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Abstract— This paper revisits the problem of designing op-
portunistic state-triggered conditions for stabilization, focusing
on the balance between conserving resources (e.g., minimizing
the number of triggers) and meeting a desired level of perfor-
mance. Traditionally, event-triggered control design focuses on
ensuring stabilization while conservatively enforcing that the
specified performance is met. We take a different approach
by considering the desired performance as part of the trigger
design. Inspired by the concept of Control Barrier Function, our
proposed design allows the system to deviate from Lyapunov’s
condition for asymptotic stability when the system is doing
well in term of performance. We characterize the benefits
of the proposed approach in terms of increased inter-event
time, robustness to delays in the evaluation of the trigger, and
flexibility for distributed implementation.

I. INTRODUCTION

Control systems are usually implemented on a digital
platform. As a result, the control signals are rarely updated
continuously. In the past decade, event-triggered control has
been gaining popularity with its opportunistic approach to
control implementation in discrete settings. The main idea
is to conserve resources by updating the control signal only
when it is necessary rather than periodically. We empha-
size the word necessary here because generally conserving
resources will lead to sacrificing some performance, and it
is unclear when it is required to update a signal in order
to meet a desired performance. Generally, when coming up
with a design, there is a need to answer the question of how
to strike a balance between the two factors. In this paper, we
are interested in studying how to design a state-based trigger
condition given a desired level of performance.

Literature Review. In this paper, we rely on three bodies
of literature. The first body of work which we rely on is
the literature on opportunistic and event-triggered control.
We recommend the reader [1] and references therein for
the introduction to the topic. In the literature, we have
identified the main type of trigger condition designs to
be derivative based like presented in [2]–[6]. This type of
design focuses on ensuring the closed-loop system’s stability
through monitoring the time-derivative of the Lyapunov
function. Although this type of design can be adapted to
ensure the desired performance, we find that it is not the most
efficient because performance is only considered after the
proposition of the design process. Another type of design is
the value-based design which uses the value of the Lyapunov
function to monitor when to update the control. A simple
example is Lyapunov Sampling [7], [8] which updates the
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control when the Lyapunov function drops below certain
percentage threshold. The problem with such a method is that
it may be difficult to determine what amount of threshold is
allowed, and the design can be very conservative in term of
achieving performance. Nevertheless, we notice in [9] that
when the value-based trigger is used in combination with a
predefined performance function, not only does the problem
mentioned is eliminated, but the amount of inter-event time
is also extended to the longest possible while satisfying the
predefined level of performance. However, we see that this
kind of design lacks the robustness to control implementation
delay. On the contrary, the work in [10], which combines
the idea of the derivative-based design with Lyapunov Sam-
pling, retains some level of robustness, but suffers from the
drawback of Lyapunov Sampling as well as reliance on time
trigger due to the possibility of not triggering. To the best of
our knowledge, there is no work that combines derivative-
based trigger design and a value-based trigger design in
combination with a predefined performance function like we
shall do in this paper. In doing so, we rely on the body of
work on control barrier function. The idea is that like in
control barrier function, presented in [11], we have safe and
unsafe states, safe being the states that satisfy performance at
a given time. Recent development in control barrier function
inspires the development of our paper, namely the work in
[12] which uses the idea of Nagumo’s Theorem presented
in [13]. Lastly, because of the potential of our work, we
pay attention to the numerous works of event-triggered
control in the context of networked systems, e.g. [14]–[18].
One particular interesting phenomenon in extending event-
triggered control to distributed settings is that Zeno behavior
can be introduced. [19] shows that to avoid such problem,
it is natural to violate Lyapunov’s condition for stability
by adding a positive term to the design. This paper does
something similar except that the term we add is not a
constant, but rather depends on the performance.

