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Abstract—Goal-driven selective attention (GDSA) refers to
the brain’s function of prioritizing the activity of a task-
relevant subset of its overall network to efficiently process
relevant information while inhibiting the effects of distractions.
Despite decades of research in neuroscience, a comprehensive
understanding of GDSA is still lacking. We propose a novel
framework using concepts and tools from control theory as well
as insights and structures from neuroscience. Central to this
framework is an information-processing hierarchy with two main
components: selective inhibition of task-irrelevant activity and
top-down recruitment of task-relevant activity. We analyze the
internal dynamics of each layer of the hierarchy described as a
network with linear-threshold dynamics and derive conditions on
its structure to guarantee existence and uniqueness of equilibria,
asymptotic stability, and boundedness of trajectories. We also
provide mechanisms that enforce selective inhibition using the
biologically-inspired schemes of feedforward and feedback inhi-
bition. Despite their differences, both lead to the same conclusion:
the intrinsic dynamical properties of the (not-inhibited) task-
relevant subnetworks are the sole determiner of the dynamical
properties that are achievable under selective inhibition.

I. INTRODUCTION

The human brain is constantly under the influx of sensory
inputs and is responsible for integrating and interpreting them
to generate appropriate decisions and actions. This influx
contains not only the pieces of information relevant to the
present task(s), but also a myriad of distractions. Goal-driven
selective attention (GDSA) refers to the active selective pro-
cessing of a subset of information influx while suppressing
the effects of others, and is vital for the proper function of the
brain.1 Examples range from selective audition in a crowded
place to selective vision in cluttered environments to selective
taste/smell in food. As a result, a long standing question
in neuroscience involves understanding the brain’s complex
mechanisms underlying selective attention [2]–[7].

A central element in addressing this question is the role
played by the hierarchical organization of the brain [8].
Broadly, this organization places primary sensory and motor
areas at the bottom and integrative association areas (prefrontal
cortex in particular) at the top. Accordingly, sensory infor-
mation is processed while flowing up the hierarchy, where
decisions are eventually made and transmitted back down the
hierarchy to generate motor actions.2 The top-down direction
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1Note the distinction with stimulus-driven selective attention (the reactive
shift of focus based on saliency of stimuli) which is not the focus here.

2Note that the role of memory (being distributed across the brain) is implicit
in this simplified stimulus-response description. Indeed, many sensory inputs
only form memories (without motor response) or many motor actions result
chiefly from memory (without sensory stimulation). The hierarchical aspect
is nevertheless present.

is also responsible for GDSA, where the higher-order areas
differentially “modulate” the activity of the lower-level areas
such that only relevant information is further processed. This
phenomenon constitutes the basis for GDSA and has been
the subject of extensive experimental research in neuroscience,
see e.g., [4], [9]–[18]. However, a complete understanding of
how, when (how quick), or where (within the hierarchy) it
occurs is still lacking. In particular, the relationship between
GDSA and the dynamics of the involved neuronal networks
is poorly understood. Our goal is to address this gap from
a model-based perspective, resorting to control-theoretic tools
to explain various aspects of GDSA in terms of the synaptic
network structure and the dynamics that emerge from it.

In this work, we propose a theoretical framework, termed
hierarchical selective recruitment (HSR), to explain the net-
work dynamics underlying GDSA. This framework consists
of a novel hierarchical model of brain organization (though
composed of well-established sub-models at each layer), a set
of analytical results regarding the multi-timescale dynamics
of this model, and a careful translation between the properties
of these dynamics and well known experimental observations
about GDSA. The starting point in the development of HSR
is the observation that different stimuli, in particular the task-
relevant and task-irrelevant ones, are processed by different
populations of neurons (see, e.g., [4], [5], [7], [11]–[14], [18]).
With each neuronal population represented by a node in the
overall neuronal network of networks and based on extensive
experimental research (see below), HSR primarily relies on the
selective inhibition of the task-irrelevant nodes and the top-
down recruitment of the task-relevant nodes of each layer by
the layer immediately above. This paper analyzes the dynamics
of individual layers as well as the mechanisms for selective
inhibition in a bilayer network. These results set the basis
for the study of the mechanisms for top-down recruitment in
multilayer networks in our accompanying work [19].

Literature Review: In this work we use dynamical networks
with linear-threshold nonlinearities (the unbounded version
also called rectified linear units, ReLU, in machine learning)
to model the activity of neuronal populations. Linear-threshold
models allow for a unique combination between the tractability
of linear systems and the dynamical versatility of nonlinear
systems, and thus have been widely used in computational
neuroscience. They were first proposed as a model for the
lateral eye of the horseshoe crab in [20] and their dynam-
ical behavior has been studied at least as early as [21]. A
detailed stability analysis of symmetric (undirected) linear-
threshold networks has been carried out in continuous [22]
and discrete [23] time: however, this has limited relevance
for biological neuronal networks, which are fundamentally
asymmetric (due to the presence of excitatory and inhibitory
neurons). Regarding asymmetric networks, it was claimed



(without proper proof) in [24] that the identity minus the
matrix of synaptic connectivities being a P-matrix is necessary
and sufficient for the existence and uniqueness of equilibria
(EUE), the negative of this matrix being totally Hurwitz is
necessary and sufficient for local asymptotic stability, and
the matrix of synaptic connectivities being absolutely Schur
stable is sufficient for global asymptotic stability. In addition
to lacking proper proof, these results were limited to fully-
inhibitory networks. The latter assertion was later proved
rigorously in [25] for arbitrary networks, while we prove
the first two (except on certain sets of measure zero) here.
Around the same time, [26] considered the more general
class of monotonically non-decreasing activation functions and
proved the sufficiency of identity minus the matrix of synaptic
connectivities being a P-matrix for the uniqueness of equilibria
(being only one of the four implications we prove here) and
the sufficiency of the same matrix being Lyapunov diagonally
stable for global asymptotic stability (which we relax here
by allowing for arbitrary quadratic Lyapunov functions). This
work was later generalized to discontinuous neural networks
(though not applicable to our model here) in [27]. Also related
is the work [28] showing the necessity and sufficiency of
identity minus the matrix of synaptic connectivities being
a P0-matrix for EUE of similar systems but with strictly
monotonically increasing activation functions. The work [29]
provides a comprehensive review of stability analysis of a
range of continuous-time recurrent neural networks, including
the linear-threshold model.

Lyapunov-based methods have also been used in a num-
ber of later studies for discrete-time linear-threshold net-
works [30]–[32], but the extension of these results to
continuous-time dynamics is unclear. In fact, the use of
Lyapunov-based techniques in continuous-time networks has
remained limited to planar dynamics [33] and restrictive condi-
tions for boundedness of trajectories [33], [34]. Recently, [35]
presents interesting properties of competitive (i.e., fully in-
hibitory) linear-threshold networks, particularly regarding the
emergence of oscillations. However, the majority of neurons
in biological neuronal networks are excitatory, making the im-
plications of these results limited. Moreover, all the preceding
works are limited to networks with constant exogenous inputs
whereas time-varying inputs are essential for modeling inter-
layer connections in HSR.

A critical property of linear-threshold networks is that their
nonlinearity, while enriching their behavior beyond that of
linear systems, is piecewise linear. Accordingly, almost all
the theoretical analysis of these networks builds upon the
formulation of them as switched affine systems. There exists a
vast literature on the analysis of general switched linear/affine
systems, see, e.g., [36]–[38]. Nevertheless, we have found that
the conditions obtained by applying these results to linear-
threshold dynamics are more conservative than the ones we
obtain using direct analysis of the system dynamics. This is
mainly due to the fact that such results, by the essence of their
generality, are oblivious to the particular structure of linear-
threshold dynamics that can be leveraged in direct analysis.

Selective inhibition has been the subject of extensive re-
search in neuroscience. A number of early studies [4], [11],

[12] provided evidence for a mechanism of selective visual at-
tention based on a biased competition between the subnetwork
of task-relevant nodes and the subnetwork of task-irrelevant
ones. In this model, nodes belonging to these subnetworks
compete at each layer by mutually suppressing the activity of
each other, and this competition is biased towards task-relevant
nodes by the layer immediately above. Later studies [13],
[14] further supported this theory using functional magnetic
resonance imaging (fMRI) and showed [39], in particular, the
suppression of activity of task-irrelevant nodes as a result
of GDSA. This suppression of activity is further shown to
occur in multiple layers along the hierarchy [40], grow with
increasing attention [41], [42], and be inversely related to the
power of the task-irrelevant nodes’ state trajectories in the
alpha frequency band (∼ 8-14Hz) [16].

Statement of Contributions: The contributions are twofold.
First, we analyze the internal dynamics of a single-layer
linear-threshold network as a basis for our study of hier-
archical structures. Our results here provide a comprehen-
sive characterization of the dynamical properties of linear-
threshold networks. Specifically, we show that existence and
uniqueness of equilibria, asymptotic stability, and boundedness
of trajectories can be characterized using simple algebraic
conditions on the network structure in terms of the class of
P-matrices (matrices with positive principal minors), totally-
Hurwitz matrices (those with Hurwitz principal submatrices,
shown to be a sub-class of P-matrices), and Schur-stable
matrices, respectively. In addition to forming the basis of
HSR, these results solve some long-standing open problems
in the characterization of linear-threshold networks [21], [24],
[25], [33]–[35] and are of independent interest. Our analysis
covers both the class of unbounded (a.k.a. ReLU) as well
as bounded linear-threshold networks, where the latter is a
piecewise-affine approximation of sigmoidal neural networks,
for which limited analytical results are available. Our second
contribution pertains the problem of selective inhibition in a
bilayer network. Motivated by the mechanisms of inhibition
in the brain, we study feedforward and feedback mechanisms.
We provide necessary and sufficient conditions on the network
structure that guarantee selective inhibition of task-irrelevant
nodes at the lower-level while simultaneously guaranteeing
various dynamical properties of the resulting (partly inhibited,
partly active) subnetwork, including existence and uniqueness
of equilibria and asymptotic stability. Interestingly, under both
mechanisms, these conditions require that the (not-inhibited)
task-relevant part of the lower-level subnetwork intrinsically
satisfies the same desired dynamical properties. This is par-
ticularly important for selective inhibition as asymptotic sta-
bility underlies it. The results unveil the important role of
task-relevant nodes in constraining the dynamical properties
achievable under selective inhibition and have implications
for the number and centrality of nodes that need to be inhib-
ited for an unstable-in-isolation subnetwork to gain stability
through selective inhibition. For subnetworks that are not
stable as a whole, these results provide conditions on the
task-relevant/irrelevant partitioning of the nodes that allow for
stabilization using inhibitory control.



