
Cooperative dynamic domain reduction?

Aaron Ma, Michael Ouimet, and Jorge Cortés

1 Department of Mechanical and Aerospace Engineering, University of California,
San Diego, {aam021,cortes}@ucsd.edu

2 SPAWAR Systems Center Pacific, San Diego, ouimet@spawar.navy.mil

Abstract. Unmanned vehicles (UxVs) are increasingly deployed in a
wide range of challenging scenarios, including disaster response, surveil-
lance, and search and rescue. This paper is motivated by scenarios where
a heterogeneous swarm of UxVs is tasked with completing a variety of
different objectives that possibly require cooperation from vehicles of
varying capabilities. Our goal is to develop an approach that enables ve-
hicles to aid each other in the services of these objectives in a distributed
and autonomous fashion. To address this problem, we build on Dynamic
domain reduction for multi-agent planning (DDRP), which is a framework
that utilizes model-based hierarchical reinforcement learning and spatial
state abstractions crafted for robotic planning. Our strategy to tackle
the exponential complexity of reasoning over the joint action space of
the multi-agent system is to have agents reason over single-agent trajec-
tories, evaluate the result as a function of the cooperative objectives that
can be completed, and use simulated annealing to refine the search for
the best set of joint trajectories. The resulting algorithm is termed Co-
operative dynamic domain reduction for multi-agent planning (CDDRP).
Our analysis characterizes the long-term convergence in probability to
the optimal set of trajectories. We provide simulations to estimate the
performance of CDDRP in the context of swarm deployment.

1 Introduction

UxVs are an outlet for the implementation of state-of-the-art algorithms that
pertain to many fields of dynamic systems and machine learning. Recently, par-
ticular interest in the autonomous capability of these vehicles is growing. Char-
acterizing multiple UxVs that interact with each other is difficult because of the
joint number of possibilities that exist due to the joint state and action spaces.
To approach this challenge, we propose DDRP, a hierarchical algorithm that takes
slices of the environment and models them as a semi-Markov decision process.
DDRP lacks a structure for agents requesting and assisting executing objectives
that require more than one agent to complete. The motivation of this paper is to
extend the DDRP framework to allow agents to share their requests and to assist
others if they deem it beneficial to the entire swarm.

Figure 1 provides an example application scenario of interest. In this example,
agents are tasked with building structures. Agents are able to gather resources

? This work was supported by ONR Award N00014-16-1-2836.

2 Aaron Ma, Michael Ouimet, and Jorge Cortés

(a) Initial conditions (b) Final trajectories

Fig. 1. Example use of CDDRP. Agents are tasked with gathering resources and build-
ing structures at build sites. The symbols, , , , represent agents, resources, and
build sites respectively. In this specific case, the build site on the bottom left requires
resources 1, 2, and 4, while the build site on the top right requires resources 3 and 6 to
begin construction. Figure 1(a) shows the initial conditions and Figure 1(b) illustrates
the trajectories resulting from the algorithm proposed in this paper.

that are randomly scattered in the environment, but they are only able to carry
two resources at any given time. The agents bring resources to building sites
which require certain combination of resources for construction, a process that
is expedited when agents cooperate.

Literature review: DDRP [1] is a framework that uses concepts from multi-
agent planning and model-based reinforcement learning that can be used by
agents as a scalable method to service a variety of objectives in massive environ-
ments. Distributed deployment methods satisfy a global task when the agents
are limited to local information. These algorithms are an attractive approach for
deployment of UxVs because solutions are often robust to failure of individual
agents and computational load can be distributed amongst the agents, creating
a more scalable option than centralized methods [2–7]. DDRP is inspired by many
techniques built for finding a policy in a Markov decision process (MDP) [8–11].
If a model is known, it is common practice to search the state and action space
of a MDP using a Monte-Carlo tree search (MCTS) [12]. In MCTS, the agent
assumes a state and makes an action, observing the reward gathered from the
change in state as a result of the action. Taking an action that maximizes the
upper confidence bound (UCB) of the expected discounted reward [13] is shown
to efficiently search state and action space. One variation of MDPs that we use
in the formulation of DDRP, is the semi-Markov decision process (SMDP) [14],
where agents take multi-time step macro-actions or options instead of actions [8].
DDRP utilizes a hierarchical structure, inspired from hierarchical reinforcement
learning algorithms that are utilized when the state space and action space of
the environment are large [15, 16]. MDPs have been structured to account for
joint actions amongst multiple agents as multi-agent Markov decision processes
(MMDP) [17]. We extend DDRP to handle MMDP scenarios with cooperative