Statement of Contributions: This paper revisits the prob-
lem of designing a state-triggered conditions for stabiliza-
tion. We consider the common scenario where conserving
resources is preferred but the performance of the system
must also satisfy a desired level. For our proposed designs,
we directly incorporate the performance requirement into the
trigger condition. We first consider the centralized case where
all the states are updated simultaneously. Then we extend our
consideration to distributed scenarios. The contributions of
this paper are threefold. The first is the design of event-
triggered laws that efficiently extend the minimum inter-
event time between triggers while meeting a desired level of
performance. Our design is based on the examining simul-
taneously the time-derivative and the value of the Lyapunov



function and does not extend the inter-event time to the
extreme so that the closed-loop system remains robust to
control implementation delay. Our second contribution is
the establishment of a uniform lower bound in the inter-
event times of our design in the centralized case, which
thereby rules out the possibility of Zeno behavior. The result
is based on idea that the inter-event times for our design
must be longer than that of a known design that is also
lower bounded. In addition, we provide an expression to
find the lower bound for our design in linear system case
with an exponential desired performance. Finally, our third
contribution is an extension of our design into the distributed
settings. Through simulations, we show that in the distributed
scenarios, the design can fix the Zeno problem that traditional
event-triggered design suffer, and we show that the new
design opens up the possibility for trigger coordination in
a networked system. All proofs are omitted for reasons of
space and will appear elsewhere.

Notation: We denote by N and R the set of natural
and real numbers, respectively. For n ∈ N, we use the
notation [n] to denote the set {1, . . . , n}. Given x ∈ Rn,
‖x‖ denotes its Euclidean norm. We denote the identity
matrix by In ∈ Rn×n. For a square matrix C, eig(C)
denotes its set of eigenvalues. The function f is locally
Lipschitz if, for every compact set S0 ⊂ Rn, there exists
a positive constant L, termed Lipschitz constant, such that
‖f(x) − f(y)‖ ≤ L‖x − y‖, for all x, y ∈ S0. For a
twice continuously differentiable, scalar-valued function g :
Rn → R, we let ∇g : Rn → Rn and ∇2g : Rn → Rn×n
denote its gradient and Hessian functions. The function g is
convex if ∇2g � 0, and concave if ∇2g � 0. We use the
notation Lf for the Lie derivative operator on the vector field
f : Rn → Rn. We call a continuous function h : R → R a
class-K function if it is strictly increasing and h(0) = 0. In
addition, we call the function class-K∞ if the function also
satisfies limr→∞ h(r) = ∞. Lastly, in a networked system,
we denote a graph by G = (V, E), with V as the set of
vertices and E ⊂ V × V . j is a neighbor of i if and only if
(i, j) ∈ E . We write Ni to be a discrete set of number of
nodes that include node i and all its neighbors, and N 2

i the
set of nodes including Ni and all neighbors of each j ∈ Ni.
We add the subscript xNi to represent the subvector of a
vector x formed from the entries in the set Ni.

II. PROBLEM FORMULATION

Consider a nonlinear controlled system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

with f : Rn × Rm → Rn. In a digital implementation of
a state-feedback control signal u = k(x) with the controller
function k : Rn → Rm, the sample-and-hold strategy is more
practical than providing a continuous signal. The control is
only updated at a specific time tk and held up until tk+1

when the controller provides an adjustment to the control
signal. As a result, the closed-loop system is given by,

ẋ = f(x, k(x+ e)) (1)

where the error e = x(tk)−x is the state deviation from last
update iteration k. In event-triggered control, it is preferable
to extend the time interval at which the signal is held. To do
so, tk+1 is determined iteratively by a prescribed criterion.
In order to come up with a criterion for a general non-linear
system, a common starting point is to assume that there exists
a known Input-to-State Stability (ISS) Lyapunov function for
the system, see e.g. [2], [3], [5]. In other words, there exists a
smooth function V : Rn → R such that there exist class-K∞
functions α, α, α, and γ satisfying

α(‖x‖) ≤ V (x) ≤ α(‖x‖) (2a)
LfV (x) ≤ −α(‖x‖) + γ(‖e‖). (2b)

