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Abstract

This paper studies the problem of stabilization of a nonlinear system with time-varying delays in both sensing and actuation
using event-triggered control. Our proposed strategy seeks to opportunistically minimize the number of control updates while
guaranteeing stabilization and builds on predictor feedback to compensate for arbitrarily large known time-varying delays. We
establish, using a Lyapunov approach, the global asymptotic stability of the closed-loop system as long as the open-loop system
is globally input-to-state stabilizable in the absence of time delays and event-triggering. We further prove that the proposed
event-triggered law has inter-event times that are uniformly lower bounded and hence does not exhibit Zeno behavior. For the
particular case of a stabilizable linear system, we show global exponential stability of the closed-loop system and analyze the
trade-off between the rate of exponential convergence and average sampling frequency. We illustrate these results in simulation
and also examine the properties of the proposed event-triggered strategy beyond the class of systems for which stabilization
can be guaranteed.

1 Introduction

Event-triggered and self-triggered approaches have re-
cently gained popularity for controlling cyberphysical
systems. The basic premise is that of abandoning the
assumption of continuous or periodic updating of the
control signal and instead adopt an opportunistic per-
spective that leads to deliberate, aperiodic updates. The
challenge resides in determining precisely when control
signals should be updated to improve efficiency while
still guaranteeing convergence. This paper expands the
state-of-the-art in opportunistic state-triggered control
by designing predictor-based event-triggered control
strategies that stabilize nonlinear systems with known
delays in both sensing and actuation that can be arbi-
trarily large and time-varying.

Literature review: There exists a vast literature on both
event-triggered control and the control of time-delay
systems. Here, we review the works most closely re-
lated to our treatment. Originating from event-based
and discrete-event systems [Cassandras and Lafortune,
2007, Zou et al., 2017], the concept of event-triggered
control (i.e., updating the control signal in an oppor-
tunistic fashion) was proposed in [Kopetz, 1991, Åström
and Bernhardsson., 2002] and has found its way into the
efficient use of sensing, computing, actuation, and com-
munication resources in networked control systems, see
e.g., [Tabuada, 2007, Wang and Lemmon, 2011, Heemels
et al., 2012, Abdelrahim et al., 2017] and references

? A preliminary version of this paper appeared at the 55th
IEEE Conference on Decision and Control, Las Vegas, USA,
as [Nozari et al., 2016].

therein. On the other hand, the notion of predictor feed-
back is a powerful method in dealing with controlled
systems subject to time delay [Smith, 1959, Mayne, 1968,
Manitius and Olbrot, 1979, Nihtila, 1991, Krstic, 2009].
In essence, a predictor feedback controller anticipates
the future evolution of the plant using its forward model
and sends the control signal early enough to compensate
for the delay. Here, we pursue a Lyapunov-based analy-
sis of predictor feedback following [Bekiaris-Liberis and
Krstic, 2013]. Given that the numerical implementations
of predictor feedback controllers are particularly chal-
lenging [Mirkin, 2004, Zhong, 2004], we further discuss
several methods for the numerical implementation of our
proposed controller and show that a carefully designed
“closed-loop” method is numerically stable and robust to
errors in delay compensation.

The joint treatment of time delay and event-triggering
is particularly challenging. By its opportunistic nature,
an event-triggered controller keeps the control value un-
changed until the plant is close to instability and then
updates the control value according to the current state.
Now, if time delays exist, the controller only has ac-
cess to some past state of the plant (delayed sensing)
and it takes some time for an updated control action
to reach the plant (delayed actuation), jointly increas-
ing the possibility of the updated control value being al-
ready obsolete when it is implemented in the plant, re-
sulting in instability. Therefore, the controller needs to
be sufficiently proactive and update the control value suf-
ficiently ahead of time to maintain closed-loop stability.
This makes the design problem challenging. Delays in ac-
tuation and sensing may be due to communication de-
lays between controller-actuator and controller-sensing
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pairs, and in that sense, previous work on the event-
triggered control literature that specifically considers de-
lays in the communication channel deals with a similar
problem setup as the one considered here. Several event-
triggered designs consider scenarios where the system dy-
namics are linear, see, e.g. [Zhang et al., 2017, Chen et al.,
2017, Selivanov and Fridman, 2016, Ge and Han, 2015,
Garcia and Antsaklis, 2013]. The inclusion of nonlinear-
ity, however, makes the problem more challenging. When
digital controllers are used and the delay is smaller than
the sampling time, [Hetel et al., 2006, Wu et al., 2015]
design event-triggered controllers for the resulting delay-
free discretized system. Robust event-triggered stabiliz-
ing controllers are also designed for nonlinear systems
with sensing delays in [Li et al., 2012] and with both sens-
ing and actuation delays in [Dolk et al., 2017]. In all these
works, however, a key assumption is that the (maximum)
delay is smaller than the (minimum) inter-transmission
time. This assumption (also called the small-delay case)
allows for the treatment of delay as a disturbance and,
by construction, can tolerate unknown delays. In real-
ity, however, (minimum) inter-transmission times can be
very small, making this assumption restrictive. We take
a different perspective here and consider arbitrarily large
delays, with the expected tradeoff in our treatment that
the delay can no longer be unknown. The technical ap-
proach is based on using predictors that capture the ef-
fect of the delay on the system to compensate for it. We
rigorously analyze the case when the delay is accurately
known and show in simulation that our design is indeed
robust to small variations when the delay is only approx-
imately known.