Cooperative dynamic domain reduction 3

objectives using simulated annealing (SA) [18–22]. Simulated annealing is an
approach for finding a state with optimal value in a Markov chain that borrows
the idea of annealing from nature and is capable of handling high-dimensional,
nonconvex problems.

Statement of contributions: We strive to enable a swarm of UxVs to
cooperate and complete a large variety of objectives in massive environments.
In this paper, we use DDRP as a baseline framework to handle these conditions
and make modifications to allow for cooperation. We also propose an extension
to the framework to enable the agents to individually plan their trajectories in a
way that converges in probability to a globally optimal joint set of trajectories.
Given the overall state of the environment, agents create a set of trajectories in
our modified DDRP. The agents take the set of trajectories they created in DDRP

and individually change their planned trajectory with respect to one of two
schemes that we explore called flat and weighted. In both methods, agents use a
simulated annealing approach to find their own trajectories. In the flat scheme,
agents attempt random trajectories that they found in DDRP. Agents can use the
weighted scheme to attempt trajectories with respect to the decisions that other
agents have made as a means of proposing a joint effort in the completion of
cooperative tasks. We call the modifications and extensions to the framework,
CDDRP. Lastly, we show that the agents are able to plan asynchronously and
converge in probability to the set of optimal joint trajectories that yield the
greatest discounted reward in a receding time horizon and perform simulations
to get empirical results.

2 Preliminaries

We introduce here essential concepts and tools for the rest of the paper, begin-
ning with some notation. We use Z and R to denote integers and real numbers,
respectively. An objective-oriented approach with the use of tuples is present
throughout the paper: for an arbitrary tuple a = 〈b, c〉, the notation a.b means
that b belongs to tuple a. Last, |Y| indicates the cardinality of a set Y.

2.1 Markov chains and (semi)-Markov decision processes

A Markov chain describes a sequence of states such that the probability of tran-
sitioning from one state to another only depends on the current state. We define
a Markov chain as a tuple 〈S, P rs〉 of states s ∈ S and probability Prs(s′|s) that
s transitions to s′. If we assign states of the Markov chain to nodes, and positive
state transition probabilities Prs(s′|s) > 0 to edges, we can create a graph of
the Markov chain. A value can be associated to each state s in a Markov chain,
V (s) ∈ R, allowing us to order nodes in the graph vertically with respect to their
value, creating an ordered graph as shown in Figure 3. Define H ∈ R such that
H ≤ V (s) for any s. The following properties of a Markov chain are important
and can be analyzed by visualization of an ordered graph:

4 Aaron Ma, Michael Ouimet, and Jorge Cortés

(i) Strong irreducibility: there exists a path from s to s′ for all s′.

(ii) Weak reversibility: if s can be reached by s′ at height H, then there exists a
path from s′ to s at height H as well.

A Markov decision process (MDP) is an extension of Markov chains such
that a decision is made at each state influences probability of state transition.
A MDP is a tuple 〈S,A, Prs, R〉 that contains a state and action spaces S and
A, respectively, the probability of transitioning from one state s to another s′