Under such characterizations, [2], for example, provides the
following trigger design

tk+1 =
{
t > tk | − σα(‖x‖) + γ(‖e‖) = 0

}
(3)

with the design parameter σ ∈ (0, 1). As such, the Lie
derivative (2b) can be guaranteed to be less than or equal
to zero, and stabilization is achieved. As one can deduce,
the choice of parameter σ in the design directly impacts the
convergence performance. On the other hand, the choice will
also affect the occurrence frequency of the update trigger. In
the scenario where the desired convergence performance is
specified, it is possible to select the largest σ that meet the
specified performance in order to extending the minimum
inter-event time. However, as will be shown in this paper,
it is not the most efficient way. Our paper improves upon
the design in order to extend the inter-event times while
satisfying the specified performance. The basic premise of
this paper is to incorporate the performance specification into
the trigger condition by using it as a barrier, preventing the
violation of the specification.

Before we proceed to our design propositions, we discuss
our assumptions on the how the performance is specified.
First, we assume that the specification prescribes an upper
bound to how fast the Lyapunov function converges to zero.
In other words, the specification function, S : Rn × R+ →
R+, requires at all time that

V (x(t)) ≤ S(x0, t). (4)

Generally, we cannot hope that a sample-and-hold con-
trol strategy will do better than a system with continuous
state-feedback control signal. Therefore, we have to make
assumptions on the function S so that it is not too strict. In
our paper, we follow the common practice and assume that
the system in consideration is ISS with known functions in
conditions (2a) and (2b). Then, we assume the performance
specification function satisfies the following:

1) S is the unique solution to the differential equation

Ṡ = −h(S), S(x0, 0) ≥ V (x0)

where h is a locally Lipschitz, class K function (this
implies S is a class KL function, cf. [20, Lemma 4.4]);

2) Let V̄ be a continuous function such that V̄ (x) ≥ V (x)
for all x. We assume that α(‖x‖) > h(V̄ (x)) for all x.



Particularly, let c : Rn → R be such that α(‖x‖) =
c(x)h(V̄ (x)). Note that minx c(x) = cmin > 1.

The first condition is simply assuring that there is an explicit
form to the derivative of the given performance function.
Note that although this assumption does not permit all of
the possible requirement functions that specifies asymptotic
stability of the origin, it does allow the exponential form,
S(x0, t) = V (x0) exp(−rt), which is one of the most natural
performance requirement especially for linear system. The
second condition makes sure that at least in a continuous
implementation of the controller, d

dtV (x) < −h(V (x)) so
that it is possible to guarantee the specified performance.

III. PERFORMANCE BASED EVENT-TRIGGERED
CONTROL DESIGNS

In this section, we incorporate the performance specifi-
cation into the event-triggered control design. We assume
that the trigger condition can be checked continuously, i.e.
the states can be accessed in real-time to check if the
condition is met. We begin by adapting the trigger design (3),
which monitors time derivative of the Lyapunov function, to
accommodate the specification function.

Lemma 3.1: (Derivative-Based Design): Let g : Rn ×
Rn → R be any function such that

LfV (x) ≤ g(x, e) ≤ −α(‖x‖) + γ(‖e‖).

For any k ∈ N ∪ 0, if V (x(tk)) ≤ S(x0, tk) and

tk+1 = min
t

{
t > tk | g(x(t), e(t)) + h(V̄ (x(t))) = 0

}
(5)

then V (x(t)) ≤ S(x0, t) for time t ∈ [tk, tk+1). �
Lemma 3.1 states that using design (5) will lead to a

trajectory that meets the performance specification for each
iteration k. The key idea of the design is to keep the time-
derivative of Lyapunov function to be below the amount that
would satisfy the Comparison Lemma with respect to the
desired performance. While this will lead to meeting the
performance specified, it may not be the most efficient. The
intuition comes from the fact that during the whole iteration
(tk, tk+1), we can guarantee that d

dtV (x(t)) < −h(V (x(t)),
which implies that the Lyapunov function decrease at a faster
rate than necessary to satisfy the specified performance.
Therefore, we should be able to allow a longer inter-event
time even if d

dtV (x(t)) > −h(V (x(t)) for some time to
compensate the prior overperformance.