Statement of contributions: Our contributions are three-
fold. First, we design an event-triggered controller for sta-
bilization of nonlinear systems with arbitrarily large sens-
ing and actuation delays. We employ the method of pre-
dictor feedback to compensate for the delay in both and
then co-design the control law and triggering strategy to
guarantee the monotonic decay of a Lyapunov-Krasovskii
functional. Our second contribution involves the closed-
loop analysis of the event-triggered law, proving that the
closed-loop system is globally asymptotically stable and
the inter-event times are uniformly lower bounded (and
thus no Zeno behavior may exist). Due to the importance
of linear systems in numerous applications, we briefly dis-
cuss the simplifications of the design and analysis in this
case. Our final contribution pertains to the trade-off be-
tween convergence rate and sampling. Our analysis in this
part is limited to linear systems, where closed-form solu-
tions are derivable for (exponential) convergence rate and
minimum inter-event times. We provide a quantitative
account of the well-known trade-off between sampling
and convergence in event-triggered designs and show how
this trade-off can be biased in either direction by tuning
a design parameter. Finally, we present simulations to
illustrate the effectiveness of our design and address its
numerical implementation.

2 Preliminaries

We introduce notational conventions and briefly review
notions on input-to-state stability. We denote by R and
R≥0 the sets of reals and nonnegative reals, respectively.

Given a vector or matrix, we use | · | to denote the Eu-
clidean norm. We denote by K the set of strictly increas-
ing continuous functions α : [0,∞)→ [0,∞) with α(0) =
0. α belongs to K∞ if α ∈ K and limr→∞ α(r) =∞. We
denote by KL the set of functions β : [0,∞) × [0,∞) →
[0,∞) such that, for each s ∈ [0,∞), r 7→ β(r, s) is non-
decreasing and continuous and β(0, s) = 0 and, for each
r ∈ [0,∞), s 7→ β(r, s) is monotonically decreasing with
β(r, s)→ 0 as s→∞. We use the notation LfS = ∇S ·f
for the Lie derivative of a function S : Rn → R along the
trajectories of a vector field f taking values in Rn.
We follow [Sontag and Wang, 1995] to review the defini-
tion of input-to-state stability of nonlinear systems and
its Lyapunov characterization. Consider a nonlinear sys-
tem of the form

ẋ(t) = f(x(t), u(t)), (1)

where f : Rn × Rm → Rn is continuously differentiable
and satisfies f(0, 0) = 0. For simplicity, we assume that
this system has a unique solution which does not ex-
hibit finite escape time. System (1) is (globally) input-to-
state stable (ISS) if there exist α ∈ K and β ∈ KL such
that for any measurable locally essentially bounded in-
put u : R≥0 → Rm and any initial condition x(0) ∈ Rn,
its solution satisfies

|x(t)| ≤ β(|x(0)|, t) + α
(

supt≥0 |u(t)|
)
,

for all t ≥ 0. For this system, a continuously differen-
tiable function S : Rn → R≥0 is called an ISS-Lyapunov
function if there exist α1, α2, γ, ρ ∈ K∞ such that

∀x ∈ Rn α1(|x|) ≤ S(x) ≤ α2(|x|), (2a)
∀(x, u) ∈ Rn+m LfS(x, u) ≤ −γ(|x|) + ρ(|u|). (2b)

According to [Sontag and Wang, 1995, Theorem 1], the
system (1) is ISS if and only if it admits an ISS-Lyapunov
function.

3 Problem Statement

Consider the nonlinear system (“plant”) with dynamics

ẋ(t) = f(x(t), up(t)), t ≥ 0, (3)

where f : Rn × Rm → Rn is continuously differentiable
and f(0, 0) = 0. We assume the plant (3) does not ex-
hibit finite escape time for any initial condition and any
bounded input 1 . Our goal is to provide a state-feedback
controller ensuring global asymptotic stability under the
following challenges:

(i) Actuation delay: Let u(t) be the control signal gen-
erated by the controller. Actuation delay is modeled as

up(t) = u(φ(t)), t ≥ 0,

where t − φ(t) > 0 is the amount of time that it takes
for a control action generated at time φ(t) to reach the

1 This is a technical assumption and is satisfied by any real
system due to bounded vector fields.
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plant/actuator 2 . This delay may be due to the controller
computation time, signal transmission time from con-
troller to actuator (e.g, when they are not co-located), ac-
tuation lag due internal actuator dynamics, or a combina-
tion thereof. For simplicity, we assume φ is continuously
differentiable. We also assume φ is monotonically increas-
ing (φ̇(t) > 0), so the time argument of the control does
not go back in time We further assume the delay and its
derivative are bounded, i.e., there exist M0,M1,m2 > 0
such that

t− φ(t) ≤M0 and m2 ≤ φ̇(t) ≤M1, t ≥ 0. (4)

In the case of a constant actuation delay D, we have
φ(t) = t − D, trivially satisfying (4) with M0 = D and
M1 = m2 = 1.
(ii) Sensing delay: We assume the sensor information
(state values) take t−ψ(t) seconds to reach the controller,
where the delay function ψ is also monotonically increas-
ing but need not be known a priori. Again, this delay
may be due to processing times at the sensor, the trans-
mission time from sensor to controller (e.g, if they are
not co-located), or a combination thereof. We rely on a
posteriori knowledge of the values of ψ only at the times
when state information is available.
(iii) Actuation event-triggering: We aim to design
opportunistic event-triggered controllers that do not re-
quire continuous updating of the control signals. This
is motivated by practical concerns about the imple-
mentability of the controller in real time, and also by
considerations about the efficient use of the available re-
sources (to prevent, for instance, wear-and-tear of the ac-
tuator, or to accommodate bandwidth limitations when
sensor, controller, and actuator are not co-located). We
seek to design a controller that updates u(t) only at a
sequence of discrete times {tk}∞k=0,

u(t) = u(tk), t ∈ [tk, tk+1), k ≥ 0. (5)

(iv) Sensing event-triggering: We assume the sen-
sor can only send an event-triggered sequence of states
{x(τ `)}∞`=0 to the controller. However, {τ `}∞`=0 is fully de-
termined by the sensor independently of our design. The
sensor ensures that lim`→∞ τ ` =∞. For simplicity, we let
τ0 = 0 and t0 = ψ−1(0) (u(t) is arbitrarily set in [0, t0)
as the controller has not received any state information
yet).