II. PRELIMINARIES

We introduce notational conventions and basic concepts on
matrix analysis and modeling of biological neuronal networks.

Notation

Throughout the paper, we employ the following notation.
We use R, R≥0, and R≤0 to denote the set of reals, nonneg-
ative reals, and nonpositive reals, respectively. We use bold-
faced letters for vectors and matrices. 1n, 0n, `n, 0p×n, and
In stand for the n-vector of all ones, the n-vector of all zeros,
the n-vector of all `’s, the p-by-n zero matrix, and the identity
n-by-n matrix (we omit the subscripts when clear from the
context). Given a vector x ∈ Rn, xi and (x)i refer to its
ith component. Given A ∈ Rp×n, aij refers to the (i, j)th
entry. For block-partitioned x and A, xi and Aij refer to
the ith block of x and (i, j)th block of A, respectively. In
block representation of matrices, ? denotes arbitrary blocks
whose value is immaterial to the discussion. For A ∈ Rp×n,
range(A) denotes the subspace of Rp spanned by the columns
of A. If x and y are vectors, x ≤ y denotes xi ≤ yi for
all i. For symmetric P ∈ Rn×n, P > 0 (P < 0) denotes
that P is positive (negative) definite. Given A ∈ Rn×n,
its element-wise absolute value, determinant, spectral radius,
and induced 2-norm are denoted by |A|, det(A), ρ(A), and
‖A‖, respectively. Similarly, for x ∈ Rn, ‖x‖ is its 2-norm.
Likewise, for two matrices A and B, diag(A,B) denotes
the block-diagonal matrix with A and B on its diagonal.
Given a subspace W of Rn, W⊥ denotes the orthogonal
complement of W in Rn. For x ∈ R and m ∈ R>0 ∪ {∞},
[x]m0 = min{max{x, 0},m}, which is the projection of x onto
[0,m]. When x ∈ Rn and m ∈ Rn>0∪{∞}n, we similarly de-
fine [x]m0 = [[x1]m1

0 · · · [xn]mn
0 ]T . All measure-theoretic

statements are meant in the Lebesgue sense.

Matrix Analysis

We here define and characterize several matrix classes of
interest that play a key role in the forthcoming discussion.

Definition II.1. (Matrix classes). A matrix A ∈ Rn×n is
(i) absolutely Schur stable if ρ(|A|) < 1;

(ii) totally L-stable, denoted A ∈ L, if there exists P =
PT > 0 such that (−I + ATΣ)P + P(−I + ΣA) < 0
for Σ = diag(σ) and all σ ∈ {0, 1}n;

(iii) totally Hurwitz, denoted A ∈ H, if all the principal
submatrices of A are Hurwitz;

(iv) a P-matrix, denoted A ∈ P , if all the principal minors
of A are positive.

In working with P-matrices, the principal pivot transform
of a matrix plays an important role. Given

A =

[
A11 A12

A21 A22

]
,

with nonsingular A22, its principal pivot transform is the
matrix

π(A) ,

[
A11 −A12A

−1
22 A21 A12A

−1
22

−A−1
22 A21 A−1

22

]
.

Note that π(π(A)) = A. The next result formalizes several
equivalent characterizations of P-matrices.

Lemma II.2. (Properties of P-matrices [43], [44]). A ∈
Rn×n is a P-matrix if and only if any of the following holds:

(i) A−1 is a P-matrix;
(ii) all real eigenvalues of all the principal submatrices of A

are positive;
(iii) for any x ∈ Rn\{0} there is k such that xk(Ax)k>0;
(iv) the principal pivot transform of A is a P-matrix.

The matrix classes in Definition II.1 have important inclu-
sion relationships, as shown next.

Lemma II.3. (Inclusions among matrix classes). For
A,W ∈ Rn×n, we have

(i) ρ(|W|) < 1⇒ −I + W ∈ H;
(ii) ‖W‖ < 1⇒W ∈ L;

(iii) W ∈ L ⇒ −I + W ∈ H;
(iv) A ∈ H ⇒ −A ∈ P .

Proof: (i). From [45, Fact 4.11.19], we have that
ρ(|Wσ|) < 1 for any principal submatrix Wσ of W, which
implies ρ(Wσ) < 1 by [45, Fact 4.11.17], implying the result.

(ii) It is straightforward to check that P = In satisfies (−I+
WTΣ)P + P(−I + ΣW) < 0 for all σ ∈ {0, 1}n.

(iii) Pick an arbitrary σ ∈ {0, 1}n and let the permutation

Π ∈ Rn×n be such that ΠΣWΠT =

[
0 0

Ŵ21 Ŵ22

]
, where

Ŵ22 is the principal submatrix of W corresponding to σ.
Then

P(−I + ΣW) = PΠT

[
−I 0

Ŵ21 −I + Ŵ22

]
Π

= ΠT
(

ΠPΠT︸ ︷︷ ︸
P̂

[
−I 0

Ŵ21 −I + Ŵ22

])
Π

= ΠT

[
? ?

? P̂22(−I + Ŵ22)

]
Π,

where P̂ =

[
P̂11 P̂12

P̂21 P̂22

]
= P̂T > 0. Thus, by assumption,

ΠT

[
? ?

? (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22)

]
Π < 0

⇒
[
? ?

? (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22)

]
< 0

⇒ (−I + ŴT
22)P̂22 + P̂22(−I + Ŵ22) < 0,

proving that −I+Ŵ22 is Hurwitz. Since σ is arbitrary, −I+
W is totally Hurwitz.

(iv) The result follows from Lemma II.2(ii).

Remark II.4. (Counterexamples for converses of
Lemma II.3). The converse of the implications in Lemma II.3
do not hold, as shown in the following. First, for a general
matrix W, neither of ρ(|W|) and ‖W‖ is bounded by
the other. The former is larger for [8, 3; 2,−1], e.g., while
the latter is larger for [0, 0; 1, 0]. However, if W satisfies
the Dale’s law (as many biological neuronal networks do),
i.e., each column is either nonnegative or nonpositive, then
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Fig. 1: Inclusion relationships between the matrix classes
introduced in Definition II.1 (cf. Lemma II.3).

W = |W|D where D is a diagonal matrix such that |D| = I.
Then, ‖W‖ = ‖|W|‖ ≥ ρ(|W|), showing that, in this
case, ρ(|W|) < 1 is a less restrictive condition. Further,
−I + W ∈ H 6⇒ ρ(|W|) < 1 as seen, e.g., from W = −2I.
The same example shows W ∈ L 6⇒ ‖W‖ < 1. Likewise,
−I + W ∈ H 6⇒ W ∈ L, for which [0.5,−3; 4,−1]
serves as a counter example (note that W ∈ L is an LMI
feasibility problem that can be checked using standard
solvers such as MATLAB feasp function). Finally,
A = [−1,−5, 0; 0,−1,−6;−1, 0,−1] ensures the converse
of Lemma II.3(iv) does not hold either. �

Figure 1 shows a summary of Lemma II.3 and Remark II.4.

Dynamical Rate Models of Brain Networks

Here we briefly review, following [46, §7], the construction
of the linear-threshold network model used throughout the
paper. In a lumped model, neurons are the smallest unit of
neuronal circuits and the (directional) transmission of activity
from one neuron to another takes place at a synapse, thus
the terms pre-synaptic and post-synaptic for the two neurons,
respectively. Both the input and output signals mainly consist
of a sequence of spikes (action-potentials, Figure 2 top panel)
which are modeled as impulse trains of the form

ρ(t) =
∑
k

δ(t− tk),

where δ(·) denotes the Dirac delta function. In many brain
areas, the exact timing {tk} of ρ(t) seems highly random while
the firing rate (number of spikes per second, Figure 2 bottom
panel) shows greater trial-to-trial reproducibility. Therefore, a
standard approximation is to model ρ(t) as the sample path of
an inhomogeneous Poisson point process with rate, say, x(t).

Now, consider a pair of pre- and post-synaptic neurons with
rates xpre(t) and xpost(t), respectively. As a result of xpre(t), an
electrical current Ipost(t) flows in the post-synaptic neuron. As-
suming fast synaptic dynamics, Ipost(t) ∝ xpre(t). Let wpost,pre
be the proportionality constant, so Ipost(t) = wpost,prexpre(t).
The pre-synaptic neuron is called excitatory if wpost,pre > 0 and
inhibitory if wpost,pre < 0. In other words, excitatory neurons
increase the activity of their out-neighbors while inhibitory

Fig. 2: A sample intracellular recording illustrating the spike
train used for neuronal communication (top panel, measured
intracellularly [47], [48]) and the corresponding (estimate of)
firing rate (bottom panel, estimated by binning spikes in
100ms bins and smoothing with Gaussian window with 500ms

standard deviation).

neurons decrease it.3 If the post-synaptic neuron receives input
from multiple neurons, Ipost(t) follows a superposition law,

Ipost(t) =
∑
j

wpost,jxj(t), (1)

where the sum is taken over its in-neighbors.
If Ipost is constant, the post-synaptic rate approximately

follows xpost = F (Ipost), where F is a nonlinear “response
function”. Among the two widely used response functions, sig-
moidal and linear-threshold, we use the latter for its analytical
tractability: F (·) = [ · ]mpost

0 . Finally, if Ipost(t) is time-varying,
xpost(t) “lags” F (Ipost(t)) with a time constant τ , i.e.,

τ ẋpost(t) = −xpost(t) + [Ipost(t)]
mpost
0 . (2)

Equations (1)-(2) are the basis for our network model de-
scribed next.