With the above in mind, one natural trigger design may
be the following,

tk+1 =
{
t > tk | S(x0, t)− V (x(t)) = 0

}
, (6)

because it immediately guarantees that S(x0, t) ≥ V (x(t))
regardless of its evolution. However, problems with such
straightforward design are:

1) either the exact value of the Lyapunov function is
required, or the specification function would have be
a bound on V̄ ;

2) the design lacks robustness in that there is no room for
neither error nor trigger time delay.

These problems motivate our following design which is a
combination of designs (5) and (6).

Proposition 3.2: (Performance Barrier Design): For any
function β that is a K∞ function on [0,∞) and 0 elsewhere,
let tk+1 be determined as follows,

tk+1 = min
t

{
t > tk | g(x(t), e(t)) + h(V̄ (x(t)))

= β
(
S(x0, t)− V̄ (x(t))

)}
. (7)

If S(x0, tk) ≥ V (x(tk)), then S(x0, t) ≥ V (x(t)) is satisfied
for t ∈ [tk, tk+1]. �

The main idea behind the design (7) is inspired by the
recent development in control barrier function presented
in [12], which uses Nagumo’s Theorem from [13]. The
statement in the theorem can be roughly interpreted that a
set is forward invariant if and only if the state flow inward
(or tangent to) at the boundary. In other words, it does not
matter how the state evolves in the interior. Similarly, in our
case, we have ensured that at any time the trajectory evolves
to the performance boundary where V (x(t)) = S(x0, t),
the Lyapunov function decreases faster than the desired
performance. We next elaborate on the advantages of the
proposed design.

Remark 3.3: (Increase in Inter-event Time): Comparing
the traditional design (5) with the proposed design (7), the
latter has a higher inter-event time. This is because both
designs share the same lefthand side, whereas the righthand
side of (7) remains greater than zero. The benefit of including
the performance in consideration is that the user will no
longer need to worry about the trade-off between minimum
inter-event time and performance. Instead, we can guarantee
the performance while extending the inter-event time. Our
design does not extend the inter-event time to be as long as
possible because such a design, cf. (6), loses robustness. We
discuss this point in the following remark. •

Remark 3.4: (Robustness to Trigger Delay): One of the
advantages of our design is that even though the inter-
event time is extended, the design will leave some residual,
S(tk+1) − V (x(tk+1)) > 0. This will translate to allowing
some time that the system can delay the control imple-
mentation while still satisfying the specified performance.
Although characterizing an expression for the amount of time
is beyond the scope of this paper, a simulation on a linear
system example has shown that this time is lower bounded. •

While Proposition 3.2 shows that desired performance is
fulfilled during each iteration k, we cannot yet conclude that
it will do so at all time because we have not discarded the
possibility of Zeno behavior, i.e. the sequence of trigger time,
{tk}∞k=0, converges to a value. The next result will remove
such possibility by providing a constant lower bound to all
of the inter-event times.

Proposition 3.5: (Minimum Inter-event Time): If the fol-
lowing functions are locally Lipschitz:

1) f : Rn × Rm → Rn with constant L;
2) γ : R→ R with constant Lγ ;
3) h−1 : R→ R with constant Lh−1 ;
4) α−1 : R→ Rn with constant Lα−1 ,



then for the trigger design (7), the inter-event times are lower
bounded as follows

tk+1 − tk >
1

LP + L
(8)

for all k ∈ N ∪ 0 where P =
Lα−1Lh−1Lγ

cmin−1 . �
With Proposition 3.5, Zeno behavior is ruled out and the

control system with trigger design (5) is guaranteed to meet
the specified performance at all time. Note that although
the minimum inter-event time for our design (7) is longer
than design (5), the expression given by (8) ignores the
performance residual term, S(t) − V (x) that provides the
extra time. Unfortunately, we do not have the expression for
the longer inter-event time, and it will be the topic of our
future research. However, for linear cases with exponential
performance specification, we can give an expression for the
minimum inter-event time for our design.