Prs(s′|s, a) after taking action a ∈ A, and a rewardR(s′|s, a) ∈ R that is received
for transitioning to s′ after taking action a in state s. Amongst several extensions
of MDPs are multi-agent Markov decision processes (MMDP) and semi-Markov
decision processes (SMDP). A MMDP is a tuple 〈S,A, {Aα}α∈A, P rs, R〉, similar
to a MDP with the addition of agents α ∈ A, where each agent has an action
space {Aα}. With this modification, the state transition function Prs maps
the probability of state transition with respect to the joint actions of agents
in A. One strategy for multi-agent cooperation is to reason over the joint action
space as in MMDPs. This solution does not scale with the number of agents, as
the joint action space increases and the problem dimension grows exponentially.
Instead, we reason over single-agent SMDPs and utilize the resulting trajectories
for cooperation. SMDPs allow for actions that may take multiple time steps
to execute. A SMDP is a tuple 〈S,A, Prs, R, Prt〉, where the additional term
Prt(t|s, a) is the probability of action a in state s taking t time to complete.
DDRP models parts of the environment as a SMDP and uses the upper confidence
bound to efficiently search for the optimal policy.

2.2 Simulated annealing

Let the tuple 〈S, P r, V 〉 define a Markov chain with value associated to its state.
Simulated annealing seeks to determine argmaxs V (s), which is generally a com-
binatorial problem. Algorithm 1 outlines the process of simulated annealing.

Algorithm 1: Simulated annealing

1 Initialize ρ, T
2 for k = 1 to k = N
3 Generate new state ρ′

4 if V (ρ′) > V (ρ) or Random(0,1)

< e
V (ρ′)−V (ρ)

T :
5 ρ = ρ′

6 Decrement T

As the temperature of the system T is incrementally decreased, the prob-
ability that a new solution with lower value is accepted decreases. Simulated

Cooperative dynamic domain reduction 5

annealing yields strong results [18,19,21,22] and converges to the global optimal
if the temperature is decreased sufficiently slowly. The cooling rate

Tk =
c

log (k)
, (1)

is shown [21] to be a necessary and sufficient condition for the algorithm to
converge in probability to a set of states that globally optimize V when the
underlying Markov chain has both strong irreducible and weak reversible prop-
erties.

3 Problem statement

Consider a set of agents A indexed by α. The agents seek to service a number
of different objectives, whose objective type is indexed by b. A sub-objective q =
〈w, b〉 contains a waypoint w ∈ Rd and an objective type. An objective o = 〈Q, r〉
consists of a set of sub-objectives Q and a reward r ∈ R. We let O denote the
set of all objectives. One possibility is to have objectives that require only one
agent to be satisfied, as in [1]. Instead, here we consider objectives with a sub-
objective set of cardinality |Q| > 0. In this case, agents need to simultaneously be
at specified waypoints and take actions in q ∈ o.Q in order to complete objective
o. Agents use DDRP to generate a set of potential trajectories, termed V, that
they may take to service objectives in the environment. We strive to extend the
capabilities of DDRP to include handling objectives that need two or more agents
to complete. Given N agents, we determine a structure that allows the agents to
share their trajectories and to distributively determine the joint trajectory that
globally maximizes the sum of future discounted rewards.

4 Cooperative dynamic domain reduction planning

In this section we provide an overview DDRP and extend the framework to deal
with objectives that require more than one agent. We organize this section as
follows. First we review basic definitions from DDRP introduced in our previous
work [1]. As we discuss these definitions, we provide modifications to enable
the agents to communicate desire for cooperation from other team members.
Next, we present a high-level overview of algorithms used in DDRP. This sets the
basis to introduce the multi-agent system where agents communicate and search
for the joint optimal actions for deployment on large scale environments with
cooperative objectives. We call the resulting framework Cooperative dynamic
domain reduction planning (CDDRP).

4.1 Abstractions and definitions

We begin with some core definitions in DDRP. First we introduce abstracted
regions and actions, the construction of sub-environments, and task trajectories.

6 Aaron Ma, Michael Ouimet, and Jorge Cortés

Then we give a high level overview of main algorithms in DDRP, SubEnvSearch
and TaskSearch, and then finish with a new trajectory selection algorithm on
the multi-agent level with some analysis.