III. PROBLEM FORMULATION

Consider a network of neurons evolving according to (1)-
(2). Since the number of neurons in a brain region is very large,
it is common to consider a population of neurons with similar
activation patterns as a single node with the average firing
rate of its neurons. This convention also has the advantage of
getting more consistent rates, as the firing pattern of individual
neurons may be sparse.4 Combining the nodal rates in a vector
x ∈ Rn and synaptic weights in a matrix W ∈ Rn×n,
we obtain, according to (1)-(2), the linear-threshold network
dynamics

τ ẋ(t) = −x(t) + [Wx(t) + d(t)]m0 , 0 ≤ x(0) ≤m, (3)
m ∈ Rn>0 ∪ {∞}n.

The term d(t) ∈ Rn captures the external inputs to the net-
work, including un-modeled background activity and possibly
nonzero thresholds (i.e., if a node i becomes active when
(Wx + d)i > ϑi for some threshold ϑi 6= 0).

3While many brain networks, such as mammalian cortical networks, satisfy
the Dale’s law (cf. Remark II.4), all of our results in this work are applicable
to arbitrary synaptic sign patterns.

4Our discussion is nevertheless valid irrespective of whether network nodes
represent individual neurons or groups of them.
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Subnetwork i− 1
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Subnetwork i+ 1
N 0
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(inhibited)
N 1
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(recruited)

Fig. 3: The hierarchical network structure considered in this
work. Each layer is only directly connected to the layers
below and above it. Longer-range connections between non-
successive layers do exist in thalamocortical hierarchies but
are weaker than those between successive layers and are not
considered in this work for simplicity.

The vector of state upper bounds m can be finite (m ∈ Rn>0)
or infinite (m = ∞1n). Even though all biological neurons
eventually saturate for high input values, whether finite or
infinite m gives a more realistic/appropriate model can vary
from brain region to brain region depending on whether typical
(in vivo) values of x reach (near) saturation. Historically,
the unbounded case has in fact been used and studied more
extensively, both in computational neuroscience and machine
learning. See, e.g., [49] and the references therein for evidence
in favor of unbounded activation functions. Surprisingly, how-
ever, the analytical properties of the two cases are very similar,
as we will see throughout this work. Further, note that the
right-hand side of (3) is globally Lipschitz-continuous (though
not smooth) and therefore a unique continuously differentiable
solution exists for all t ≥ 0 [50, Thm 3.2]. Moreover, it
is straightforward to show that if 0 ≤ x(0) ≤ m then
0 ≤ x(t) ≤m for all t ≥ 0.

Consistent with the vision for hierarchical selective recruit-
ment (HSR) outlined in Section I, we consider a hierarchy
of linear-threshold networks of the form (3), as depicted in
Figure 3. For each layer i, we use Ni, N

1
i , and N 0

i , i ∈
{1, . . . , N} to denote the corresponding subnetwork and its
task-relevant and task-irrelevant sub-subnetworks, respectively.

Even when considered in isolation, each layer of the net-
work exhibits rich dynamical behavior. In fact, simulations
of (3) with random W and d reveal that

– locally, the dynamics may have zero, one, or many stable
and/or unstable equilibrium points,

– globally, the dynamics can exhibit nonlinear phenomena
such as limit cycles, multi-stability, and chaos,

– the state trajectories may grow unbounded (if m =∞1n)
if the excitatory subnetwork [W]∞0 is sufficiently strong.

This richness of behavior can only increase if layers are
subject to time-varying inputs d(t) and, in particular, when
interconnected with other layers in the hierarchy. Motivated
by these observations, our ultimate goal in this work is to
tackle four problems:

(i) the analysis of the relationship between structure (W)

and dynamical behavior (basic properties such as existence
and uniqueness of equilibria (EUE), asymptotic stability, and
boundedness of trajectories) for each subnetwork when oper-
ating in isolation from the rest of the network (d(t) ≡ d);

(ii) the analysis of the conditions on the joint structure
of each two successive layers Ni and Ni+1 that allows for
selective inhibition of N 0

i+1 by its input from Ni, being
equivalent to the stabilization of N 0

i+1 to 0 (inactivity);
(iii) the analysis of the conditions on the joint structure

of each two successive layers Ni and Ni+1 that allows for
top-down recruitment of N 1

i+1 by its input from Ni, being
equivalent to the stabilization of N 1

i+1 toward a desired
trajectory set by Ni (activity);

(iv) the combination of (ii) and (iii) in a unified framework
and its extension to the complete N -layer network of networks.
Problems (i) and (ii) are the focus of this paper, whereas we
address problems (iii) and (iv) in the accompanying work [19].

IV. INTERNAL DYNAMICS OF SINGLE-LAYER NETWORKS

In this section, we provide an in-depth study of the basic
dynamical properties of the network dynamics (3) in isolation.
In such case, the external input d(t) boils down to background
activity and possibly nonzero thresholds, which are constant
relative to the timescale τ . The dynamics (3) thus simplify to

τ ẋ(t) = −x(t) + [Wx(t) + d]m0 , 0 ≤ x(0) ≤m, (4)
m ∈ Rn>0 ∪ {∞}n.

In the following, we derive conditions in terms of the network
structure for the existence and uniqueness of equilibria (EUE),
asymptotic stability, and boundedness of trajectories.

A. Dynamics as Switched Affine System

The nonlinear dynamics (4) is a switched affine system with
2n modes if m = ∞1n or 3n modes if m < ∞1n. Each
mode of this system corresponds to a switching index σ =
σ(x) ∈ {0, `, s}n, where for each i ∈ {1, . . . , n}, σi = 0
if the node is inactive (i.e., (Wx + d)i ≤ 0), σi = ` if the
node is in linear regime (i.e., (Wx + d)i ∈ [0,mi)), and
σi = s if the node is saturated (i.e., (Wx+d)i ≥ mi). Clearly,
the mode of the system is state-dependent and each switching
index σ ∈ {0, `, s}n corresponds to a switching region

Ωσ = {x | (Wx + d)i ∈ (−∞, 0], ∀i s.t. σi = 0, and
(Wx + d)i ∈ [0,mi], ∀i s.t. σi = `, and
(Wx + d)i ∈ [mi,∞), ∀i s.t. σi = s}.

Within each Ωσ , we have

[Wx(t) + d]m0 = Σ`(Wx(t) + d) + Σsm,

where Σ` = Σ`(σ) is a diagonal matrix with Σ`ii = 1 if
σi = ` and Σ`ii = 0 otherwise. Σs is defined similarly, and we
set the convention that Σsm = 0 if m = ∞1n. Therefore,
(4) can be written in the equivalent piecewise-affine form

τ ẋ = (−I + Σ`W)x + Σ`d + Σsm, ∀x ∈ Ωσ. (5)

This switched representation of the dynamics motivates the
following assumptions on the weight matrix W.



Assumption 1. Assume
(i) det(W) 6= 0;

(ii) det(I −Σ`W) 6= 0 for all the 2n matrices Σ`(σ),σ ∈
{0, `, s}n.

Assumption 1 is not a restriction in practice since the set of
matrices for which it is not satisfied can be expressed as a finite
union of measure-zero sets, and hence has measure zero. By
Assumption 1(i), the system of equations Wx+d = 0 defines
a non-degenerate set of n hyperplanes partitioning Rn into 2n

solid convex polytopic translated cones apexed at −W−1d.5

Unlike linear systems, the existence of equilibria is not
guaranteed for (5). Rather, each σ ∈ {0, `, s}n corresponds
to an equilibrium candidate

x∗σ = (I−Σ`W)−1(Σ`d + Σsm), (6)

which is an equilibrium if it belongs to Ωσ . We next identify
conditions for this to be true.

B. Existence and Uniqueness of Equilibria (EUE)

The first step in analyzing any dynamical system is the char-
acterization of its equilibria. We being our analysis of the EUE
with the case of bounded activation functions (m ∈ Rn>0).

Theorem IV.1. (EUE). The network dynamics (4) has a
unique equilibrium for all d ∈ Rn if and only if I−W ∈ P .

Proof: Despite their similarity, different equivalences
need to be established and results need to be invoked for the
bounded and unbounded cases. Therefore, we prove the result
separately for each case.

Case 1: m < ∞1n. The existence of equilibria is guaran-
teed by the Brouwer fixed point theorem [52] for all W and
all d. We use results from [53] to characterize uniqueness.
Following the terminology therein, the set C = {Ωσ | σ ∈
{0, `, s}n} is a chamber system and its branching number is
4 by Assumption 1. Let f(x; d) = x − [Wx + d]m0 which,
for any d, is piecewise-affine on the chamber system C by (5)
and is proper since ‖f(x; d)‖ → ∞ whenever ‖x‖ → ∞.

First, assume that I−W ∈ P . Then, f is coherently oriented
by definition and thus [53, Thm 5.3] ensures that f is bijective.
In particular, there exists a unique x such that f(x; d) = 0,
giving uniqueness of equilibria for any d.

