
Distributed Algorithm via Continuously Differentiable Exact Penalty
Method for Network Optimization

Priyank Srivastava Jorge Cortés

Abstract— This paper proposes a distributed optimization
framework for solving nonlinear programming problems with
separable objective function and local constraints. Our novel
approach is based on first reformulating the original problem
as an unconstrained optimization problem using continuously
differentiable exact penalty function methods and then using
gradient based optimization algorithms. The reformulation is
based on replacing the Lagrange multipliers in the augmented
Lagrangian of the original problem with Lagrange multiplier
functions. The problem of calculating the gradient of the
penalty function is challenging as it is non-distributed in general
even if the original problem is distributed. We show that we
can reformulate this problem as a distributed, unconstrained
convex optimization problem. The proposed framework opens
new opportunities for the application of various distributed
algorithms designed for unconstrained optimization.

I. INTRODUCTION

Recently, there has been a considerable interest in the
analysis and control of large scale networked systems, like
the control of multi-agent systems and power systems. In
many cases, these applications could be modeled as opti-
mization problems, and even as algebraic equations in some
cases. Due to the communication constraints and the privacy
of the agents, it is desirable to solve these problems in a
distributed way. Distributed algorithms could also outperform
the centralized ones with the parallel processing power avail-
able nowadays. However, most of the distributed algorithms
available for solving constrained optimization problems ei-
ther convert the problem into unconstrained optimization of
a non-differentiable function or first construct the Lagrangian
and then perform the optimization in both the primal and dual
variables. In the former case, the non-differentiability of the
objective functions prohibits the use of easily implementable
gradient based methods and instead, there is a need for more
complicated subgradient based methods. On the other hand,
Lagrangian based methods often lack good convergence
speed and need a good starting point. These considerations
provide the motivation for this paper.

Literature Review: Given the anticipated growth in number
of large scale network systems, there have been a lot of
efforts to develop distributed algorithms to solve optimiza-
tion problems. For distributed optimization, approaches in
the literature could be divided into two main categories:
consensus-based where all the agents agree on a common
solution [1], [2], [3] and the ones where each agent computes
only its component [4], [5]. Our algorithm is based on the

The authors are with the Department of Mechanical and
Aerospace Engineering, University of California, San Diego,
{psrivast,cortes}@ucsd.edu

latter approach. The existing methods under this kind of
approach consist of Lagrangian based algorithms, e.g. the
primal-dual algorithm [6], and exact reformulation using
non-differentiable penalty functions [7]. There have been a
lot of works on solving a constrained optimization problem
by means of converting it into an unconstrained minimization
problem of a single function [8], [9], [10], [11]. In this paper,
we focus on continuously differentiable penalty functions
which were introduced in [12]. The work [10] generalizes
these penalty functions and proves that complete equivalence
between the solutions of constrained and unconstrained prob-
lems could be established under some regularity assumptions
on the constraint set with reference to some arbitrary compact
set. The work [13] proposes a continuously differentiable
exact penalty function that relaxes some of the assumptions
in [10]. However, most works in the context of continuously
differentiable exact penalty functions use the centralized
optimization algorithms for the minimization of the uncon-
strained penalty function. Here, we focus on calculating the
gradient of the penalty function in a distributed way which
would enable us to use any gradient based algorithm, like
gradient descent in a distributed way.

Statement of Contributions: We consider nonlinear pro-
gramming problems with separable objective function and
local constraints. Our starting point is the exact reformu-
lation of this problem as an unconstrained optimization
of a continuously differentiable exact penalty function. We
propose a framework for the distributed optimization of the
unconstrained penalty function. Our first contribution is to
provide a distributed algorithm to solve a linear equation.
This distributed algorithm is based on the reformulation of
the problem of finding the solutions of the linear equation as
an unconstrained convex optimization problem. Our second
contribution is the calculation of the gradient of the penalty
function in a distributed way by establishing the fact that the
calculation of certain non-distributed terms in the gradient
could be formulated as solving a linear equation. For reasons
of space, all proofs are omitted and would appear elsewhere.

Organization: Section II introduces notation and basic
concepts from graph theory and constrained optimization,
providing background on continuously differentiable exact
penalty methods. Section III introduces the constrained dis-
tributed optimization problem of interest. Section IV formu-
lates the problem of calculating the multiplier functions and
their gradients as a linear equation. Section V proposes an
algorithm for solving linear equations in a distributed way.
Section VI describes the proposed distributed algorithm to

solve the optimization problem. Section VII illustrates the
effectiveness of the proposed dynamics through simulations
and finally, Section VIII gathers our conclusions and ideas
for future work.