Since our focus is on the challenges imposed by time de-
lays and event-triggered control, we assume the origin
of (3) is robustly globally asymptotically stabilizable in
the absence of delays and with continuous sensing and
actuation. Formally, we assume that there exists a glob-
ally Lipschitz feedback law K : Rn → Rm, K(0) = 0,
that makes

ẋ(t) = f(x(t),K(x(t)) + w(t)), (6)

ISS with respect to the additive input disturbancew. The
availability of this feedback law is the premise to tackle
the challenges posed by the network implementation.

2 The initial control {u(t)}0t=φ(0) is given and continuously
differentiable.

Problem 1 (Event-Triggered Stabilization under Sens-
ing and Actuation Delay): Design the sequence of actua-
tion triggering times 3 {tk}∞k=1 and the corresponding con-
trol values {u(tk)}∞k=0 such that limk→∞ tk =∞ and the
closed-loop system (3) is globally asymptotically stable us-
ing the piecewise constant control (5) and the delayed in-
formation {x(τ `)}∞`=0 received, resp., at {ψ−1(τ `)}∞`=0.

4

•
The requirement limk→∞ tk = ∞ ensures the resulting
design is implementable by avoiding finite accumulation
points.

4 Event-Triggered Design and Analysis

In this section, we propose an event-triggered control pol-
icy to solve Problem 1. We start our analysis with the
simpler case where the controller receives state feedback
continuously (i.e., {x(t)}∞t=0 instead of {x(τ `)}∞`=0) with-
out delays (i.e., ψ(t) = t), and later extend it to the gen-
eral case.

4.1 Predictor Feedback Control for Time-Delay Systems

Here we review the continuous-time stabilization of the
dynamics (3) bymeans of a predictor-based feedback con-
trol [Bekiaris-Liberis and Krstic, 2013]. For convenience,
we denote the inverse of φ by σ(t) = φ−1(t), for all t ≥ 0.
The inverse exists since φ is strictly monotonically in-
creasing. From (4), for all t ≥ φ(0),

1

σ(t)− t
≥ m0 and m1 ≤ σ̇(t) ≤M2,

for m0 = 1
M0

, m1 = 1
M1

, and M2 = 1
m2

. To compensate
for the delay, at any time t ≥ φ(0), the controller makes
the following prediction of the future state of the plant,

p(t) = x(σ(t)) = x(t+) +

∫ t

φ(t+)

σ̇(s)f(p(s), u(s))ds,

(7)

where t+ = max{t, 0}. This integral is computable by the
controller since it only requires knowledge of the initial or
current state of the plant (gathered from the sensors) and
the history of u(t) and p(t), both of which are available to
the controller. Nevertheless, for general nonlinear vector
fields f , (7) may not have a closed-form solution and it
has to be computed using numerical integration methods,
cf. Remark 6.1 below. The controller applies the control
law K on the prediction p in order to compensate for the
delay, i.e.,

u(t) = K(p(t)), t ≥ 0. (8)

3 Recall that t0 = ψ−1(0) is fixed.
4 We require that the control law is causal, i.e., tk and u(tk)
depend only on the states {x(τ `)} that have reached the con-
troller by the time tk. While sampling may be modeled as a
specific type of delay, we capture it with the prediction error
e(t) (defined later). The values φ(t) and ψ(t) only capture
the delays in actuation and sensing, resp.
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The next result shows convergence for the closed-loop
system.

Proposition 4.1 (Asymptotic Stabilization by Predictor
Feedback [Bekiaris-Liberis and Krstic, 2013]): Under the
aforementioned assumptions, the closed-loop system (3)
under the controller (8) is globally asymptotically stable,
i.e., there exists β ∈ KL such that for any x(0) ∈ Rn and
bounded {u(t)}0t=φ(0), for all t ≥ 0,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0

|u(τ)|, t
)
.

4.2 Design of Event-triggered Control Law

Following Section 4.1, we let the controller make the pre-
diction p(t) according to (7) for all t ≥ φ(0). Since the
controller can only update u(t) at discrete times {tk}∞k=0,
it uses the piecewise-constant control (5) and assigns the
control

u(tk) = K(p(tk)), (9)

for all k ≥ 0. In order to design the triggering times
{tk}∞k=1, we use Lyapunov stability tools to determine
when the controller has to update u(t) to prevent insta-
bility. We define the triggering error for all t ≥ φ(0) as

e(t) =

{
p(tk)− p(t) if t ∈ [tk, tk+1) for k ≥ 0,

0 if t ∈ [φ(0), t0),
(10)

so that u(t) = K(p(t) + e(t)), for t ≥ t0. Let

w(t) = u(t)−K(p(t) + e(t)), t ≥ φ(0), (11)

where w(t) = 0 for t ≥ t0 but w(t) is in general nonzero
for t ∈ [φ(0), t0). Computing u(φ(t)) from (11) and sub-
stituing it in (3), the closed-loop system can be written
as

ẋ(t) = f
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
, (12)

for all t ≥ 0. Notice that (12) simplifies to [Tabuada,
2007, Eq. (3)] in the absence of delay (φ(t) = t). Let
g(x,w) = f(x,K(x) +w) for all x,w. By the assumption
that ẋ = g(x,w) is ISS with respect to w, there exists
a continuously differentiable function S : Rn → R and
α1, α2, γ, ρ ∈ K∞ such that

α1(|x(t)|) ≤ S(x(t)) ≤ α2(|x(t)|), (13)

and (LgS)(x,w) ≤ γ(|x|) + ρ(|w|). Therefore, we have

(LfS)
(
x(t),K

(
x(t) + e(φ(t))

)
+ w(φ(t))

)
(14)

= (LgS)
(
x(t),K

(
x(t)+e(φ(t))

)
+w(φ(t))−K(x(t))

)
≤−γ(|x(t)|) + ρ

(∣∣K(x(t)+e(φ(t))
)
+w(φ(t))−K(x(t))

∣∣).
We assume that ρ is such that

∫ 1

0
ρ(r)
r <∞. This assump-

tion is not restrictive and is satisfied by most well-known

class K functions. Then, define

V (t) = S(x(t)) +
2

b

∫ 2L(t)

0

ρ(r)

r
dr, (15a)

L(t) = sup
t≤τ≤σ(t)

|eb(τ−t)w(φ(τ))|, (15b)

and b > 0 is a design parameter. The next result estab-
lishes an upper bound on the time derivative of V .