Now, assume that I −W /∈ P . Since the determinant of
I − Σ`W is always positive on the chamber Ω0, f cannot
be coherently oriented, thus not bijective by [53, Thm 5.3],
and thus not injective by [53, Cor 5.2]. Therefore, there exists
x1,x2, z ∈ Rn such that x1 6= x2 but

x1 − [Wx + d]m0 = z = x2 − [Wx + d]m0 ,

where d ∈ Rn is arbitrary. Therefore, f( · ; Wz + d) has two
distinct roots, x1 − z and x2 − z, proving the necessity of
I−W ∈ P for uniqueness of equilibria.

5Recall that a set of n hyperplanes is non-degenerate [51] if their in-
tersection is a point or, equivalently, the matrix composed of their normal
vectors is nonsingular. A set S ⊆ Rn is called a polytope if it has the form
S = {x | Ax ≤ b}; a cone if cx ∈ S for any x ∈ S, c ∈ R≥0; a translated
cone apexed at y if {x |x+y ∈ S} is a cone; convex if (1− θ)x+ θy ∈ S
for any x,y ∈ S, θ ∈ [0, 1]; and solid if it has a non-empty interior.

Case 2: m =∞1n. In this case, we simply show the equiva-
lence between our equilibrium equation x = [Wx + d]∞0 and
the well-studied linear complementarity problem (LCP). By
Assumption 1,

x = [Wx + d]∞0 ⇔Wx + d = W[Wx + d]∞0 + d. (7)

We next perform a change of variables as follows. Let

z = [Wx + d]∞0 and w = [−Wx− d]∞0 .

These vectors have the properties that

z,w ∈ Rn≥0, zTw = 0, and Wx + d = z−w.

and thus provide a unique (invertible) characterization of x.
Therefore, (7) is equivalent to

w = (I−W)z− d, z,w ∈ Rn≥0, zTw = 0,

which is the standard LCP and has a unique solution (z,w)
for all d ∈ Rn if and only if I−W ∈ P [54]. Similar to Case
1, it can also be shown that if I−W /∈ P , there exists at least
one d for which two equilibrium points exists (see, e.g., the
proof of [54, Thm 4.2]). This completes the proof.

Even though the condition I−W ∈ P may seem abstract,
it has a nice geometric interpretation. From [53, Lem 2.2],
I − W ∈ P if and only if the (negative) vector field
x 7→ x − [Wx + d]m0 maps each switching region Ωσ to
another polytopic region and the images of adjacent switching
regions remains adjacent. In other words, the vector field has
a coherent orientation when mapping the state space.6

Remark IV.2. (Computational complexity of verifying I −
W ∈ P). Although the problem of determining whether a
matrix is in P is straightforward for small n, it is known to be
co-NP-complete [56], and thus expensive for large networks.
Indeed, [57] shows that all the 2n principal minors of A have
to be checked to prove A ∈ P (though disproving A ∈ P is
usually much easier). In these cases, one may need to rely on
more conservative sufficient conditions such as ρ(|W|) < 1
or ‖W‖ < 1 (cf. Lemma II.3) to establish I−W ∈ P . These
conditions, moreover, have the added benefit of providing intu-
itive connections between the distribution of synaptic weights,
network size, and stability. We elaborate more on this point in
Section V-C. �

Example IV.3. (Wilson-Cowan model). Consider a network
of n nodes in which αn, α ∈ (0, 1) are excitatory, (1−α)n are
inhibitory. Under some regularity assumptions, given next, this
network can be (further) reduced to a simple, two-dimensional
network commonly known as the Wilson-Cowan model [58]
and widely used in computational neuroscience [59], [60].
Assume that the synaptic weight between any pair of nodes,
the external input to them, and their maximal firing rate (if
finite) only depends on their type: the synaptic weight of any
inhibitory-to-excitatory connection is wei < 0, similarly for
wee > 0, wie > 0, wii < 0, and all excitatory (inhibitory)
nodes receive de ∈ R (di ∈ R) and have maximal rate
me ∈ R>0 ∪ {∞} (mi ∈ R>0 ∪ {∞}). Let xe(t) and xi(t)

6A closely-related class of matrices is that of M-matrices [45] with
established relationships with the stability of nonlinear systems, see, e.g., [55].



be the average firing rates of excitatory and inhibitory nodes,
respectively. Then, (4) simplifies to

τ

[
ẋe
ẋi

]
= −

[
xe
xi

]
+

[[
αnwee (1−α)nwei
αnwie (1−α)nwii

][
xe
xi

]
+

[
de
di

]]m
0

.

Let WEI ∈ R2×2 be the corresponding weight matrix above.
One can check that

I−WEI ∈ P ⇔ αnwee < 1, (8)

and

ρ(|WEI |) < 1⇔ αnwee < 1, (1− α)n|wii| < 1, and

α(1− α)n2wie|wei| < (1− αnwee)(1− (1− α)n|wii|).

Thus, according to Theorem IV.1, EUE only requires the
excitatory dynamics to be stable (note that wee has to become
smaller as n grows), while the more conservative condition
ρ(|WEI |) < 1 also requires (relatively) weak inhibitory-
inhibitory synapses and a weak interconnection between exci-
tatory and inhibitory subnetworks. �

When I−W ∈ P , Theorem IV.1 ensures EUE for all d ∈
Rn. When I−W /∈ P , however, a more involved question is
to find the values of d that give rise to non-unique equilibrium
points. To answer this, we next perform a more direct analysis
of the equilibria. For simplicity, we focus in the remainder of
this section on unbounded dynamics (m =∞1n).

Recall the definition of an equilibrium candidate in (6).
Using Assumption 1, and after some manipulations, we have

Wx∗σ + d = W(I−Σ`W)−1Σ`d + d (9)

= (W−1 −Σ`)−1Σ`d + d

= (I−WΣ`)−1WΣ`d + d

=
[
(I−WΣ`)−1WΣ` + I

]
d = (I−WΣ`)−1d,

thus,

x∗σ ∈ Ωσ ⇔ (2Σ` − I)(I−WΣ`)−1︸ ︷︷ ︸
,Mσ

d ≥ 0. (10)

Therefore, if Mσd ≥ 0 for exactly one σ ∈ {0, `}n, then
a unique equilibrium exists. However, when Mσ`

d ≥ 0 for
multiple σ` ∈ {0, `}n, ` ∈ {1, . . . , ¯̀}, the network may have
either multiple equilibria or a unique one x∗σ1

= · · · = x∗σ ¯̀

lying on the boundary between {Ωσ`
}¯̀
`=1. The next result

shows that the quantities Mσd can be used to distinguish
between these two latter cases.

Lemma IV.4. (Existence of multiple equilibria). Assume W
satisfies Assumption 1, d ∈ Rn is arbitrary, and Mσ is defined
as in (10) for σ ∈ {0, `}n. If there exist σ1 6= σ2 such that
Mσ1

d ≥ 0 and Mσ2
d ≥ 0, then x∗σ1

= x∗σ2
if and only if

Mσ1d = Mσ2d.

Proof: Clearly,

x∗σ1
= x∗σ2

⇔Wx∗σ1
+ d = Wx∗σ2

+ d

⇔ (I−WΣ1)−1d = (I−WΣ2)−1d, (11)

where we have used (9). Since both Mσ1
d and Mσ2

d are
nonnegative, (11) holds if and only if

(
(I −WΣ1)−1d

)
i

=

(
(I−WΣ2)−1d

)
i

= 0 for any i such that σ1,i 6= σ2,i, which
is equivalent to Mσ1

d = Mσ2
d.

This property of Mσ can be used to derive a computa-
tionally more involved but input-dependent characterization of
EUE, as follows.

Proposition IV.5. (Optimization-based condition for EUE).
Let W satisfy Assumption 1 and Mσ be as defined in (10)
for σ ∈ {0, `}n. For d ∈ Rn, define µ1(d) and µ2(d) to be
the largest and second largest elements of the set{

min
i=1,...,n

(Mσd)i | σ ∈ {0, `}n
}
,

respectively. Then, (4) has a unique equilibrium for each d ∈
Rn if and only if

max
‖d‖=1

µ1(d)µ2(d) < 0. (12)

Proof: First, note that d = 0 is a degenerate case where
the origin is the unique equilibrium belonging to all Ωσ . For
any d 6= 0 and σ ∈ {0, `}n, Mσd ≥ 0 if and only if
Mσd/‖d‖ ≥ 0. Thus, EUE for all d ∈ Rn and all ‖d‖ = 1
are equivalent. Then, for any d,

µ1(d)µ2(d) < 0⇔ µ1(d) > 0 and µ2(d) < 0

⇔ ∃ unique Mσd ≥ 0, σ ∈ {0, `}n. (13)

Note that the latter allows for the possibility of the existence
of multiple σ with Mσd ≥ 0 provided that they have the
same value of Mσd. By Lemma IV.4, (13) is then equivalent
to EUE, completing the proof.

In our experience, the optimization involved in (12) is usu-
ally highly non-convex but since the search space {‖d‖ = 1}
is compact, global search methods can be used to verify (12)
numerically if n is not too large. However, note that our main
interest in (12) (being equivalent to I −W ∈ P) is when it
does not hold. If so, then any d for which (12) fails gives a
ray {αd | α > 0} of input values that give rise to non-unique
equilibria. Combined with stability analysis of Section IV-C,
e.g., this can be a basis for the characterization of multistability
in linear-threshold dynamics which is itself beyond the scope
of this work.

