment SMDP with
probability 1. We also identified metrics to quan-
tify performance of the sub-environment selection in
SubEnvSearch and sequential multi-agent deployment
in SequentialMultiAgentDeployment, and provided
formal guarantees using scenario optimization and sub-
modularity. We have illustrated our results and com-
pared the algorithm performance against other ap-
proaches in simulation. The biggest limitation of our
approach is related to the spatial distribution of objec-
tives. The algorithm does not perform well if the envi-
ronment is set up such that objectives cannot be split

well into regions. Future work will explore the incor-
poration of constraints on battery life and connectiv-
ity maintenance of the team of agents, the considera-
tion of partial agent observability and limited communi-
cation, and the refinement of multi-agent cooperation
capabilities enabled by prediction elements that indi-
cate whether other agents will aid in the completion of
an objective. We also plan to explore the characteriza-
tion, in specific families of scenarios, of positive lower
bounds on the submodularity ratio of the set function
that assigns the discounted reward of the selected sub-
environment, and the use of parallel, distributed meth-
ods for submodular optimization capable of handling
asynchronous communication and computation.
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A Submodularity

We review here concepts of submodularity and monotonic-
ity of set functions following [29]. A power set function
f : 2Ω → R is submodular if it satisfies the property of di-
minishing returns,

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ), (A.1)

for all X ⊆ Y ⊆ Ω and x ∈ Ω \ Y . The set function f is
monotone if

f(X) ≤ f(Y ), (A.2)

for all X ⊆ Y ⊆ Ω. In general, monotonicity of a set function
does not imply submodularity, and vice versa. These proper-
ties play a key role in determining near-optimal solutions to
the cardinality-constrained submodular maximization problem
defined by

max f(X)

s.t. |X| ≤ k.
(A.3)

In general, this problem is NP-hard. Greedy algorithms seek
to find a suboptimal solution to (A.3) by building a set X one
element at a time, starting with |X| = 0 to |X| = k. These
algorithms proceed by choosing the best next element,

max
x∈Ω\X

f(X ∪ {x}),
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to include in X. The following result [29,35] provides a lower
bound on the performance of greedy algorithms.

Theorem A.1 Let X∗ denote the optimal solution of prob-
lem (A.3). If f is monotone, submodular, and satisfies f(∅) = 0,
then the set X returned by the greedy algorithm satisfies

f(X) ≥ (1− e−1)f(X∗).

An important extension of this result characterizes the
performance of a greedy algorithm where, at each step, one
chooses an element x that satisfies

f(X ∪ {x})− f(X) ≥ α(f(X ∪ {x∗})− f(X)),

for some α ∈ [0, 1]. That is, the algorithm chooses an element
that is at least an α-fraction of the local optimal element
choice, x∗. In this case, the following result [36] characterizes
the performance.

Theorem A.2 Let X∗ denote the optimal solution of prob-
lem (A.3). If f is monotone, submodular, and satisfies f(∅) = 0,
then the set X returned by a greedy algorithm that chooses ele-
ments of at least α-fraction of the local optimal element choice
satisfies

f(X) ≥ (1− e−α)f(X∗).

A generalization of the notion of submodular set func-
tion is given by the submodularity ratio [31], which measures
how far the function is from being submodular. This ratio is
defined as largest scalar λ ∈ [0, 1] such that

λ ≤

∑
z∈Z

f(X ∪ {z})− f(X)

f(X ∪ Z)− f(X)
, (A.4)

for all X,Z ⊂ Ω. The function f is called weakly submodular
if it has a submodularity ratio in (0, 1]. If a function f is
submodular, then its submodularity ratio is 1. The following
result [31] generalizes Theorem A.1 to monotone set functions
with submodularity ratio λ.

Theorem A.3 Let X∗ denote the optimal solution of prob-
lem (A.3). If f is monotone, weakly submodular with submod-
ularity ratio λ ∈ (0, 1], and satisfies f(∅) = 0, then the set X
returned by the greedy algorithm satisfies

f(X) ≥ (1− e−λ)f(X∗).

B Scenario optimization

Scenario optimization aims to determine robust solutions for
practical problems with unknown parameters [37,38] by hedg-
ing against uncertainty. Consider the following robust convex
optimization problem defined by

RCP: min cT γ
γ∈Rd

subject to: fδ(γ) ≤ 0, ∀δ ∈ ∆,
(B.1)

where fδ is a convex function, d is the dimension of the opti-
mization variable, δ is an uncertain parameter, and ∆ is the
set of all possible parameter values. In practice, solving the
optimization (B.1) can be difficult depending on the cardi-
nality of ∆. One approach to this problem is to solve (B.1)
with sampled constraint parameters from ∆. This approach

views the uncertainty of situations in the robust convex op-
timization problem through a probability distribution Prδ

of ∆, which encodes either the likelihood or importance of
situations occurring through the constraint parameters. To
alleviate the computational load, one selects a finite number
NSCP of parameter values in ∆ sampled according to Prδ and
solves the scenario convex program [32] defined by

SCPN : min
γ∈Rd

cT γ

s.t. fδ(i)(γ) ≤ 0, i = 1, . . . , NSCP.

(B.2)

The following result states to what extent the solution
of (B.2) solves the original robust optimization problem.

Theorem B.1 Let γ∗ be the optimal solution to the scenario
convex program (B.2) when NSCP is the number of convex con-
straints. Given a ‘violation parameter’, ε, and a ‘confidence pa-
rameter’, $, if

NSCP ≥
2

ε
(ln

1

$
+ d)

then, with probability 1−$, γ∗ satisfies all but an ε-fraction of
constraints in ∆.

C List of symbols

(Z≥1)Z . . . . . . . . . . . . . . . . . . . . . . . . . . . (non-negative) integer
(R>0)R . . . . . . . . . . . . . . . . . . . . . . . . . . (positive) real number
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