In order to give an expression for the longer minimum
inter-event time, we consider the following special case,

f(x, k(x+ e)) = (A+BK)x+BKe, (9a)

V (x) = xTPx, (9b)

LfV (x) = −xTQx+ 2xTPBKe (9c)
S(x0, t) = V (x0) exp(−rt) (9d)

with constants r > 0, B, K, positive definite matrix P ,
−Q = P (A + BK) + (A + BK)TP , and Hurwitz A +
BK. Also, to satisfy our assumption of the performance
specification, we must have

c(x) =
xTQx

rxTPx
≥ min eig(Q)

rmax eig(P )
> 1.

For the above system, we can give the following design,
Corollary 3.6: (Linear Case with Exponential Desired

Performance): For the system given by equations (9). For
any positive constant cβ , if the control is updated at the time
determined iteratively with

tk+1 = min
t

{
t > tk | xT (rP −Q)x+ 2xTPBK(xk −x)

= cβ(V (x0) exp(−rt)− xTPx)
}
, (10)

then V (x(t)) ≤ V (x0) exp(−rt) is satisfied for all time. �
Corollary 3.6 shows one simple application of Proposition

3.2. In its trigger design, it uses the exact terms of Lyapunov
function and its time-derivative. In addition, it picks the
simplest β function which is a linear function. For this trigger
design, our next result gives the minimum inter-event time.

Proposition 3.7: (Minimum Inter-event Time for Linear
Case): Consider the linear system (9) with the control update
at time given by the trigger design (10). Define the following
time varying matrix,

M(τ) = cβP exp(−rτ) +G(τ)T ((cβ − r)P +Q)G(τ)

+ 2G(τ)TPBK(In −G(τ)) (11)

where G(τ) = exp(Aτ) +
∫ τ
0

exp(A(τ − s))dsBK. Then,
the inter-event time is lowered bounded as follows

tk+1 − tk ≥ min
{
τ > 0 | det(M(τ)) = 0

}
. (12)

for all k ∈ N ∪ 0. �
Proposition 3.7 provides a method to calculating the min-

imum inter-event time using our design for linear case with
exponential performance. Note that we have an expression
that only depends on time and no longer on the state, which
implies that it can be calculated offline.

IV. FLEXIBILITY FOR DISTRIBUTED IMPLEMENTATION

In this section, we expand on the development above to
applications in distributed settings. As will be shown, in
addition to the aforementioned advantages in Remarks 3.3
and 3.4, we find that our design in distributed scenarios is
less susceptible to Zeno behavior than traditional designs.

Before we dive into how our design can be implemented,
we first review how event-triggered control in general might
be applied in a distributed settings. Consider a network
of agents whose interconnection is represented by a graph
G = ([n], E) with a closed loop networked system under the
following dynamics,

ẋi = fi(xNi , ki(xNi , e
(i)
Ni)). (13)

The above equation suggests that the dynamics of the states
in each node xi depend on its neighboring nodes j ∈ Ni,
and the control is applied via state feedback controller. The
errors e

(i)
Ni = xNi(tki) − xNi(t) are introduced from not

updating the controller continuously at node i. The event-
triggered control problem seeks to solve how to efficiently
update the controller at each node (resetting the errors to
zero). To begin, we assume that the continuously controlled
system is proven to be asymptotically stable by using the
Lyapunov function with the following structure,

V (x) =
∑
i

Vi(xNi), (14)

where each of the function Vi are positive definite with
respect to the sub-states xNi . Here we allow the Lyapunov
function to be distributed to the nodes. Then the time
derivative of the Lyapunov function is given by

d

dt
V (x) =

∑
i

∑
j∈Ni

∇Vi(xNi)fj(xNj , e
(j)
Nj )