Proposition 4.2 (Upper-bounding V̇ (t)): For the sys-
tem (3) under the control defined by (5) and (9) and the
predictor (7), we have

V̇ (t) ≤ −γ(|x(t)|)− ρ(2L(t)) + ρ(2LK |e(φ(t))|), (16)

for all t 6= t̄ and V (t̄−) ≥ V (t̄+), whereLK is the Lipschitz
constant of K and t̄ ∈ [0, σ(0)] is the greatest time such
that w(t) = 0 for all t > t̄.

Proof. Using (14), we have

LfS(x(t))

≤−γ(|x(t)|) + ρ
(
|w(φ(t))|+|K(x(t)+e(φ(t)))−K(x(t))|

)
≤ −γ(|x(t)|) + ρ

(
|w(φ(t))|+ LK |e(φ(t))|

)
≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|). (17)

Since e−b(t−τ)w(φ(τ)) is bounded for τ ∈ [t, σ(t)] and
any t ≥ 0 and [t, σ(t)] has finite measure, the sup-norm
in (15b) equals the limit of the corresponding p-norm as
p→∞, i.e.,

L(t) = lim
n→∞

[ ∫ σ(t)

t

e2nb(τ−t)w(φ(τ))2ndτ

] 1
2n

, lim
n→∞

Ln(t).

In fact, it can be shown that this convergence is uni-
form over [0, t1] for any t1 < t̄. Therefore, since L̇n(t) =

−bLn(t) − Ln
2n

(
w(φ(t))
Ln

)2n

, w(φ(t))
Ln

< 1 for t ∈ [0, t1] and
sufficiently large n and b, and t1 ∈ [0, t̄) is arbitrary, it
follows from [Rudin, 1976, Thm 7.17] that L̇(t) = −bL(t)
for t ∈ (0,∞) \ {t̄}. Combining this and (17), we get

V̇ (t) ≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|)

+
2

b
2L̇(t)

ρ(2L(t))

2L(t)

≤ −γ(|x(t)|) + ρ(2|w(φ(t))|) + ρ(2LK |e(φ(t))|)
− 2ρ(2L(t)).

for t ∈ (0,∞) \ {t̄}. Equation (16) thus follows since
|w(φ(t))| ≤ L(t) (c.f. (15b)) and the fact that ρ is strictly
increasing. Finally, since S(x(t)) is continuous, L(t̄−) ≥
0, and L(t̄+) = 0, we get V (t̄−) ≥ V (t̄+).

Proposition 4.2 is the basis for our event-trigger design.
Formally, we select θ ∈ (0, 1) and require

ρ(2LK |e(φ(t))|) ≤ θγ(|x(t)|), t ≥ 0,
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which can be equivalently written as

|e(t)| ≤ ρ−1(θγ(|p(t)|))
2LK

, t ≥ φ(0). (18)

Notice from (10) and the fact t = 0 that (18) holds on
[φ(0), t0]. Equation (18) fully specifies the sequence of
times {tk}∞k=1 and its dependence on the actuation de-
lay. For each k, after each time tk, the controller keeps
evaluating (18) until it reaches equality. At this time,
labeled tk+1, the controller triggers the next event that
sets e(tk+1) = 0 and maintains (18). Notice that “larger”
γ and “smaller” ρ (corresponding to “stronger” input-to-
state stability in (2)) are then more desirable, as they
allow the controller to update u less often. Our ensuing
analysis shows global asymptotic stability of the closed-
loop system and the existence of a uniform lower bound
on the inter-event times.

4.3 Convergence Analysis under Event-triggered Law

In this section we show that our event triggered law (18)
solves Problem 1 by showing, in the following result, that
the inter-event times are uniformly lower bounded (so, in
particular, there is no finite accumulation point in time)
and the closed-loop system achieves global asymptotic
stability.

Theorem 4.3 (Uniform Lower Bound for the Inter-
Event Times and Global Asymptotic Stability): Suppose
that the class K∞ function G : r 7→ γ−1(ρ(r)/θ) is (lo-
cally) Lipschitz. For the system (3) under the control (5)-
(9) and the triggering condition (18), the following hold:

(i) there exists δ > 0 such that tk+1 − tk ≥ δ for all
k ≥ 1,

(ii) there exists β ∈ KL such that for any x(0) ∈ Rn and
bounded {u(t)}0t=φ(0), we have for all t ≥ 0,

|x(t)|+ sup
φ(t)≤τ≤t

|u(τ)| ≤ β
(
|x(0)|+ sup

φ(0)≤τ≤0

|u(τ)|, t
)
. (19)

Proof. Let [0, tmax) be the maximal interval of exis-
tence of the solutions of the closed-loop system. The proof
involves three steps. First, we prove that (ii) holds for
t < tmax. Then, we show that (i) holds until tmax, and
finally that tmax =∞.

Step 1: From Proposition 4.2 and (18), we have

V̇ (t) ≤ −(1− θ)γ(|x(t)|)− ρ(2L(t))

≤ −γmin(|x(t)|+ L(t)), t ∈ [0, tmax) \ {t̄},

where γmin(r) = min{(1 − θ)γ(r), ρ(2r) for all r ≥ 0, so
γmin ∈ K. Also, note that

V (t) ≤ α2(|x(t)|) + α0(L(t)) ≤ 2αmax(|x(t)|+ L(t)),

where αmax(r) = max{α2(r), α0(r)} and α0(r) =
2
b

∫ 2r

0
ρ(s)
s ds for all r ≥ 0. Since α0, α2 ∈ K∞, we have

αmax ∈ K∞, so α−1
max ∈ K. Hence,

V̇ (t) ≤ −αmin(α−1
max(V (t)/2)) , α(V (t)), t ∈ [0, tmax) \ {t̄},

where α ∈ K. Therefore, using the Comparison Princi-
ple [Khalil, 2002, Lemma 3.4], [Khalil, 2002, Lemma 4.4],
and V (t̄−) ≥ V (t̄+), there exists β1 ∈ KL such that
V (t) ≤ β1(V (0), t), t < tmax. Therefore,

|x(t)|+ L(t) ≤ β2(|x(0)|+ L(0), t), t < tmax,

where β2(r, s) = α−1
min(β(2αmax(r), s)) for any r, s ≥ 0.