Abstracted regions: A region is a convex set x ⊆ Rd such that the union of
all regions are disjoint. The state of a region x is an abstraction of the objectives
that reside in x. Let Φx : w → x define the abstraction function that returns
the region that q belongs to. We use this function to map where sub-objectives
exist, i.e., Φx(q.w) = x. Given a region x, let Qbx = {q : Φx(q.w) = x, q.b = b}
be the set of sub-objectives of objective type b that exist in it. We define the
function Φo : Qbx → sbx to describe the abstracted state of the corresponding
type of objective in the region. Define the regional state to be sx = (s1x, s

2
x, . . .).

Abstracted tasks: In [1], a task is a tuple τ = 〈sb′xi , s
b
xi , xi, xj , b〉, where

xi is the region that the agent is executing sub-objective of objective type b
in, xj is the next region that the agent plans to travel, sbxi is the prior state

of xi, and sb
′

xi is the post state of xi. Here, we augment the notion of task to
include the concept of time abstraction. Mapping the time to an interval allows
the agents to communicate approximate times to complete coordinated tasks
by. If the length of the time intervals is too small, then the number of possible
joint actions increases and the problem may become intractable. On the other
hand, if the length of the time intervals is too big then the execution time of
coordinated tasks become less precise. Let the convex set ς ⊆ R specify a time
interval. We specify a sub-task, µ = 〈xi, b, ς〉, to be a tuple that contains a region
xi that the agent acts in, a objective type b, and a time interval ς. The modified
definition of a task is now τ = 〈µ, sbxi , s

b′

xi , xj〉. This modification allows agents
to communicate the bare minimum information that is necessary for others to
know when they are attempting a coordinated objective. We denote by T the
set of all tasks.

Sub-environments: The DDRP framework takes the environment and gen-
erates sub-environments ε composed of a sequence of abstracted regions and a
state encoding proximity and regional states of those regions. We extend the
definition of sub-environment to include requirements that the agent agrees to
satisfy. We do this by incorporating the requirements into the state of the sub-
environment. Let −→x be a finite sequence of regions in the environment (e.g.,
[x2, x1, x3]). We determine a state of the sub-environment given −→x . To do this,
we need to determine if regions are repeated in −→x . Let ξ(k,−→x), return the first
index h of −→x such that −→x h = −→x k. Another necessary component is the time that
it takes for the agent to travel between regions. We use d(xixj) : xi, xj → Z to
designate an abstracted amount of time it takes for an agent to move from xi to
xj , or ∞ if no path exists. We create sub-environments with the constraint that
agents may need to satisfy some cooperative tasks. Let the set U = {µ1, µ2, . . .}
be a set of subtasks that the agent agreed to partake in the sub-environment.
We define the sub-environment state with the addition of requirements as

s = [s−→x 1
, s−→x 2

, . . .]× [ξ(1,−→x), ξ(2,−→x), . . .]× [d(−→x 1,
−→x 2), d(−→x 2,

−→x 3), . . .] (2)

× {µ1, µ2, . . .}.

Cooperative dynamic domain reduction 7

We denote by Sε the set of all possible sub-environment states. A sub-
environment is ε = 〈−→x , s,U〉.

When an agent performs a task in the sub-environment, it expects the action
to take multiple time steps to complete, the environment to change states, and to
receive some reward. Let Prs and Prt be the probability distributions for state
transition and time of completion for executing a task in a sub-environment,
respectively. Also, let rε designate the expected reward that an agent receives
for choosing a task given the state of a sub-environment. Finally, we can repre-
sent the process of executing tasks in sub-environments as the sub-environment
SMDP, M = 〈Sε, T , P rs, rε, P rt〉. The goal of the agent is to determine a policy
πε : ε.s→ τ that yields the greatest rewards in M. The state value under policy
πε is given by

V πε(ε.s)= rε+
∑
t∈R

Prtγt
∑
ε.s∈Sε

PrsV πε(ε.s′) s.t. 0 ≤ γ < 1. (3)