The proof of Theorem IV.1 (for the unbounded case) is
based on the LCP, which makes the relationship between
I − W ∈ P and EUE opaque, even when taking into
account the proof of the LCP. The equilibrium characterization
in (10), however, can be used to explain this relationship
more transparently. For any given d, the non-uniqueness of
equilibria is equivalent to asking whether

∃σ1,σ2 ∈ {0, `}n s.t. Mσ1
d ≥ 0 and Mσ2

d ≥ 0

Mσ1d 6= Mσ2d,

or, whether there exist qσ1
6= qσ2

∈ Rn≥0 such that
M−1
σ1

qσ1
= M−1

σ2
qσ2

= d. A more general question, which
turns out to be relevant to EUE, is whether

∃qσ1 6= qσ2 ∈ On s.t. qσ1 = Mσ1M
−1
σ2

qσ2 , (14)

for any orthant On of Rn (including On = Rn≥0 as a
special case). This depends on whether the matrix Mσ1

M−1
σ2

can map any nonzero vector to the same orthant which, by



Lemma II.2(iii), happens if and only if −Mσ1
M−1
σ2

/∈ P .
The following result, whose proof is in Appendix A, gives a
necessary and sufficient condition for this to not happen.

Theorem IV.6. (Coherently oriented vector fields and the
validity of equilibrium candidates). Let W satisfy Assump-
tion 1 and Mσ be defined as in (10). Then, −Mσ1

M−1
σ2
∈ P

for all (distinct) σ1,σ2 ∈ {0, `}n if and only if I−W ∈ P .

Theorem IV.6 provides a more transparent account of the
relationship between I −W ∈ P and EUE. If I −W ∈ P ,
then Theorem IV.6 and Lemma II.2(iii) ensure that none of
Mσ1

M−1
σ2

can map a vector to the same orthant. Thus, no two
qσ = Mσd belong to the same orthant. Therefore, there exists
a one-to-one correspondence between {qσ} and orthants in
Rn, ensuring that exactly one qσ belongs to Rn≥0, i.e., EUE.7

We end this subsection with a result that bounds the number
and location if equilibria for the case when I −W /∈ P .
For A ∈ Rn×n and σ ∈ {0, `}n, let A(σ) be the principal
submatrix of A containing the rows and columns for which
σi = `. Further, for σ1,σ2 ∈ {0, `}n, we say σ1 ≤ σ2 if
σ1,i = `⇒ σ2,i = ` for all i ∈ {1, . . . , n}.

Corollary IV.7. (Partial EUE). Consider the dynamics (4)
and assume that Assumption 1 holds. If I−W(σ̄) ∈ P for any
σ̄ ∈ {0, `}n, then

⋃
σ≤σ̄ Ωσ contains at most one equilibrium

point.

Proof: The proof follows directly from the proof of
Theorem IV.6 and the fact that, using the definitions therein,
−Γ ∈ P only requires I−W([`n1+n2+n3

0n4
]T ) ∈ P .

Even in the simplest case when I −W ∈ P , the resulting
unique equilibrium may or may not be stable, as studied next.

C. Asymptotic Stability
The EUE is an opportunity to shape the network activity

at steady state, provided that the equilibrium corresponds to
a desired state (a memory, the encoding of a spatial location,
eye position, etc. [61]–[65]) and it attracts network trajectories.
Here we investigate the latter.

Theorem IV.8. (Asymptotic Stability). Consider the network
dynamics (4) and assume W satisfies Assumption 1.

(i) [Sufficient condition] If W ∈ L, then for all d ∈ Rn, the
network is globally exponentially stable (GES) relative to
a unique equilibrium x∗;

(ii) [Necessary condition] If for all d ∈ Rn the network is
locally asymptotically stable relative to a unique equilib-
rium x∗, then −I + W ∈ H.

Proof: (i) The EUE follows from Lemma II.3(iii)&(iv)
and Theorem IV.1. GES can be deduced from [66, Thm 1], but
a simpler and direct proof can also be found in a preliminary
version of this work [67] which is omitted here space reasons.

(ii) Assume, by contradiction, that −I + W /∈ H, which
means that there exists σ ∈ {0, `}n such that −I + Σ`W is
not Hurwitz. Let σ01 ∈ {0, 1}n have the same zeros as σ,
and consider the choice

d = (2I−W)σ01 − 1n.

7With a careful resolution of the ties, this still holds in the measure-zero
event that multiple qσ are equal and belong to the boundary between orthants.

It is straightforward to show that x∗ = σ01 is an equilibrium
point for (4) lying in the interior of Ωσ . By assumption, x∗ is
(unique and) locally asymptotically stable, which contradicts
−I + Σ`W not being Hurwitz. This completes the proof.

Similar to the problem of verifying whether a matrix is a
P-matrix, cf. Remark IV.2, the computational complexity of
verifying total-Hurwitzness grows exponentially with n. The
same applies to the verification of total L-stability, see, e.g.,
[68] and the references therein. The next result gives a usually
more conservative but computationally inexpensive alternative.

Proposition IV.9. (Computationally feasible sufficient con-
ditions for GES). Consider the network dynamics (4) and
assume the weight matrix W satisfies Assumption 1. If
ρ(|W|) < 1 or ‖W‖ < 1, then for all d ∈ Rn, the network
has a unique equilibrium x∗ and it is GES relative to x∗.

Proof: If ‖W‖ < 1, the result follows from
Lemma II.3(ii) and Theorem IV.8. For the case ρ(|W|) < 1,
the same proof technique as in [25, Prop. 3] can be used
to prove GES, as shown in a preliminary version of this
work [67], but is omitted here for space reasons.

From Lemma II.3(iii), the conditions of Theorem IV.8 and
Proposition IV.9 are not conclusive when W satisfies −I +
W ∈ H but neither W ∈ L nor ρ(|W|) < 1. However,

(i) If a unique equilibrium x∗ lies in the interior of a
switching region (a condition that can be shown to hold
for almost all d), then x∗ is at least locally exponentially
stable (since a sufficiently small region of attraction of x∗ is
contained in that switching region).

(ii) In our extensive simulations with random (W,d), any
system satisfying −I + W ∈ H was GES for all d.
These observations lead us to the following conjecture, whose
analytic characterization remains an open problem.

Conjecture IV.10. (Sufficiency of total-Hurwitzness for
GES). Consider the dynamics (4) and assume W satisfies
Assumption 1. The network has a unique GES equilibrium
for all d ∈ Rn if and only if −I + W ∈ H.

We next study the GES of the uniform excitatory-inhibitory
networks of Example IV.3.

Example IV.11. (Wilson-Cowan model, cont’d). Consider the
Wilson-Cowan model of Example IV.3. One can verify

−I + WEI ∈ H ⇔ αnwee < 1, (15)

thus being equivalent (in this two-dimensional case) to I −
WEI ∈ P and, interestingly, only restricting wee while wei,
wie, and wii are completely free. Figure 4 shows sample phase
portraits for the cases αnwee < 1 and αnwee > 1, matching
our expectations from Theorems IV.1 and IV.8. While our
focus here is on the existence, uniqueness, and stability of
equilibria, it is instructive to highlight the role of equilibrium
analysis and, in particular, lack of stable equilibria in the
generation of oscillations in the same linear-threshold Wilson-
Cowan model [69]. In this case, both the linear-threshold
Wilson-Cowan model and the popular Kuramoto model [70]–
[72] of neural oscillations provide parallel simplifications to
the (more biologically accurate) Wilson-Cowan model with
smooth sigmoidal nonlinearities, cf. [73]. �



(a)

(b)

Fig. 4: Network trajectories for the excitatory-inhibitory network
of Example IV.11. (a) When WEI = [0.9,−2; 5,−1.5], dEI =
[1; 1], the network has a unique GES equilibrium. (b) However,
for WEI = [1.1,−2; 5,−1.5], dEI = [−0.01;−1], the network
exhibits bi-stable behavior. m = ∞12 in both cases. The trajectory
colors correspond to the equilibria to which they converge. Although
αnwee > 1, the network is GES for most values of dEI , so we used
Proposition IV.5 for finding a dEI that leads to multi-stability.

D. Boundedness of Solutions

Here we study the boundedness of solutions under the
dynamics (3). While our discussion so far has been about (4)
(with constant d), we switch for the remainder of this section
to (3) for the sake of generality, as the same results are appli-
cable without major modifications. Since network trajectories
are trivially bounded if m < ∞1n, we limit our discussion
here to the unbounded case. Note that in reality, the firing
rate of any neuron is bounded by a maximum rate dictated
by its refractory period (the minimum inter-spike duration).
Unboundedness of solutions in this model corresponds in
practice to the so-called “run-away” excitations where the
firing of neurons grow beyond sustainable rates for prolonged
periods of time, which is neither desirable nor safe [74].

Since GES implies boundedness of solutions, any condition
that is sufficient for GES is also sufficient for boundedness.
However, boundedness of solutions can be guaranteed under
less restrictive conditions. The next result shows that inhibi-
tion, overall, preserves boundedness.

Lemma IV.12. (Inhibition preserves boundedness). Let t 7→
x(t) be the solution of (3) starting from initial state x(0) =

x0. Consider the system

τ ˙̄x(t) = −x̄(t) + [[W]∞0 x̄(t) + d(t)]∞0 , x̄(0) = x0. (16)

Then, x(t) ≤ x̄(t) for all t ≥ 0.

Proof: Since x(t) ≥ 0 for all t, we can write (3) as

τ ẋ(t) = −x(t) + [[W]∞0 x(t) + d(t) + δ(t)]∞0 , (17)

where δ(t) , (W − [W]∞0 )x(t) ≤ 0. Since the vector field
(x, t) 7→ −x + [[W]∞0 x + d(t)]∞0 is quasi-monotone nonde-
creasing8, the result follows by using the monotonicity of [ · ]∞0
and applying the vector-valued extension of the Comparison
Principle given in [75, Lemma 3.4] to (16) and (17).

While the result about preservation of boundedness under
inhibition in Lemma IV.12 is intuitive, one must interpret it
carefully: it is not in general true that adding inhibition to any
dynamics (3) can only decrease x(t). This is only true if the
network vector field is quasi-monotone nondecreasing, as is
the case with the excitatory-only dynamics (16). Intuitively,
this is because, if the network has inhibitory nodes, adding
inhibition to their input can in turn “disinhibit” and increase
the activity of the rest of the network. The next result identifies
a condition on the excitatory part of the dynamics to determine
if trajectories are bounded.