Note that β2 ∈ KL. Since we have

sup
φ(t)≤τ≤t

|w(τ)| ≤ L(t) ≤ ebM0 sup
φ(t)≤τ≤t

|w(τ)|,

it then follows that

|x(t)|+ sup
φ(t)≤τ≤t

|w(τ)| ≤ β3

(
|x(0)|+ sup

φ(0)≤τ≤0

|w(τ)|, t
)
,

for all t < tmax, where β3(r, s) = β2(ebM0r, s). This in-
equality leads to (19) using the same steps as in [Bekiaris-
Liberis and Krstic, 2013, Lemmas 8.10, 8.11] (the only
difference being the multiplicity of inputs).

Step 2: Equation (18) can be rewritten as

|p(t)| ≥ γ−1
(ρ(2LK |e(t)|)

θ

)
.

From step 1, the prediction p(t) = x(σ(t)) and its error
e(t) = p(tk) − p(t) are bounded. Therefore, there exists
Lγ−1ρ/θ > 0 such that for all t ≥ 0,

γ−1
(ρ(2LK |e(t)|)

θ

)
≤ 2Lγ−1ρ/θLK |e(t)|.

where Lγ−1ρ/θ is the Lipschitz constant of G on the
compact set that contains {e(t)}tmax

t=0 . Hence, a sufficient
(stronger) condition for (18) is

|p(t)| ≥ 2Lγ−1ρ/θLK |e(t)|. (20)

Note that (20) is only for the purpose of analysis and is
not executed in place of (18). Clearly, if the inter-event
times of (20) are lower bounded, so are the inter-event
times of (18). Let r(t) = |e(t)|

|p(t)| for any t ≥ 0 (with r(t) = 0

if p(t) = 0). For any k ≥ 0, we have r(tk) = 0 and tk+1−tk
is greater than or equal to the time that it takes for r(t)
to go from 0 to 1

2Lγ−1ρ/θLK
. Note that for any t ≥ 0,

ṙ =
d

dt

|e|
|p|

=
d

dt

(eT e)1/2

(pT p)1/2

=
(eT e)−1/2eT ė(pT p)1/2 − (pT p)−1/2pT ṗ(eT e)1/2

pT p

= − eT ṗ

|e||p|
− |e|p

T ṗ

|p|3
≤ |ṗ|
|p|

+
|e||ṗ|
|p|2

= (1 + r)
|ṗ|
|p|
,

where the time arguments are dropped for better read-
ability. To upper bound the ratio |ṗ(t)|/|p(t)|, we have
from (7) that ṗ(t) = σ̇(t)f(p(t), u(t)) for all t ≥ φ(0). By
continuous differentiability of f (which implies Lipschitz
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continuity on compacts) and global asymptotic stability
of the closed loop system, there exists Lf > 0 such that

|ṗ(t)| = |σ̇(t)f(p(t), u(t))| ≤M2|f(p(t),K(p(t) + e(t)))|
≤M2Lf |(p(t),K(p(t) + e(t)))|
≤M2Lf (|p(t)|+ |K(p(t) + e(t))|)
≤M2Lf (|p(t)|+ LK |p(t) + e(t)|)
≤M2Lf (1 + LK)|p(t)|+M2LfLK |e(t)|

⇒ ṙ(t) ≤M2(1 + r(t))(Lf (1 + LK) + LfLK |r(t)|).

Thus, using the Comparison Principle [Khalil, 2002,
Lemma 3.4], we have tk+1 − tk ≥ δ, k ≥ 0 where δ is the
time that it takes for the solution of

ṙ = M2(1 + r)(Lf (1 + LK) + LfLKr), (21)

to go from 0 to 1
2Lγ−1ρ/θLK

.

Step 3: Since all system trajectories are bounded and
tk

k→∞−−−−→∞, we have tmax =∞, completing the proof.

A particular corollary of Theorem 4.3 is that the proposed
event-triggered law does not suffer from Zeno behavior,
i.e., tk accumulating to a finite point tmax. Also, note
that the lower bound δ in general depends on the initial
conditions x(0) and {u(t)}0t=φ(0) through the Lipschitz
constant Lγ−1ρ/θ.

4.4 Delayed and Event-Triggered Sensing

So far, we have not considered any delays in the avail-
ability of the sensing information about the plant state.
To address the general scenario in Problem 1, let

¯̀= ¯̀(t) = max{` ≥ 0 | τ ` ≤ ψ(t)},

be the index of the last plant state available at the con-
troller at time t. Then, the best estimate of x(σ(t)) avail-
able to the controller, namely,

p(t) = x(τ ¯̀) +

∫ t

φ(τ ¯̀)

σ̇(s)f(p(s), u(s))ds, t ≥ ψ−1(0),

(22)

is used as the prediction signal in place of (7). 5 Since p(t)
is not available before ψ−1(0), the control signal (5), (9)
is updated as

u(t) =

{
K(p(tk)) if t ∈ [tk, tk+1), k ≥ 0,

0 if t ∈ [0, t0),
(23)

where the first event time is now t0 = ψ−1(0). We next
provide the same guarantees as Theorem 4.3 for this sce-
nario.