II. PRELIMINARIES

In this section, we present our notational conventions and
review some basic concepts.

A. Notation

Let R and Z be the set of real numbers and integers,
respectively. We let |X| denote the cardinality of a set X . For
a real-valued function f : Rn → R, we denote by ∇xf the
partial derivative of f with respect to its argument x. A⊗B
denotes the Kronecker product of two matrices A and B. We
use 0 and 1 to denote the vector or matrix of zeros and ones
of appropriate dimension, respectively. diag(v) denotes the
diagonal matrix formed by the elements of vector v on the
diagonal. We use X o to denote the interior of a set X .

B. Graph theory

Following [14], we present the basic concepts from graph
theory. We denote an undirected graph by G = (V, E), with
V as the set of vertices and E ⊆ V × V as the set of edges.
(i, j) ∈ E if and only if (j, i) ∈ E . A vertex j ∈ V is
said to be a neighbor of i if and only if (i, j) ∈ E . The
set N i denotes the set of all the neighbors of vertex i. The
degree of a node is the number of edges connected to it.
With | V | = n, the degree matrix D ∈ Rn×n of a graph
is the diagonal matrix with Dii = deg(vi). The adjacency
matrix A ∈ Rn×n is a matrix with all the diagonal elements
as zero and is defined such that Aij=1 if the edge (i, j) ⊆ E
and 0, otherwise. The Laplacian matrix of a graph G ∈ Rn×n
is defined as L := D−A. Note that, due to the structure of
Laplacian matrix, 1TL = 0.

C. Constrained optimization

Here, we introduce the basic concepts of constrained
optimization following [15], [11]. Consider the following
nonlinear optimization problem

min
x∈D

f(x)

s.t. g(x) ≤ 0, h(x) = 0
(1)

where, D is a compact set assumed to be regular, that is
D = Do and f : Rn → R, g : Rn → Rm, h : Rn → Rp are
assumed to be twice continuously differentiable with p ≤ n.
The feasible set of (1) is defined as F := {x | x ∈ D, g(x) ≤
0, h(x) = 0}. Let us define following index sets for the
inequality constraints

I0(x) := {j | gj(x) = 0}
I+(x) := {j | gj(x) ≥ 0}

We state some regularity conditions for the constraints below

(a) The linear independence constraint qualification
(LICQ) holds at a point x ∈ Rn if the gradients

∇gj(x), j ∈ I0(x), ∇hk, ∀k = 1, . . . , p are linearly
independent.

(b) The Mangasarian-Fromovitz constraint qualification
(MFCQ) holds at a point x ∈ Rn if the gradients
∇hk, ∀k are linearly independent and there exists a
vector z ∈ Rn such that

∇gj(x)′z < 0, j ∈ I0(x) (2a)
∇hk(x)′z = 0, ∀k (2b)

(c) The extended Mangasarian-Fromovitz constraint quali-
fication (EMFCQ) is the extension of MFCQ with the
set I0(x) in (2a) replaced by I+(x).

The Lagrangian function associated with (1) is the function
L : Rn × Rm × Rp → R given by

L(x, λ, µ) = f(x) + λ′g(x) + µ′h(x)

where, λ ∈ Rm and µ ∈ Rp are the Lagrange multipliers or
the dual variables associated with the inequality and equal-
ity constraints, respectively. A Karush-Kuhn-Tucker (KKT)
point for problem (1) is a triplet (x̄, λ̄, µ̄) such that

∇xL(x̄, λ̄, µ̄) = 0

λ̄ ≥ 0 λ̄′g(x̄) = 0

g(x̄) ≤ 0 h(x̄) = 0

KKT conditions are the necessary conditions for a point to
be local optimal if certain regularity condition (like the ones
mentioned above) is satisfied at that point.

D. Continuously differentiable exact penalty functions

Here, we introduce the concept of continuously differen-
tiable exact penalty functions following [12] and [10]. The
key idea in the construction of continuously differentiable
exact penalty functions is that of replacing the multiplier
vectors (λ, µ) in the augmented Lagrangian of [16] by the
multiplier functions (λ(x), µ(x)). Following [12], we make
the assumption

Assumption 1: LICQ is satisfied at any x ∈ Rn.
Let N : R→ R(m+p)×(m+p) be defined by

N(x) =

[
∇g(x)′∇g(x) + γ2G2(x) ∇g(x)′∇h(x)

∇h(x)′∇g(x) ∇h(x)′∇h(x)

]
(3)

where, γ 6= 0 and G(x) := diag(g(x)). In the following
result from [10], we provide the expressions for (λ(x), µ(x))
and some of their properties.