Theorem IV.13. (Boundedness). Consider the network dy-
namics (3). If the corresponding excitatory-only dynamics (16)
has bounded trajectories, the trajectories of (3) are also
bounded by the same bound as those of (16).

The proof of this result follows from Lemma IV.12 and
is therefore omitted. The following result, similar to Propo-
sition IV.9, provides a more conservative but computationally
feasible test for boundedness.

Corollary IV.14. (Boundedness). Consider the network dy-
namics (3) and assume that d(t) is bounded, i.e., there exists
d̄ ∈ Rn>0 such that d(t) ≤ d̄, t ≥ 0. If ρ([W]∞0 ) < 1, then
the network trajectories remain bounded for all t ≥ 0.

Proof: If d(t) is constant, the result follows from The-
orem IV.13 and Proposition IV.9. If d(t) is not constant, the
same argument proves boundedness of trajectories for

τ ˙̄x(t) = −x̄(t) + [[W]∞0 x̄(t) + d̄]∞0 , x̄(0) = x0. (18)

The result then follows from the quasi-monotonicity of
(x, t) 7→ −x + [W+x + d̄]∞0 , similar to Lemma IV.12.

Example IV.15. (Uniform excitatory-inhibitory networks,
cont’d). Let us revisit the excitatory-inhibitory network of
Example IV.3, here with m = ∞12. Clearly, the excitatory-
only dynamics have bounded trajectories if and only if

ρ([WEI ]
∞
0 ) < 1⇔ αnwee < 1, (19)

which is the same condition as in (15) and (8). However, an
exhaustive inspection of the switching regions {Ωσ}σ and the

8A vector field f : Rn × R→ Rn is quasi-monotone nondecreasing [75,
Def 2.3] if for any x,y ∈ Rn and any i ∈ {1, . . . , n},(

xi = yi and xj ≤ yj for all j 6= i
)
⇒ f(x, t) ≤ f(y, t).



eigenvalues of {−I+Σ`W}σ reveals that the boundedness of
trajectories can also be guaranteed with the weaker condition

− I + W be Hurwitz

⇔

{
(1− αnwee) + (1− (1− α)nwii) > 0, and
(1− αnwee)(1− (1− α)nwii) > α(1− α)n2wiewei,

showing that there is room for sharpening Theorem IV.13. �

Remark IV.16. (Comparison with the literature). In this
section, we have provided a comprehensive list of conditions
that both extend and simplify the state of the art on stability
of dynamically isolated linear-threshold networks. To the best
of our knowledge, all the results are novel for the bounded
case with the exception of the sufficiency of I−W ∈ P for
the uniqueness of equilibria (one of the four implications in
Theorem IV.1) shown in [26] and Theorem IV.8(i), for which
we present a simpler proof. Regarding unbounded networks,
for equilibria we have extended [53, Thm 5.3] (implying only
the sufficiency of I−W ∈ P for EUE) to show both necessity
and sufficiency of I−W ∈ P for both existence and unique-
ness (Theorem IV.1) and provided several results that partially
characterize equilibria when I − W /∈ P . On exponential
stability of the unbounded case, Theorem IV.8 gives a simpler
proof than [66, Thm 1] for the sufficiency of W ∈ L and a
novel proof for the necessity of −I + W ∈ H. Finally, our
result on boundedness of trajectories (Theorem IV.13) extends
Corollary IV.14 (also available in [34, Thm 1]) to a much
wider class of networks by exploiting the quasi-monotonicity
of excitatory-only dynamics. �

V. SELECTIVE INHIBITION IN BILAYER NETWORKS

Here, we study selective inhibition in bilayer networks as
a building block towards the understanding of hierarchical
selective recruitment in multilayer networks. With respect to
the model described in Section III, we consider two layers
(N = 2), where the dynamics of the lower layer N2 is
described by (3) and the dynamics of the upper layer N1 is
arbitrary (this is for generality, we consider linear-threshold
dynamics for N1 too in a multilayer framework in our ac-
companying work [19]). Our goal is to study the selective
inhibition of N 0

2 via the input that it receives from N1.
As pointed out in Section III, when a group of neurons

are inhibited, their activity is substantially decreased, ide-
ally such that their net input (their respective component of
Wx(t) + d(t)) becomes negative and their firing rate decays
exponentially to zero. Therefore, the problem of selective
inhibition is equivalent to the exponential stabilization of the
nodes N 0

2 to the origin. To this end, we decompose d(t) as

d(t) = Bu(t) + d̃. (20)

The role of u(t) ∈ Rp≥0 is to stabilize N 0
2 to the origin

while the role of d̃ ∈ Rn is to shape the activity of N 1
2 by

determining its equilibrium. For the purpose of this section,
we assume d̃ is given and constant.

Let r ≤ n be the size of N 0
2 . We partition x, W, B, and

d̃ accordingly,

x=

[
x
0

x
1

]
, W=

[
W

00
W

01

W
10

W
11

]
, B=

[
B

0

0

]
, d̃=

[
0

d̃
1

]
, (21)

where W
00 ∈ Rr×r,B0 ∈ Rr×p≤0 is nonpositive to deliver

inhibition, and d̃
1 ∈ Rn−r. m is decomposed similarly. The

first r rows of B are nonzero to allow for the inhibition of
N 0

2 while the remaining n − r rows are zero to make this
inhibition selective to N 0

2 .9 The sparsity of the entries of d̃ is
opposite to the rows of B due to the complementary roles of
Bu(t) and d̃.

The mechanisms of inhibition in the brain are broadly
divided [76] into two categories, feedforward and feedback,
based on how the signal u(t) is determined. In the following,
we separately study each scenario, analyzing the interplay
between the corresponding mechanism and network structure.
We will later combine both mechanisms when we discuss
the complete HSR framework in [19], as natural selective
inhibition is not purely feedback or feedforward.

A. Feedforward Selective Inhibition

Feedforward inhibition [76] refers to the scenario where
N1 provides an inhibition based on its own “desired” activ-
ity/inactivity pattern forN2 and irrespective of the current state
of N2. This is indeed possible if the inhibition is sufficiently
strong, as excessive inhibition has no effect on nodal dynamics
due to the (negative) thresholding in [ · ]m0 . However, this
independence from the activity level of N2 requires some form
of guaranteed boundedness, as defined next.

Definition V.1. (Monotone boundedness). The dynamics (3) is
monotonically bounded if for any d̄ ∈ Rn there exists ν(d̄) ∈
Rn≥0 such that x(t) ≤ ν(d̄), t ≥ 0 for any d(t) ≤ d̄, t ≥ 0.

From Lemma IV.12 and Proposition IV.9, (3) is monoton-
ically bounded if ρ([W]∞0 ) < 1 and the initial condition x0

is restricted to a bounded domain. Also in reality, the state
of any biological neuronal network is uniformly bounded due
to the refractory period of its neurons, implying monotone
boundedness. We next show that the GES of N 1

2 is both
necessary and sufficient for feedforward selective inhibition.

Theorem V.2. (Feedforward selective inhibition). Consider
the dynamics (3), where the external input is given by (20)-
(21) with a constant feedforward control

u(t) ≡ u ≥ 0.

Assume that (3) is monotonically bounded and

range([W
00

W
01

]) ⊆ range(B
0
). (22)

Then, for any d̃
1 ∈ Rn−r, there exists ū ∈ Rp≥0 such that for

all u ≥ ū, N2 is GES relative to a unique equilibrium of the
form x∗ = [0Tr (x

1
∗)
T ]T if and only if W

11 is such that the
internal N 1

2 dynamics

τ ẋ
1

= −x
1

+ [W
11

x
1

+ d̃
1
]m

1
0 , (23)

is GES relative to a unique equilibrium.

Proof: (⇐) Define us to be a solution of

B
0
us = −[[W

00
W

01
]]∞0 ν(d̃). (24)

9This sparsity pattern can always be achieved by (re-)labeling the r directly
controlled nodes as 1, . . . , r, so that the n− r last entries of B are 0.



This solution exists by assumption (22). Let ū = [us]
∞
0

and note that B
0
u ≤ B

0
ū ≤ B

0
us. By construction,

(3), (20), (21), (24) simplify to

τ ẋ
0

= −x
0
,

τ ẋ
1

= −x
1

+ [W
10

x
0

+ W
11

x
1

+ d̃
1
]m

1
0 , (25)

whose GES follows from Lemma A.1.
(⇒) By monotone boundedness and nonpositivity of B

0,
x(t) ≤ ν(d̃) for all t ≥ 0 and any u ≥ ū. Let u =
ū + [us]

∞
0 where us is a solution to (24). Similar to above,

this simplifies (3), (20), (21), (24) to (25), which is GES by
assumption. However, for any initial condition of the form
x(0) = [0Tr x

1
(0)T ]T , the trajectories of (25) are the same

as (23), and the result follows.
The next section shows that the condition (22) on the

ability to influence the dynamics of the task-irrelevant nodes
through control also plays a key role in feedback selective
inhibition. We defer the discussion about the interpretation of
this condition to Section V-C below.

B. Feedback Selective Inhibition

The core idea of feedback inhibition [76], as found through-
out the brain, is the dependence of the amount of inhibition
on the activity level of the nodes that are to be inhibited.
This dependence is in particular relevant to GDSA, as the
stronger and more salient a source of distraction, the harder
one must try to suppress its effects on perception. The next
result provides a novel characterization of several equivalences
between the dynamical properties of N2 under linear full-state
feedback inhibition and those of N 1

2 .