Theorem 4.4 Consider the plant dynamics (3) driven
by the predictor-based event-triggered controller (23) with
the predictor (22) and triggering condition (18). Under

5 This only requires the controller to know ψ(τ `) for every
received state (not the full function ψ), which is realized by
having a time-stamp for x(τ `).

the aforementioned assumptions, the closed-loop system
is globally asymptotically stable, namely, there exists β ∈
KL such that (19) holds for all x(0) ∈ Rn, continuously
differentiable {u(t)}0t=φ(0), and t ≥ 0. Furthermore, there
exists δ > 0 such that tk+1 − tk ≥ δ for all k ≥ 0.

Proof. For simplicity, let U(t) = supφ(t)≤τ≤t |u(t)|.
Since the open-loop system exhibits no finite escape time
behavior, the state remains bounded during the initial
period [0, t0]. Hence, for any x(0) and any {u(t)}0t=φ(0)

there exists Ξ > 0 such that |x(t)| ≤ Ξ for t ∈ [0, t0].
Without loss of generality, Ξ can be chosen to be a class
K function of |x(0)|+ U(0). Thus,

|x(t)|+U(t) ≤ Ξ(|x(0)|+ U(0)) + U(0) (24)
≤
[
Ξ(|x(0)|+ U(0)) + U(0)

]
e−(t−t0), t ∈ [0, t0].

As soon as the controller receives x(0) at t0, it can esti-
mate the state x(t) by simulating the dynamics (3), i.e.,

x(t) = x(0) +

∫ t

0

f(x(s), u(φ(s)))ds. (25)

This estimation is updated whenever a new state x(τ `)
arrives and used to compute the predictor (7), which
combined with (25) takes the form (22). Since the con-
troller now has access to the same prediction signal p(t)
as before, the same Lyapunov analysis as above holds for
[t0,∞). Therefore, let β̂ ∈ KL be such that (19) holds for
t ≥ t0. By (24),

|x(t)|+ U(t) ≤ β̂
(
Ξ(|x(0)|+ U(0)) + U(0), t− t0

)
t ≥ t0.

Therefore, (19) holds by choosing β(r, t) = max
{
β̂
(
Ξ(r)+

r, t − t0
)
,
[
Ξ(r) + r

]
e−(t−t0)

}
. Finally, since the trigger-

ing condition (18) has not changed, tk+1 − tk ≥ δ, k ≥ 0
for the same δ > 0 as in Theorem 4.3.

While the controller can theoretically discard the received
states {x(τ `)}∞`=1 and rely on x(0) for estimating the state
at all future times, closing the loop using the most recent
state value x(τ ¯̀) has the advantage of preventing the
estimator (25) from drifting due to noise and un-modeled
dynamics.

5 The Linear Case

In this section, we show how the general treatment of
Section 4 is specialized and simplified if the dynamics (3)
is linear, i.e, when we have

ẋ(t) = Ax(t) +Bu(φ(t)), t ≥ 0, (26)

subject to initial conditions x(0) ∈ Rn and bounded
{u(t)}0t=φ(0). For simplicity, we restrict our attention to
the perfect sensing case, as the generalization to sensing
channels with time delay does not change the controller
or stability guarantees (cf. Theorem 4.4). Assuming that
the pair (A,B) is stabilizable, we can use pole placement
to find a linear feedback law K : Rn → R that makes (6)
ISS. Moreover, p(t) can be explicitly solved from (7) to
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obtain

p(t) = eA(σ(t)−t+)x(t+) +

∫ t

φ(t+)

σ̇(s)eA(σ(t)−σ(s))Bu(s)ds,

(27)

for all t ≥ φ(0) and the closed-loop system takes the form

ẋ(t) = (A+BK)x(t) +Bw(φ(t)) +BKe(φ(t)).

Furthermore, given an arbitrary Q = QT > 0, the con-
tinuously differentiable function S : Rn → R is S(x) =
xTPx, where P = PT > 0 is the unique solution to the
Lyapunov equation (A + BK)TP + P (A + BK) = −Q.
Clearly, (13) holds with α1(r) = λmin(P )r2 and α2(r) =
λmax(P )r2. To show (14), notice that using Young’s in-
equality [Young, 1912],

LfS(x(t)) =− x(t)TQx(t)

+ 2x(t)TPB(w(φ(t)) +Ke(φ(t))),

so (14) holds with γ(r) = 1
2λmin(Q)r2 and ρ(r) =

2|PB|2
λmin(Q)r

2. In this case, the trigger (18) takes the simpler
form

|e(t)| ≤ λmin(Q)
√
θ

4|PB||K|
|p(t)|. (28)

In addition to the simplifications, we show next that the
closed-loop system is globally exponentially stable in the
linear case.

5.1 Exponential Stabilization under Event-triggered
Control

We next show that, in the linear case, we obtain the
stronger feature of global exponential stability, though
this requires a slightly different Lyapunov-Krasovskii
functional.

Theorem 5.1 (Exponential Stability of the Linear
Case): The system (26) subject to the piecewise-constant
closed-loop control u(t) = Kp(tk), t ∈ [tk, tk+1), with p(t)
given in (27) and {tk}∞k=1 determined according to (28)
satisfies

|x(t)|2 +

∫ t

φ(t)

u(τ)2dτ ≤ Ce−µt
(
|x(0)|2 +

∫ 0

φ(0)

u(τ)2dτ
)
,

for some C > 0, µ = (2−θ)λmin(Q)
4λmax(P ) , and all t ≥ 0.

Proof. For t ≥ 0, let L(t) =
∫ σ(t)

t
eb(τ−t)w(φ(τ))2dτ .