Task trajectories: Agents cooperate with others by sharing their current
and prospective plans for the receding time horizon. In DDRP, we call this in-
formation a task trajectory. This is defined as ϑ = 〈[τ1, τ2, . . .], [Pr1, P r2, . . .]〉,
where tasks in [τ1, τ2, . . .] are executed in order and the completion time of τ1
is according to the probability density function Pr1(t), etc. Task trajectories
are created with respect to some sub-environment ε and are constrained so that
a task in ϑ.τp.xj must be ϑ.τp+1.xi, making it so that the region that agents
travel to next is always the active region of the next task to complete. Here,
we redefine the concept of task trajectory to carry information about what co-
operative tasks the agent has. Given the cooperative tasks in a trajectory, the
agent may have some cooperative tasks that it plans on executing with others,
and some cooperative tasks that it might not have found partners for execution.
The agent puts all subtasks in the set U . A task trajectory is then defined as
ϑ = 〈[τ1, τ2, . . .], [Pr1, P r2, . . .],U〉.

4.2 DDRP algorithms and task generation for communication

DDRP is a hierarchical framework which has an algorithm called SubEnvSearch

that generates subsets of the entire environment. The sub-environment that is
created is modeled as an SMDP, and TaskSearch is used to optimally find a
policy for it. In this section, we give a brief description of the algorithmic com-
ponents SubEnvSearch and TaskSearch, and introduce some necessary modifi-
cations for CDDRP. DDRP organizes SubEnvSearch and TaskSearch into a hierar-
chical structure as shown in Figure 2(a).

Sub-environment search: SubEnvSearch uses the environment as an input
and creates a sub-environment. Using the set of all regions in the environment,
we add one region at a time to a ‘sub-environment set’ until there are Nε re-
gions. As the sub-environment set is being generated, its value (determined by
TaskSearch) is evaluated. The agent uses this value to add regions that locally
maximize the value of the sub-environment.

8 Aaron Ma, Michael Ouimet, and Jorge Cortés

(a) Algorithms of DDRP (b) CooperativeTrajectorySearch

Fig. 2. Workflow of DDRP and CooperativeTrajectorySearch. DDRP in Figure 2(a)
is a hierarchical algorithm that dynamically creates sub-environments with sub-
environment search. Sub-environments are modeled as a semi-Markov decision pro-
cess where the agent uses TaskSearch to find tasks which yield the greatest expected
discounted reward. CooperativeTrajectorySearch is a process that is run in parallel
with DDRP. With respect to the simulated annealing process, agents asynchronously
choose active trajectories ϑaα from a set of trajectories Vα found in DDRP as shown in
Figure 2(b). The result is a list of active trajectories, ρ = [ϑa1 , ϑ

a
2 , . . .].

We extend the sub-environment search process to now include cooperative
tasks. To do this, first we run SubEnvSearch to get a sub-environment from the
environment. If a cooperative sub-objective q exist in the sub-environment, then
with some probability we include q to the sub-environment sub-task set ε.U as
a requirement for the agent to complete. These cooperative sub-objectives must
be compatible with each other. For example, an agent is not able to create a
sub-environment with two cooperative sub-objectives at the same time interval.
After this, the agent updates the sub-environment state accordingly and sends
the created SMDP to TaskSearch.

Task search: Given a sub-environment ε generated from SubEnvSearch,
the purpose of TaskSearch is to determine the value of taking a task τ . This is
done using upper confidence bound tree search (UCT) [13], which is a Monte-
Carlo tree search (MCTS) that uses the upper confidence bound of action values
to explore the SMDP. The agent takes the sub-environment SMDP and runs
TaskSearch for many iterations, where the values of taking a task given the
state of the sub-environment converges to a real number. When choosing which
task to take, the agent chooses the task that maximizes the action value given
the state of the sub-environment.

We extend the task search process under the constraint that it must sat-
isfy the cooperative subtasks in the sub-environment. To do this, given the
sub-environment from SubEnvSearch, the agent must obey the constraints of
cooperative subtasks in the sub-environment. At each task selection, the agent
chooses from a set of tasks such that it is still feasible to visit regions in ε.U

Cooperative dynamic domain reduction 9

at the required times. The agent determines the action value for choosing tasks
given the sub-environment state and satisfying the constraints given to it and
returns a task trajectory. This task trajectory also contains all the cooperative
tasks that it was constrained to satisfy as unpaired cooperative tasks.