=
∑
i

dVi
dt

(xN 2
i
, e

(Ni)
N 2
i

). (15)

Note here that fj above can depend on the states of two-
hop neighbors of node i, so in order to enable the ability
to calculate the time derivative of Vi, we assume that the
communication graph connects two-hop neighbors (two hops
in dynamics but one hop in communication). In term of
stabilization, it is sufficient to enforce

dVi
dt

(xN 2
i
, e

(Ni)
N 2
i

) =
∑
j∈Ni

∇Vi(xNi)fj(xNj , e
(j)
Nj ) < 0

for each i at all time. This is generally done by making sure
that dVi

dt (tki) < 0 and tracking when the inequality above
approaches equality. Note here the restrictiveness of this
requirement. Whether or not this is possible depends largely
on the structure of the network. Here in order to continue



with our discussion, we generally state that such can be
realized because each node tries to contribute in reducing the
Lyapunov function. Then after proving that there is no Zeno
behavior, the system is guaranteed asymptotically stability.
What we have given thus far is a generic case of a networked
system with assumptions we think are not far-fetched.

Next, we discuss the possibility of extending our algorithm
from Proposition 3.2 for distributed implementation. To do
so, we assume that

dVi
dt

(tki) < −h(V̄i(tki)) (16)

where V̄i is an upper bound function to Vi. This is a stricter
assumption than earlier. For this paper, we say that this
is possible each node tries to contribute in reducing the
Lyapunov function by a certain rate. Drawing parallel to
the narrative of Section III, one can realize a specified
performance requirement, in a similar manner to design (5),
by determining the trigger time according to

tki+1 = min
t

{
t > tki | gi(xN 2

i
, e

(Ni)
N 2
i

) + h(V̄i(xNi)) = 0
}

if h is a concave function in addition to being class-K, and
the function gi is an upper bound to dVi

dt . However, such a
design is too conservative for the same reason we discussed
on Lemma 3.1. Instead, we can envision a less-conservative
approach with the following

Proposition 4.1: (Performance Barrier Design in Dis-
tributed Settings): Consider the networked system (13).
Assume the following:

1) the Lyapunov function and its time-derivative has the
structure given in (14) and (15);

2) at the time of each update tki , for each node i,

dVi
dt

(xNi , 0) ≤ gi(xNi , 0) < −h(V̄i(xNi));

3) each node i can access the states of two-hops neighbors
at all time;

4) the desired performance function can be distributed
into the network S(x0, t) =

∑
i Si(t) such that

Si(tki) ≥ Vi(xNi(tki));
5) the inter-event time of the design presented below are

lower bounded by τ > 0.
Let the time at which node i update its control be determined
according to

tki+1 = min
t

{
t > tk | gi(xN 2

i
, e

(Ni)
N 2
i

) + h(V̄i(xNi))

= β(Si(t)− V̄i(xNi))
}

(17)

with a concave, class-K function h, and a convex, class-K
function β. Then, V (x(t)) ≤ S(x0, t) at all time. �

Proposition 4.1 shows that the concept of performance bar-
rier presented in this paper can be applied to distributed sce-
narios under a set of assumptions. The first three assumptions
are also shared with traditional event-triggered designs, as
explained earlier in the section. Assumption 4 on the list can
be easily satisfied by breaking down the performance func-
tion proportionally to the initial breakdown of the Lyapunov

function, i.e. Si(t) = Vi(x0)
V (x0)

S(x0, t). Assumption 5 arises
from the observation that a decentralized implementation of
an event-triggered update can lead to Zeno behavior, cf. [16],
[19]. We present next a sufficient condition guaranteeing the
existence of a Zeno-free performance barrier design.