Theorem V.3. (Feedback selective inhibition). Consider the
dynamics (3), where the external input is given by (20)-(21)
with a linear state feedback u

u(t) = Kx(t), (26)

and K ∈ Rp×n is a constant control gain. Assume that (22)
holds. Then, there almost always exists K ∈ Rp×n such that

(i) I− (W + BK) ∈ P if and only if I−W
11 ∈ P;

(ii) −I + (W + BK) ∈ H if and only if −I + W
11 ∈ H;

(iii) W + BK ∈ L if and only if W
11 ∈ L;

(iv) ρ(|W + BK|) < 1 if and only if ρ(|W11|) < 1;
(v) ‖W + BK‖ < 1 if and only if ‖[W10

W
11

]‖ < 1.

Proof: (i) ⇒) For any K = [K
0

K
1
] ∈ Rp×n,

W + BK =

[
W

00
+ B

0
K

0
W

01
+ B

0
K

1

W
10

W
11

]
. (27)

Thus, since any principal submatrix of a P-matrix is a P-
matrix, I−W

11 ∈ P .
⇐) By (22) there exists K̄ ∈ Rp×n such that

−
[
W

00
W

01]
= B

0
K̄. (28)

Using the fact that the determinant of any block-triangular
matrix is the product of the determinants of the blocks on its
diagonal [45, Prop 2.8.1], it follows that I− (W +BK̄) ∈ P .

(ii) ⇒) This follows from (27) and the fact that a principal
submatrix of a totally-Hurwitz matrix is totally-Hurwitz.

⇐) Using the matrix K̄ in (28), the result follows from the
fact that the eigenvalues of a block-triangular matrix are the
eigenvalues of its diagonal blocks.

(iii) ⇒) Let P = PT > 0 be such that

(−I + (W+BK)TΣ`)P+P(−I + Σ`(W+BK)) < 0 (29)

for all σ ∈ {0, `}n. Consider, in particular, σ = [0Tr (σ
1
)T ]T

where σ1 ∈ {0, `}n−r is arbitrary. Let Σ`1 ∈ R(n−r)×(n−r)

be the bottom-right block of Σ` and partition P in 2-by-2
block form similarly to W. Since

(−I + (W + BK)TΣ`)P + P(−I + Σ`(W + BK))

=

[
? ?

? (−I + Σ`1W
11

)TP
11

+ P
11

(−I + Σ`1W
11

)

]
,

and any principal submatrix of a negative definite matrix is
negative definite, we deduce W

11 ∈ L.
⇐) Let P

11 ∈ R(n−r)×(n−r) be such that

(−I + (W
11

)TΣ`1)P
11

+ P
11

(−I + Σ`1W
11

) < 0,

for all σ1 ∈ {0, 1}n−r and K̄ be as in (28). For any σ =
[(σ

0
)T (σ

1
)T ]T , (28) gives

−I + Σ`(W + BK̄) =

[
−I 0

? −I + Σ`1W
11

]
.

Thus, the dynamics τ ẋ =
(
− I + Σ`(W + BK̄)

)
x is a

cascade of τ ẋ0
= −x

0 and τ ẋ1
= (−I+Σ`1W

11
)x

1
+?·x0,

where the latter has the ISS10-Lyapunov function V
1
(x

1
) =

(x
1
)TP

11
x
1. Using [77, Thm 3], (29) holds for K = K̄,

P = diag(I,P
11

), and any σ ∈ {0, `}n, giving W+BK̄ ∈ L.
(iv) ⇒) This follows from (27) and [45, Fact 4.11.19].

⇐) Consider the matrix K̄ in (28). The result then follows
from the fact that the eigenvalues of a block-triangular matrix
are the eigenvalues of its diagonal blocks.

(v) ⇒) Note that for any K ∈ Rp×n,

‖W + BK‖2 = ρ

([
? ?

? W
10

(W
10

)T + W
11

(W
11

)T

])
≥ ρ(W

10
(W

10
)T + W

11
(W

11
)T ) =

∥∥[W10
W

11]∥∥2
,

where the inequality follows from the well-known interlacing
property of eigenvalues of principal submatrices (cf. [78]).
⇐) Consider the matrix K̄ in (28) and note that

‖W + BK̄‖2 = ρ

([
0 0

0 W
10

(W
10

)T + W
11

(W
11

)T

])
= ρ(W

10
(W

10
)T +W

11
(W

11
)T ) =

∥∥[W10
W

11]∥∥2
< 1,

completing the proof.

Remark V.4. (Feedback inhibition with nonnegative u(t)).
Even though Theorem V.3 is motivated by feedback inhibition
in the brain, the result illustrates some fundamental properties
of linear-threshold dynamics and the corresponding matrix
classes that is of independent interest, which motivates the
generality of its formulation. The particular application to
brain networks requires nonnegative inputs, which we discuss
next. The core principle of Theorem V.3 is the cancellation of

10Input-to-state stability



local input [W
00

W
01

]x to N 0
2 with the top-down feedback

input B
0
K̄x, simplifying the dynamics of N 0

2 to τ ẋ0
= −x

0

that guarantee its inhibition. However, the resulting input
signal u = K̄x (being the firing rate of some neuronal
population in N1) may not remain nonnegative at all times.
This can be easily addressed as follows. Similar to the proof
of Theorem V.2, we let

u(t) = [K̄x(t)]∞0 .

This makes u(t) nonnegative without affecting the selective
inhibition of N 0

2 in (3) as B
0 ≤ 0. In principle, a similar

concern can exist as to whether K̄x becomes larger than the
maximum firing rate of the corresponding populations in N1.
However, this only relates to the magnitude of the entries in B

0

(via (28), as opposed to the sign of K̄x, which relates to the
sign of the entries in B

0), which can always be increased via
synaptic long term potentiation (LTP) [79], in turn decreasing
the magnitude of the entries in K̄. �

Remark V.5. (State vs. output feedback). The assumption
of state feedback is a simplifying one and its generalization
merits further research. However, we note that x

0 is most
likely always available for feedback (as feedback inhibition is
highly reciprocal at the neuronal level [80] and even more so at
the population level) while the availability of x

1 for feedback
remains case-specific. If the latter is not available, one of two
scenarios may happen: either the local interaction of x

0 and
x
1 is competitive and W

01 ≤ 0 (which is not unlikely due
to the prevalence of lateral inhibition in the cortex [81]), in
which case the feedback of x

1 is not even needed (similar to
Remark V.4) or, at worst, the unobserved x

1 actively excites
x
0, in which case a combination of feedback and feedforward

inhibition can be used, similar to our full model in Part II [19,
Thm 4.3]. �

C. Network Size, Weight Distribution, and Stabilization

Underlying the discussion above is the requirement that
N2 can be asymptotically stabilized towards an equilibrium
which has some components equal to zero and the remaining
components determined by d̃. Here, it is important to distin-
guish between the stability of N2 in the absence and presence
of selective inhibition. In reality, the large size of biological
neuronal networks often leads to highly unstable dynamics
if all the nodes in a layer, say N2, are active. Therefore,
the selective inhibition of N 0

2 is not only responsible for
the suppression of the task-irrelevant activity of N 0

2 , but also
for the overall stabilization of N2 that allows for top-down
recruitment of N 1

2 . This poses limitations on the size and
structure of the subnetworks N 0

2 and N 1
2 . It is in this context

that one can analyze the condition (22) assumed in both
Theorems V.2 and V.3. This condition requires, essentially, that
there are sufficiently many “independent” external controls u
to enforce inhibition on N 0

2 . The following result formalizes
this statement.

Lemma V.6. (Equivalent characterization of (22)). Let the
matrices W

0 and B
0 have dimensions r × n and r × p,

respectively. Then, range(W
0
) ⊆ range(B

0
) for almost all

(W
0
,B

0
) ∈ Rr×n × Rr×m if and only if p ≥ r.

Proof: ⇒) Assume, by contradiction, that p < r, so
range(B

0
) ( Rr for any B

0. Let Q = Q(B
0
) be a

matrix whose columns form a basis for range(B
0
)⊥. Then,

range(W
0
) ⊆ range(B

0
) if and only if Q(B

0
)TW

0
= 0. By

Fubini’s theorem [82, Ch. 20],∫
Rr×n×Rr×p

I{Q(B
0

)TW
0

=0}(W
0
,B

0
)d(W

0
,B

0
)

=

∫
Rr×p

dB
0
∫
Rr×n

I{Q(B
0

)TW
0

=0}(W
0
,B

0
)dW

0

=

∫
Rr×p

0 dB
0

= 0,

where I denotes the indicator function. This contradiction
proves p ≥ r.
⇐) Let B

0
= [B

0
1 B

0
2] where B

0
1 ∈ Rr×r. It is straightforward

to show that

{(W0
,B

0
) | range(W

0
) * range(B

0
)} ⊆ Rr×n ×A,

where A = {B0 | det(B0
1) = 0}. Since A has measure zero,

the result follows from a similar argument as above invoking
Fubini’s theorem.

Based on intuitions from linear systems theory, it may be
tempting to seek a relaxation of (22) for the case where p < r.
This is due to the fact that for a linear system τ ẋ = Wx+Bu,
it is known [83, eq (4.5) and Thm 3.5] that the set of all
reachable states from the origin is given by

range
([

B
0

W
00

B
0 · · · (Wn−1)

00
B

0

0 W
10

B
0 · · · (Wn−1)

10
B

0

])
,

which is usually much larger than range(B). Therefore, it is
reasonable to expect that (22) could be relaxed to

range([W
00

W
01

])

⊆ range([B
0

W
00

B
0 · · · (Wn−1)

00
B

0
]). (30)

However, it turns out that this relaxation is not possible, the
reason being the (apparently simple, yet intricate) nonlinearity
in (3). We show this by means of an example.

Example V.7. (Tightness of (22)). Consider the feedback
dynamics (3), (20), (26), where n = 3, p = 1, r = 2, and

W =

 2α 0 0
0 3α 0
0 0 α

 , B =

 1
1
0

 , α ∈ (0.5, 1).