4.3 Joint DDRP via simulated annealing

In this section we introduce the main contribution of this paper, aside from the
modifications to DDRP described above. We specify a value for the joint set of
trajectories by determining which objectives can be completed given the planned
sub-tasks of all the agents. Then we introduce the algorithm in which agents use
simulated annealing to search for the best set of joint trajectories.

Agents execute DDRP yielding a set of trajectories V. The trajectory that
an agent currently plans to execute, called the active trajectory, is denoted
by ϑa. Agents share their active trajectories so that they know which coop-
erative objectives they can collaborate on. The active trajectories are ordered
in a list with respect to some arbitrary agent ordering to form the active tra-
jectory list ρ = [ϑa1 , ϑ

a
2 , . . .]. In doing so, agents have access to the subtasks

of others. The set of all current subtasks is the collective subtask set, denoted
UA = {µ : µ ∈ ϑ.U , ∀ ϑ ∈ ρ}. We also create a set of subtasks that are planned
to be executed in a given time interval, UAς = {µ : µ ∈ UA, µ.ς = ς}. For the
remainder of the paper, we assume that agents have access to UA and UAς for
all time intervals ς. We say that o is satisfied if all sub-objectives in o exist in
a subtask set at ς such that o.U ⊆ UAς . With knowledge about UAς for all time
intervals ς, agents are able to determine the minimal time interval in which each
objective is expected to be completed. Let the expected time of completion for
an objective be defined as

ςo(UA, ρ) = argmin
ς

∫
ς

γtdt (4)

s.t. o.U ⊆ UAς .

or ςo =∞ if there are no time intervals for which o.U ⊆ UAς . Next, we introduce
the joint task trajectory value as

V A(UA, ρ) =
∑
o∈O

∫
ςo(UA,ρ)

γt o.r dt, (5)

which corresponds to the cumulative discounted reward of all the agents in the
swarm given ρ.

We are now ready to introduce CooperativeTrajectorySearch (cf. Algo-
rithm 2). This strategy takes as input a set of agents, their respective task
trajectory sets, and the set of all objectives. The agents initially choose active
trajectories that form the active trajectory list and the temperature is initialized
to ∞. We use the notation ρ|ϑα to indicate the resulting active trajectory list

10 Aaron Ma, Michael Ouimet, and Jorge Cortés

that occurs when agent α chooses a new active trajectory ϑα = ϑaα. This oper-
ation simply changes the α-index element of ρ to be ϑα. An agent at random
then chooses to select a trajectory from its trajectory set with probability dis-
tribution Prϑ. This distribution follows one of two schemes. The first is called
a flat scheme, where agent α chooses a trajectory ϑ with respect to the number
of trajectories in the set as follows:

Prϑ(ϑ)† =
1

|V|
. (6)

The next method of selecting a trajectory that we explore is called a weighted
scheme. In this method, agent α chooses a trajectory with probability with
respect to the local joint task trajectory values as follows:

Prϑ(ϑα)‡ =
V A(UA, ρ|ϑα)∑

ϑiα∈Vα
V A(,UA, ρ|ϑiα)

(7)

Once the agent has chosen ϑα from the distribution, it evaluates the marginal
gain of the trajectory given by V A(UA, ρ|ϑα)−V A(UA, ρ). If the marginal gain is
positive, or if the simulated annealing acceptance given by line 8 is satisfied, then
the agent accepts the new trajectory and notifies all other agents of the change.
The temperature decreases by the cooling schedule in (1), and the above process
is repeated. CooperativeTrajectorySearch is illustrated in Figure 2(b). DDRP
and CooperativeTrajectorySearch are run in parallel, where the trajectory
set VA for agents is constantly being updated as trajectories are discovered in
DDRP. We call the resulting framework CDDRP.

Algorithm 2: CooperativeTrajectorySearch
1 CooperativeTrajectorySearch (V,A):

2 ρ = [ϑ0
1, ϑ

0
2, . . .]