One can see that L̇(t) = −w(φ(t))2− bL(t), t ≥ 0. Define
V (t) = x(t)TPx(t) + 4|PB|2

λmin(Q)L(t). Therefore, using (28),

V̇ (t) = −x(t)TQx(t) + 2x(t)TPBw(φ(t))− 4|PB|2b
λmin(Q)

L(t)

+ 2x(t)TPBKe(φ(t))− 4|PB|2

λmin(Q)
w(φ(t))2

≤ −2− θ
4

λmin(Q)|x(t)|2 − 4|PB|2b
λmin(Q)

L(t) ≤ −µV (t),

where µ = min
{ (2−θ)λmin(Q)

4λmax(P ) , b
}

= (2−θ)λmin(Q)
4λmax(P ) if b

is chosen sufficiently large. Hence, by the Comparison
Principle [Khalil, 2002, Lemma 3.4], we have V (t) ≤
e−µtV (0), t ≥ 0. Let W (t) = |x(t)|2 +

∫ t
φ(t)

u(τ)2dτ .
From [Bekiaris-Liberis and Krstic, 2013, Eq. (6-99)-(6-
100)], c1W (t) ≤ V (t) ≤ c2W (t), for some c1, c2 > 0 and
all t ≥ 0. Hence, the result follows with C = c2/c1.

From Theorem 5.1, the convergence rate µ depends both
on the ratio λmin(Q)

λmax(P ) and the parameter θ. The former
can be increased by placing the eigenvalues of A + BK
at larger negative values, though large eigenvalues result
in noise amplification. Decreasing θ, however, comes at
the cost of faster control updates, a trade-off we study in
detail next.

5.2 Optimizing the Sampling-Convergence Trade-off

In this section, we analyze the trade-off between sampling
and convergence speed in our proposed event-triggered
scheme. In general, it is clear from the Lyapunov analy-
sis of Section 4 that more updates (smaller θ) hasten the
decay of V (t) and help the convergence. This trade-off
becomes clearer in the linear case since explicit expres-
sions are derivable for convergence rate and minimum
inter-event times. To this end, we define two objective
functions and formulate the trade-off as a multi-objective
optimization. Let δ be the time that it takes for the so-
lution of (21) to go from 0 to 1

2Lγ−1ρ/θLK
. As shown in

Section 4.3, the inter-event times are lower bounded by
δ, so it can be used to roughly measure the cost of imple-
menting the control scheme. Let

a = M2LfLK , c = M2Lf (1 + LK), R =
1

2Lγ−1ρ/θLK
,

where Lf =
√

2(|A| + |B|), LK = |K|, and Lγ−1ρ/θ =
2|PB|

λmin(Q)
√
θ
. Then, the solution of (21) with initial con-

dition r(0) = 0 is given by r(t) = ceat−cect
aect−ceat . Solving

r(δ) = R for δ gives δ =
ln c+Ra

c+Rc

a−c . The objective is to max-
imize δ and µ by tuning the optimization variables θ and
Q. For simplicity, let θ = ν2 and Q = qIn where ν, q > 0.
Then,

δ(ν) =
1

a− c
ln
c+ ν

|P1B||K|a

c+ ν
|P1B||K|c

, µ(ν) =
2− ν2

4λmax(P1)
,

where P1 = q−1P is the solution of the Lyapunov equa-
tion (A + BK)TP1 + P1(A + BK) = −In. Figure 1(a)
depicts δ and µ as functions of ν and illustrates the
sampling-convergence trade-off.

To balance these two objectives, we define the aggregate
objective function as a convex combination of δ and µ,
i.e.,

J(ν) = λδ(ν) + (1− λ)µ(ν),
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Fig. 1. Sampling-convergence trade-off for event-triggered
control of linear systems. On the left, values of the lower
bound of the inter-event times (δ) and exponential rate of con-
vergence (µ) for different values of the optimization param-
eter ν for a third-order unstable linear system with M2 = 1.
On the right, the unique maximizer ν∗ of the aggregate ob-
jective function J(ν) for different values of the weighting fac-
tor λ. As λ goes from 0 to 1, more weight is given to the
maximization of δ, which increases ν∗.
where λ ∈ [0, 1] determines the (subjective) relative im-
portance of convergence rate and sampling. Notice that
due to the difference between the (physical) units of δ and
µ, one might multiply either one by a unifying constant,
but we are not doing this as it leads to an equivalent op-
timization problem with a different λ. It is straightfor-
ward to verify that J is strongly convex and its unique
maximizer is given by the positive real solution of c3ν3 +
c2ν

2 + c1ν + c0 = 0 where c3 = a(1 − λ), c2 = (a +
c)|P1B||K|(1 − λ), c1 = c|P1B|2|K|2(1 − λ), and c0 =
−2λmax(P1)|P1B||K|λ. Figure 1(b) illustrates the opti-
mizer of the aggregate objective function J(ν) for differ-
ent values of the weighting factor λ.

6 Simulations

Here we illustrate the performance of our event-triggered
predictor-based design. Example 6.2 is a two-dimensional
nonlinear system that satisfies all the hypotheses required
to ensure global asymptotic convergence of the closed-
loop system. Example 6.3 is a different two-dimensional
nonlinear system which instead does not, but for which
we observe convergence in simulation. We start by dis-
cussing some numerical challenges that arise because of
the particular hybrid nature of our design, along with our
approach to tackle them.

Remark 6.1 (Numerical implementation of event-
triggered control law): The main challenge in the numer-
ical simulation of the proposed event-trigger law is the
computation of the prediction signal p(t) = x(σ(t)). To
this end, at least three methods can be used, as follows:
(i) Open-loop: One can solve ṗ(t) = σ̇(t)f(p(t), u(t)) di-
rectly starting from p(φ(0)) = x(0). The closed-loop sys-
tem takes the form of a time-delay hybrid system [Goebel
et al., 2012] with flow map

ẋ(t) = f(x(t), u(φ(t))), t ≥ 0, (29a)
ṗ(t) = σ̇(t)f(p(t), u(t)), t ≥ φ(0), (29b)

ṗtk(t) = 0, t ≥ t0, (29c)
u(t) = K(ptk(t)), t ≥ t0, (29d)

jumpmap ptk(t+k ) = p(t+k ), jump setD =
{

(x, p, ptk) | |ptk−
p| = ρ−1(θγ(|p|))