Clearly, (22) does not hold (so Theorem V.3(iv) does not
apply), but range([W

00
W

01
]) ⊆ range([B

0
W

00
B

0
]). One

can show that for all K ∈ R1×3,

ρ(|W + BK|) ≥ 2α > 1,

while ρ(W
11

) = α < 1, verifying that (22) is necessary and
cannot be relaxed to (30). �

Theorems V.2 and V.3 use completely different mechanisms
for inhibition of N 0

2 , yet they are strikingly similar in one
conclusion: that the dynamical properties achievable under
selective inhibition are precisely those satisfied by N 1

2 . This
has important implications for the size and structure of the part
N 1

2 that can be active at any instance of time without resulting
in instability. The next remark elaborates on this implication.



Remark V.8. (Implications for the size and connection
strength of N 1

2 ). Existing experimental evidence suggest that
the synaptic weights W in cortical networks are sparse,
approximately follow a log-normal distribution, and have a
pairwise connection probability that is independent of physical
distance between neurons within short distances [84]. Based
on simulations of matrices with such statistics, Figure 5(a, b)
show how quickly the network (representing N2 here) moves
towards instability when its size grows. On the other hand,
it is well-known that increasing n (and thus the number of
synaptic weights) increases network expressivity (i.e., capacity
to reproduce complex trajectories). While determining the
optimal size of a network that leads to the best tradeoff
between stability and expressivity is beyond the scope of this
work, our results suggest a critical role for selective inhibition
in keeping only a limited number of nodes in N2 active at any
given time while inhibiting others. In other words, while the
overall size of subnetworks in a brain network (corresponding
to, e.g., the number of neuronal populations with distinct
preferred stimuli in a brain region) is inevitably large, selective
inhibition offers a plausible explanation for the mechanism
by which the brain keeps the number of active populations
bounded (O(1)) at any given time.

Similarly, Figure 5(c, d) show the transition of networks
towards instability as their synaptic connections become
stronger. While excitatory synapses, as expected, have a larger
impact on stability, the same trend is also observed while vary-
ing inhibitory synaptic strengths. Interestingly, several works
in the neuroscience literature have shown that neuronal net-
works maintain stability by re-scaling their synaptic weights
that change during learning, a process commonly referred to
as homeostatic synaptic plasticity [85]. Our results thus open
the way to provide rigorous and quantifiable measures of the
optimal size and weight distribution of subnetworks that may
be active at any given time and the homeostatic mechanisms
that maintain any desired level of stability and expressivity.�

VI. CONCLUSIONS

We adopt a control-theoretic framework, termed hierarchical
selective recruitment (HSR), as a mechanism to explain goal-
driven selective attention. Motivated by the organization of
the brain, HSR employs a hierarchical model which consists
of an arbitrary number of neuronal subnetworks that operate
at different layers of a hierarchy. While HSR is not confined
to any family of models, we here use the well-studied linear-
threshold rate models to describe the dynamics at each layer of
the hierarchy. We provide a thorough analysis of the internal
dynamics of each layer. Leveraging the switched-affine nature
of linear-threshold dynamics, we derive several necessary
and sufficient conditions for the existence and uniqueness
of equilibria (corresponding to P-matrices), local and global
asymptotic stability (corresponding to totally-Hurwitz ma-
trices), and boundedness of trajectories (corresponding to
stability of excitatory-only dynamics). These results set the
basis for analyzing the problem of selective inhibition. We
show that using either feedforward or feedback inhibition,
the dynamical properties of each layer after inhibition are
precisely determined by the task-relevant part that remains

active. We have also provided constructive control designs
that guarantee selective inhibition under both schemes. Among
the directions for future research, we highlight the study of
output-feedback selective inhibition and the analysis of the
conditions on (single-layer) linear-threshold networks that lead
to the emergence of limit cycles and their stability.
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APPENDIX A. ADDITIONAL LEMMAS AND PROOFS

Proof of Theorem IV.6: The necessity is trivial since
M−1

0 M` = −(I−W). To prove sufficiency, note that for any
σ ∈ {0, `}n,

M−1
σ = (I−WΣ`)(2Σ` − I) = (2Σ` − I)−WΣ`. (31)

Since nodes can be relabeled arbitrarily, we can assume
without loss of generality that σ1 = [`Tn1

`Tn2
0Tn3

0Tn4
]T and

σ2 = [`Tn1
0Tn2

`Tn3
0Tn4

]T where n1, . . . , n4 ≥ 0,
∑4
i=1 ni =

n. Then, it follows from (31) that

M−1
σ1

=


In1 −W11 −W12 0 0
−W21 In2

−W22 0 0
−W31 −W32 −In3

0
−W41 −W42 0 −In4

 ,

M−1
σ2

=


In1
−W11 0 −W13 0
−W21 −In2

−W23 0
−W31 0 In3 −W33 0
−W41 0 −W43 −In4

 ,
where Wij’s are submatrices of W with appropriate dimen-
sions. Taking the inverse of M−1

σ1
as a 2-by-2 block-triangular

matrix [45, Prop 2.8.7] (with the indicated blocks), we get

Mσ1=


[
In1
−W11 −W12

−W21 In2 −W22

]−1

0

−
[
W31 W32

W41 W42

][
In1
−W11 −W12

−W21 In2−W22

]−1

−In3+n4

 ,
so direct multiplication gives Mσ1

M−1
σ2

=

[
B1 B2

B3 B4

]
, with

B1 =

[
In1 −W11 −W12

−W21 In2
−W22

]−1 [
In1 −W11 0
−W21 −In2

]
,

B2 = −
[
In1
−W11 −W12

−W21 In2
−W22

]−1 [
W13 0
W23 0

]
,

B3 = −
[
W31 W32

W41 W42

]
B1 +

[
W31 0
W41 0

]
,

B4 = −
[
W31 W32

W41 W42

]
B2 −

[
In3
−W33 0
−W43 −In4

]
.
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With this, after some computations one can show that

Mσ1
M−1
σ2

=


In1

? ? 0
0
0

[
? ?
? ?

]
0
0

0 ? ? In4

 . (32)

Let Γ ∈ R(n2+n3)×(n2+n3) be the bracketed block in
Mσ1

M−1
σ2

and define

Q =

[
Q11 Q12

Q21 Q22

]
,

[
In1
−W11 −W12

−W21 In2 −W22

]−1

,

R , In3 −W33 −
[

W31 W32

]
Q

[
W13

W23

]
.

It can be shown that

Γ = −

 Q22

[
Q21 Q22

] [W13

W23

]
−
[
W31 W32

] [Q12

Q22

]
R

 .
Inverting the left-hand-side matrix (below) as a 2-by-2 block
matrix [45, Prop 2.8.7] (the first block is Q−1) and applying
the matrix inversion lemma [45, Cor 2.8.8] to the first block
of the result, we obtain In1

−W11 −W12 −W13

−W21 In2 −W22 −W23

−W31 −W32 In3 −W33

−1

=

? ? ?

? B̂1 B̂2

? B̂3 B̂4


where

B̂1 = Q22 +
[
Q21 Q22

] [W13

W23

]
R−1

[
W31 W32

] [Q12

Q22

]
,

B̂2 =
[
Q21 Q22

][W13

W23

]
R−1, B̂3 = R−1

[
W31 W32

][Q12

Q22

]
,

and B̂4 = R−1. Therefore, −Γ is the principal pivot transform

of
[
B̂1 B̂2

B̂3 B̂4

]
so if I−W ∈ P , Lemma II.2(v) and the block

structure of (32) guarantee that −Mσ1
M−1
σ2
∈ P .

The following result is used in the proof of Theorem V.2.

Lemma A.1. (GES of cascaded interconnections). Consider
the cascaded dynamics

τ ẋ
0

= −x
0
,

τ ẋ
1

= −x
1

+ [W
10

x
0

+ W
11

x
1

+ d̃
1
]m

1
0 , (33)

where x
0 ∈ Rr and x

1 ∈ Rn−r. If W
11 is such that

τ ẋ
1

= −x
1

+ [W
11

x
1

+ d̃
1
]m

1
0 , (34)

is GES for any constant d̃
1 ∈ Rn−r, then the whole dynam-

ics (33) is also GES for any constant d̃
1.

Proof: We only prove the result for d̃
1

= 0. This is
without loss of generality, since for d̃

1 6= 0, we can apply the
change of variables ξ = x− x∗, where x∗ is the equilibrium
corresponding to input [0T (d̃

1
)T ]T , and shift the equilibrium

to the origin. Since (34) is GES, [19, Thm A.1] guarantees
that there exists x

1 7→ V
1
(x

1
) such that

c1‖x
1‖2 ≤ V 1

(x
1
) ≤ c2‖x

1‖2, (35a)

∥∥∥∂V 1
(x

1
)

∂x1

∥∥∥ ≤ c3‖x1‖, (35b)

for some c1, c2, c3 > 0, and, if x
1
(t) is the solution of (34),

τ
d

dt
V

1
(x

1
(t)) ≤ −c4‖x

1‖2, (35c)

for some c4 > 0. Since [·]m1
0 is Lipschitz continuous, it follows

from (35b) and (35c) that if x
1
(t) is the solution of (33),

τ
d

dt
V

1
(x

1
(t)) ≤ −c4‖x

1‖2 + c3‖x
1‖‖W10

x
0‖

≤ −c4
2
‖x1‖2 +

c23‖W
10‖2

2c4
‖x0‖2,

where the second inequality follows from Young’s inequal-
ity [50, p. 466]. Now, let V (x) = (c23‖W

10‖2/2c4)‖x0‖2 +
V

1
(x

1
). It is straightforward to verify that V satisfies all the

assumptions of [50, Thm 4.10] with a = 2.
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