3 T =∞
4 for k ∈ [2, 3, . . .]:
5 α←RandomSelection(A)

6 ϑ← sample from Prϑ

7 if V A(ρ|ϑ,Q) > V A(ρ,Q)

8 or Random(0,1) < e
VA(ρ|ϑ,Q)−VA(ρ,Q)

T

9 ρ = ρ|ϑ
10 T = c

log (k)

Fig. 3. (Left): Pseudocode description of CooperativeTrajectorySearch. (Right): A
graph generated from the Markov chain 〈ρ, Pr, V 〉. Nodes represent configurations of
task trajectory lists and edges represent positive state transition probabilities Pr(ρ, ρ′)
between states ρ and ρ′. The graph is ordered such that the y-component of a node
increases as node value decreases.

This process can be characterized by a Markov chain. The Markov chain is
C = 〈P, P rρ, V A〉 which contains the set of possible active trajectory lists P,

Cooperative dynamic domain reduction 11

the probability distribution Prρ that encodes the chance of hopping from one
active trajectory length to another, and V A. Figure 3 gives an example of the
Markov chain that characterizes our system. For the following analysis we define
P∗ = {ρ : ρ ∈ P s.t. argmaxρ∈P V A(Q, ρ)} as the set of active trajectory lists

that maximize V A (more than one may exist).

5 Performance of selection schemes: ‘flat’ vs. ‘weighted’

In this section we show experimental results for two trajectory selection schemes
and show relative performance differences in the same environments. We perform
3 simulations with the parameters shown in Table 1.

simulation |A| |V| Nε c ∆t total time
1 5 5 5 20 1× 10−4 ∼1s
2 10 10 5 100 2× 10−4 ∼2s
3 100 100 3 800 2× 10−3 ∼20s

Table 1. Parameters used in the simulations.

In these simulations, we assume that the agents have run DDRP for some time
to generate V and then use CooperativeTrajectorySearch to find ρ. We create
the simulation set up with 100 objectives, 50 of which require 2 − 5 agents to
complete. Rewards for satisfying an objective are randomly picked from a range
that scales with the number of agents required to satisfy the objective (which
incentivizes collaboration). Varying parameters in the three simulations are num-
ber of agents, number of trajectories in their respective trajectory sets, length
of the sub-environments they create, and approximated c. The average time per
step, denoted by ∆t in Table 1, varies because the agent needs to calculate Prϑ.
Each simulation is run 100 times for both the ‘weighted’ and ‘flat’ schemes. We
illustrate the results for each simulation in Figure 4. The average time for com-
pletion of experiments for cases 1,2 and 3 were 1, 2, and 20 seconds, respectively.
In all cases, the maximal value found by the ‘weighted’ scheme approaches the
optimal joint trajectory value sooner than the ‘flat’ approach. We find that the
‘flat’ scheme struggles to find joint trajectories with values comparable to the
‘weighted’ scheme when used for large action spaces. In cases with low action
space, such as simulation 1, the maximal value determined from the ‘flat’ scheme
was able to approach the optimal trajectory value. The average value of both
schemes is lower than the maximal value found due to the algorithms propensity
to escape local maximums.

6 Conclusions

We have extended the dynamic domain reduction framework for multi-agent
planning over long time horizons and a variety of objectives to scenarios where

12 Aaron Ma, Michael Ouimet, and Jorge Cortés

(a) Simulation 1 (b) Simulation 2 (c) Simulation 3

Fig. 4. Results for simulations. Here the joint trajectory discounted reward is shown on
the y-axis and the number of steps in log-scale base 10 is shown on the x-axis. We plot
the average discounted reward of the current states in each time step of the simulations
which are labeled ‘weighted’ and ‘flat’. The lines that correspond to ‘weighted’ max
and ‘flat’ max indicate the max value that was found in each trial by time step k,
averaged over all trials.