Proposition 2.1: (Multiplier functions and their deriva-
tives): For any x ∈ Rn

(a) N(x) is a positive definite matrix;
(b) (λ(x), µ(x)) are given by[

λ(x)
µ(x)

]
= −N−1(x)

[
∇g(x)′

∇h(x)′

]
∇f(x); (4)

(c) if (x̄, λ̄, µ̄) is a KKT triple for problem (1), then λ(x̄) =
λ̄ and µ(x̄) = µ̄;

(d) the functions λ(x) and µ(x) are continuously differen-
tiable and the Jacobian matrices are given by[

∇λ(x)′

∇µ(x)′

]
= −N−1(x)

[
R(x)
S(x)

]
(5)

where,

R(x) := ∇g(x)′∇2
xL(x, λ(x), µ(x))

+

m∑
j=1

emj ∇xL(x, λ(x), µ(x))′∇2gj(x) (6a)

+ 2γ2Λ(x)G(x)∇g(x)′

S(x) := ∇h(x)′∇2
xL(x, λ(x), µ(x))

+

p∑
k=1

epk∇xL(x, λ(x), µ(x))′∇2hk(x) (6b)

∇xL(x, λ(x), µ(x)) := [∇xL(x, λ, µ)]λ=λ(x)
µ=µ(x)

∇2
xL(x, λ(x), µ(x)) := [∇2

xL(x, λ, µ)]λ=λ(x)
µ=µ(x)

Λ(x) := diag(λ(x))

and emj (epk) denote the j-th(k-)th column of the m×m
(p× p) identity matrix.

With the expressions of (λ(x), µ(x)) from the Propo-
sition 2.1, we can define the continuously differentiable
penalty function as

f ε(x) := f(x) + λ(x)′(g(x) + Y ε(x)yε(x)) + µ(x)′h(x)

+
1

ε
‖g(x) + Y ε(x)yε(x)‖2 +

1

ε
‖h(x)‖2 (7)

where, ε > 0

yεj(x) :=
{
−min

[
0, gj(x) +

ε

2
λj(x)

]}1/2

∀j

Y ε(x) := diag(yε(x))

Now, consider the unconstrained problem

min
x∈Do

f ε(x) (8)

Before we provide the equivalence between (1) and (8), let
us define the various notions of exactness following [10].

Definition 2.2 (Exactness of penalty function): (a) The
function f ε(x) is a weakly exact penalty function for
problem (1) if ∃ ε̄ s.t. ∀ε ∈ (0, ε̄], the set of global
minimizers of (1) and (8) are equal.

(b) The function f ε(x) is an exact penalty function for
problem (1) if ∃ ε̄ s.t. ∀ε ∈ (0, ε̄], f ε(x) is a weakly
exact penalty function for problem (1) and any local
minimizer of (8) is a local minimizer of (1).

(c) The function f ε(x) is a strongly exact penalty function
for problem (1) if ∃ ε̄ s.t. ∀ε ∈ (0, ε̄], the set of global
as well as the local minimizers of (1) and (8) are equal.

In the following result, we summarize some of the known
results from [10].

Proposition 2.3: (Equivalence between the optimizers
of (1) and (8)): If LICQ is satisfied ∀x ∈ Rn,

(a) f ε(x) is a weakly exact penalty function for (1).
(b) (x̄, λ̄, µ̄) is a KKT point for (1)⇒ ∀ε > 0,∇f ε(x̄) = 0.
(c) Under the assumption that EMFCQ holds, the function

f ε(x) is an exact penalty function for problem (1). Also,
∃ ε̄ s.t. ∀ε ∈ (0, ε̄],∇f ε(x̄) = 0 ⇒ (x̄, λ(x̄), µ(x̄)) is a
KKT point for problem (1). Moreover, if the set of local
optimal values of (1) is finite, then the function f ε(x)
is a strongly exact penalty function for problem (1).

III. PROBLEM STATEMENT

Consider a network with n ∈ Z≥1 agents connected by
a graph G = (V, E). Each agent i has a decision variable
xi ∈ R and a twice continuously differentiable cost function
fi : R→ R. Consider the following optimization problem

min
x∈D

f(x) =

n∑
i=1

fi(xi)

s.t. g(x) ≤ 0, h(x) = 0

(9)

with twice continuously differentiable vector valued func-
tions g : Rn → Rm and h : Rn → Rp with p ≤ n. Each
of the functions gj and hk is local, i.e. they depend on an
agent xi and its neighbors {xj}j∈N i

only. Furthermore, all
agents involved in a constraint can calculate the constraint
and its gradients. Our aim is to develop a smooth distributed
algorithm to find an optimizer to the constrained problem (9).