2LK

}
, and flow set C = R3n \ D. This for-

mulation is computationally efficient but, if the original
system is unstable, it is prone to numerical instabilities.
The reason, suggesting the name “open-loop”, is that
the (p, ptk)-subsystem is completely decoupled from the
x-subsystem. Therefore, if any mismatch occurs between
x(t) and p(φ(t)) due to numerical errors, the x-subsystem
tends to become unstable, and this is not “seen” by the
(p, ptk)-subsystem.
(ii) Semi-closed-loop: One can add a feedback path from
the x-subsystem to the (p, ptk) subsystem by computing
p directly from (7) at every integration time step of x.
This requires a numerical integration of f(p(s), u(s))
over the “history” of (p, u) from φ(τ ¯̀) to t. This method
is more computationally intensive but improves the nu-
merical robustness. However, since we are still integrat-
ing over the history of p, any mismatch in the prediction
takes more time to die out, which may not be tolerable
for an unstable system.
(iii) Closed-loop: To further increase robustness, one can
solve (29b) at every step of the integration of (29a) from
φ(τ ¯̀) to t with “initial” condition p(φ(τ ¯̀)) = x(τ ¯̀). This
method is the most computationally intensive of the
three, but does not propagate prediction mismatch and
is quite robust to numerical errors. We use this method
in Examples 6.2 and 6.3. •
Example 6.2 (Compliant Nonlinear System): Consider
the 2-dimensional system given by

f(x, u) =

[
x1 + x2

tanh(x1) + x2 + u

]
, φ(t) = t− (t− 5)2 + 2

2(t− 5)2 + 2
,

τ ` = `∆τ , ` ≥ 0, ψ(t) = t−Dψ,

where ∆τ and Dψ are constants. This system satisfies all
the aforementioned assumptions with the feedback law
K(x) = −6x1 − 5x2 − tanh(x1) and

Lf = 2
√

3, LK = 7
√

2, M0 = 1, (M1,m2) = 1± 3
√

3

16
,

S(x) = xTPx, γ(r) =
λmin(Q)

2
r2, ρ(r) =

2|PB|2

λmin(Q)
r2,

where P = PT > 0 is the solution of (A+Bk)TP+P (A+
Bk) = −Q for A = [1 1; 0 1], B = [0; 1], k = [−6 − 5],
and arbitrary Q = QT > 0. A sample simulation result
of this system is depicted in Figure 2(a). It is to be noted
that for this example, (18) simplifies to |e(t)| ≤ ρ|p(t)|
with ρ = 0.015, but the closed-loop system remains stable
when increasing ρ until 0.7. Further, in order to study the
effect of limitations in sensing on closed-loop stability, we
varied ∆τ and Dψ and computed |x(25)| as a measure
of asymptotic stability. The average result is depicted in
Figure 2(b) for 10 random initial conditions, showing that
unlike our theoretical expectation, large ∆τ and/or Dψ

result in instability even in the absence of noise because
of the numerical error that degrades the estimation (25)
over time (c.f. Remark 6.1). •
Example 6.3 (Non-compliant Nonlinear System):Here,
we consider an example that violates several of our as-
sumptions and study the performance of the proposed
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Fig. 2. Left plots, simulation of the compliant system in Example 6.2 with x(0) = (1, 1), θ = 0.5, b = 10, ∆τ = 2, and
Dψ = 1. The non-monotonicity of V (bottom plot) is due to the numerical mismatch between p(t) and x(σ(t)) (top plot), cf.
Remark 6.1. The dotted portion of p(t) corresponds to the times [φ(0), ψ−1(0)) and is plotted only for illustration purposes
(not used by the controller). Center plot, heat map of the average of |x(25)| over 10 random initial conditions drawn from
standard normal distribution for the compliant system of Example 6.2. The red line shows an approximate border of stability.
Right plots, simulation of the non-compliant system in Example 6.3 with x(0) = (1, 1), θ = 0.5, b = 10, a = 0.01, D = 0.2,
∆τ = 1, µψ = 0.1, σψ = 0.02, and triggering condition |e(t)| ≤ 0.5|p(t)|. All simulations use an Euler discretization of the
continuous-time dynamics with stepsize 10−2.

algorithm. Let

f(x, u) =

[
x1 + x2

x3
1 + x2 + u

]
, t− φ(t) = D + a sin(t),

τ ` = `∆τ , ` ≥ 0, ψ(t) = t−Dψ, Dψ ∼ N (µψ, σ
2
ψ).

where the nominal delayD = 0.5 is known but its pertur-
bation magnitude a = 0.05 is not (the controller assumes
φ(t) = t−D) and Dψ is generated independently at ev-
ery τ `. Further, the control law K(x) = −6x1− 5x2−x3

1
makes the closed-loop system ISS but is not globally Lip-
schitz, and the zero-input system exhibits finite escape
time. The simulation results of this example are illus-
trated in Figure 2(c). It can be seen that although V
is significantly non-monotonic, the event-triggered con-
troller is able to stabilize the system, showing that the
proposed scheme is applicable to a wider class of systems
than those satisfying the assumptions. •

7 Conclusions and Future Work

We have proposed a prediction-based event-triggered
control scheme for the stabilization of nonlinear systems
with sensing and actuation delays. Under the assump-
tions of known time delay, globally-Lipschitz input-to-
state stabilizability, and state feedback, we have shown
that the closed-loop system is globally asymptotically
stable and the inter-event times are uniformly lower
bounded. We have particularized our results for the
case of linear systems, providing explicit expressions for
our design and analysis steps, and further studied the
critical sampling-convergence trade-off characteristic of
event-triggered strategies. Finally, we have addressed
the numerical challenges that arise in the computation
of predictor feedback and demonstrated the effective-
ness of our proposed approach in simulation. Regarding
future work, we highlight the extension of our results
to systems with disturbances, unknown input delays, or
output feedback, the characterization of the robustness
properties resulting from incorporating the most recently

available state information, the relaxation of the global
Lipschitz requirement on the input-to-state stabilizer.
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