some objectives require two or more agents to complete. In order to do this,
we have made modified DDRP to allow for necessary information to be shared
amongst agents. These include the inclusion of time abstractions and cooper-
ative objectives, and modifications to both trajectories and sub-environments.
Building on this framework, we have designed an algorithm based on simulated
annealing that allows agents to expedite the exploration of solutions by increas-
ing the chance that they choose tasks that help one another. This is important
in the distributed setting in order to reduce the communication needed to find a
good solution. Our analysis of the algorithm has shown that, given enough time,
the active trajectory list converges in probability to an optimal active trajectory.
We do this by showing that the Markov chain that characterizes our multi-agent
process satisfies weak reversibility and strong irreducibility properties, and by
using a logarithmic cooling schedule. Simulations compare our algorithm with a
weighted approach versus our algorithm with a flat approach when it comes to
agent select trajectories. In the future, we plan to develop efficient methods for
the agents to come up with their trajectories during DDRP, examine the trade-
offs in designing how the simulated annealing process can influence the search
of trajectories in DDRP, and introduce asynchronous implementations to broaden
the utility for real-world scenarios.

References

1. A. Ma, M. Ouimet, and J. Cortés, “Dynamic domain reduction for multi-agent
planning,” in International Symposium on Multi-Robot and Multi-Agent Systems,
Los Angeles, CA, 2017, pp. 142–149.

2. B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of task allocation
in multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9,
pp. 939–954, 2004.

Cooperative dynamic domain reduction 13

3. F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks,
ser. Applied Mathematics Series. Princeton University Press, 2009, electronically
available at http://coordinationbook.info.

4. M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks,
ser. Applied Mathematics Series. Princeton University Press, 2010.

5. M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant
advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19,
no. 1, pp. 24–39, 2012.

6. J. Das, F. Py, J. B. J. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A. Caron,
K. Rajan, and G. S. Sukhatme, “Data-driven robotic sampling for marine ecosys-
tem monitoring,” The International Journal of Robotics Research, vol. 34, no. 12,
pp. 1435–1452, 2015.

7. J. Cortés and M. Egerstedt, “Coordinated control of multi-robot systems: A sur-
vey,” SICE Journal of Control, Measurement, and System Integration, vol. 10,
no. 6, pp. 495–503, 2017.

8. R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning,” Artificial Intelligence, vol. 112,
no. 1-2, pp. 181–211, 1999.

9. F. Broz, I. Nourbakhsh, and R. Simmons, “Planning for human-robot interaction
using time-state aggregated POMDPs,” in AAAI, vol. 8, 2008, pp. 1339–1344.

10. M. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

11. R. Howard, Dynamic programming and Markov processes. M.I.T. Press, 1960.
12. D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,

1995.
13. L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in ECML,

vol. 6. Springer, 2006, pp. 282–293.
14. R. Parr and S. Russell, Hierarchical control and learning for Markov decision pro-

cesses. University of California, Berkeley Berkeley, CA, 1998.
15. A. Bai, S. Srivastava, and S. Russell, “Markovian state and action abstractions for

MDPs via hierarchical MCTS,” in Proceedings of the Twenty-fifth International
Joint Conference on Artificial Intelligence, IJCAI, New York, NY, 2016, pp. 3029–
3039.

16. A. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learn-
ing,” Discrete Event Dynamic Systems, vol. 13, no. 4, pp. 341–379, 2003.

17. C. Boutilier, “Sequential optimality and coordination in multiagent systems,” in
Proceedings of the 16th international joint conference on Artifical intelligence (IJ-
CAI), vol. 1, 1999, pp. 478–485.

18. S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

19. P. Laarhoven and E. Aarts, “Simulated annealing,” in Simulated annealing: Theory
and applications. Springer, 1987, pp. 7–15.

20. M. Malek, M. Guruswamy, M. Pandya, and H. Owens, “Serial and parallel simu-
lated annealing and tabu search algorithms for the traveling salesman problem,”
Annals of Operations Research, vol. 21, no. 1, pp. 59–84, 1989.

21. B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of Operations
Research, vol. 13, no. 2, pp. 311–329, 1988.

22. B. Suman and P. Kumar, “A survey of simulated annealing as a tool for single and
multiobjective optimization,” Journal of the Operational Research Society, vol. 57,
no. 10, pp. 1143–1160, 2006.

http://coordinationbook.info

	Cooperative dynamic domain reduction