Proposition 4.2: (Existence of Non-Zeno Design): Con-
sider the networked system (13) with the first four assump-
tions given by Proposition 4.1. Let tki be the last time at
which the control is updated at node i. For each iteration ki
at node i, define the latest time at which Vi does not violating
the performance specification

t∗ki = min
t

{
t > tki | 0 = Si(t)− Vi(xNi(t))

}
. (18)

If there exists a positive constant bound τmax ≤ t∗ki−tki , then
there exists a convex, class-K function β such that the inter-
event times for the design (17) with V̄ (x) = V (x) are lower
bounded by a positive constant ητmax for any η ∈ (0, 1). �

Proposition 4.2 shows that there exists a performance
barrier design that satisfies the fifth assumption in Proposi-
tion 4.1 if the inter-event time to reach the condition in (18)
is lower-bounded. The lower-boundedness of such a condi-
tion is a necessary but not sufficient condition for proving
minimal inter-event time for a derivative-based design. In
contrast, if such a condition can be proven, we can hope
to find a performance barrier type of design while there is
no guarantee for a derivative-based design (this is illustrated
through simulations in Section V).

V. SIMULATION EXAMPLE

Consider the following feedback-controlled linear system,

ẋ =


2 2 1 0 0
−3 −3 0 2 0
1 0 −2 3 1
0 1 3 −4 5
0 0 1 −2 1

x+ u = Ax+ u,

u = −


3 2 1 0 0
−3 0 0 2 0
1 0 0 3 1
0 1 3 0 5
0 0 1 −2 2

x = Kx.

The closed-loop system is stable with the Lyapunov function
V (x) = 1

2x
Tx such that Q = diag

[
1 3 2 4 1

]
is pos-

itive definite. We can see that the minimum decay rate in the
continuous implementation is given by minimum eigenvalue
of Q which is 1. Suppose that the desired performance on
a discrete platform is to satisfy a decay rate of r = 0.5, i.e.
S(x0, t) = V (x0) exp(−0.5t). Then we can use either the
traditional trigger design (5) or the proposed performance
barrier trigger design in this paper (10) with cβ = 1.

We simulate the system with the initial condition x0 =[
−4 2 −2 1 3

]T
. Figure 1 shows that both triggers

satisfy the desired performance criterion. However, as pre-
dicted by Remark 3.3, the proposed design has longer inter-
event times on average, cf. Figure 2, with an increase of
minimum inter-event time from 0.2558 to 0.4516 for the
duration of the simulation.

Next, we simulate the distributed case for the same system.
We note here that first we attempted a derivative-based
trigger design; however, the inter-event times get smaller
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than 0.0001 in all nodes after a few iterations, suggesting
the design suffers from Zeno behavior. Then we apply a
performance barrier design based on (17) for this system.
Figure 3 shows the time at which the trigger occurs for each
node, marked by the symbol ×. The minimum inter-event
time during the entire duration is on node 4 with the value
of 0.1055, and we conclude from the simulation that the
design is Zeno-free. This illustrates the idea presented in the
discussion of Proposition 4.2.
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Fig. 3. Trigger times on each node using our proposed distributed design.

VI. CONCLUSIONS

We have revisited the event-triggered control design prob-
lem, addressing the question of how to balance trigger
frequency and performance by including the desired perfor-
mance in the design. This has led us to propose a design
that uses the desired performance as a barrier for the trigger.
The resulting design has several advantages such as increased
inter-event time, robustness to delays in the evaluation of the
trigger, possibilities of avoiding Zeno-behavior in distributed
scenarios, and amenability to distributed implementation.
Future work will seek to characterize these advantages,
seeking explicit expressions for the increase in inter-event
time and the robustness margin, and exploring the design of

β functions in our trigger that ensures non-Zeno behavior.
Lastly, we want to explore the idea of using the performance
residual Si(x0, tk) − Vi(tk) in a networked system. The
idea is to allocate partially the performance residual to the
neighbor nodes to reduce the triggering frequency.
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