To solve (9), algorithms such as primal-dual dynamics,
which optimize the Lagrangian in both the primal and dual
variables, could be used. These algorithms are inherently
distributed in nature if the objective function is separable and
constraints are local but these suffer from slow convergence
speeds and often need a good starting point. Also, in general,
there are no robustness guarantees with this approach and the
convergence to the optimizers is not monotonic. To improve
convergence speed, instead of optimizing the Lagrangian,
we could optimize the augmented Lagrangian but this might
destroy the distributed nature of the dynamics.

Another approach to solve (9) in a distributed way consists
of first reformulating the problem as an unconstrained opti-
mization problem by adding non-differentiable penalty terms
replacing the constraints to the objective function. After that,
the problem could be solved by using subgradient based
methods. These subgradient based methods are difficult to
implement and analyzing their convergence to the optimizers
requires tools from nonsmooth analysis. Also, they prohibit
the use of accelerated second-order methods altogether.

Our approach consists of reformulating the problem as
an unconstrained optimization problem based on the con-
tinuously differentiable penalty function methods described
in Section II. We then show how the gradient of the
penalty function could be computed in a distributed way.
This enables us to use smooth gradient descent which has
exponential rate of convergence and hence, overcome the
drawbacks of the current approaches mentioned earlier. In
Section IV, we show that the problem of distributed calcu-
lation of Lagrange multiplier functions and their gradients,
which are involved in the calculation of the gradient of the

penalty function, could be reformulated as a linear algebraic
equation with decomposable terms. We show how to solve
this equation in a distributed manner in Section V.

IV. DISTRIBUTED FORMULATION FOR COMPUTING THE
MULTIPLIER FUNCTIONS AND THEIR GRADIENTS

Many of the unconstrained minimization algorithms are
gradient based. Hence, to find the optimizers of (8), it is
desirable to calculate the gradient of the penalty function
f ε(x) in a distributed way, i.e. each agent should be able
to calculate the partial derivative ∇xi

f ε(x) locally. In this
section, we identify the challenges associated with the dis-
tributed calculation of the gradient of the penalty function
and show that they are equivalent to solving a linear algebraic
equation. ∇f ε(x) is given by

∇f ε(x) = ∇f(x) +∇g(x)λ(x) +∇h(x)µ(x)

+∇λ(x)(g(x) + Y ε(x)yε(x)) +∇µ(x)h(x) (10)

+
2

ε
∇g(x)(g(x) + Y ε(x)yε(x)) +

2

ε
∇h(x)h(x)

The gradient of f ε(x) w.r.t. xi is given by

∇xi
f ε(x) = ∇xi

fi(xi) +

m∑
j=1

λj(x)∇xi
gj(x)+ (11)

p∑
k=1

µk(x)∇xi
hk(x) +

p∑
k=1

hk(x)∇xi
µk(x)+

m∑
j=1

(
gj(x) + yε2j (x)

)
∇xiλj(x)+

2

ε

m∑
j=1

(
gj(x) + yε2j (x)

)
∇xi

gj(x)+

2

ε

p∑
k=1

hk(x)∇xihk(x)

From the above expression of ∇xi
f ε(x), using the fact that

each agent knows the value of all the constraints in which it
is involved and their derivatives, it is clear that if every agent
has information about (λ(x), µ(x)) and (∇λ(x),∇µ(x)),
then each agent can compute all the terms locally except

for
m∑
j=1

(
gj(x) + yε2j (x)

)
∇xiλj(x) +

p∑
k=1

hk(x)∇xiµk(x).

Let us denote it by ρ(x). Let us first see how we can
formulate and solve the problem of calculating (λ(x), µ(x))
and (∇λ(x),∇µ(x)) in a distributed way. We then describe
how to calculate ρ(x) in a distributed way in Section VI.

For a given value of x, calculating (λ(x), µ(x)) and
(∇λ(x),∇µ(x)) is equivalent to solving two linear algebraic
equations (4) and (5). We could rewrite (4) and (5) as

N(x)

[
λ(x)
µ(x)

]
= −

[
∇g(x)′

∇h(x)′

]
∇f(x) (12a)

N(x)

[
∇λ(x)′

∇µ(x)′

]
= −

[
R(x)
S(x)

]
(12b)

The following result proves that we can actually decompose
the matrix N(x) and the right hand side of (12) as the
summation of locally computable matrices.

Proposition 4.1: (Distribution of the known matrices
in (12)): For any x ∈ Rn, calculating (λ(x), µ(x)) and
(∇λ(x),∇µ(x)) is equivalent to solving linear equation of
the form

n∑
i=1

Niv =

n∑
i=1

bi (13)

where, Ni ∈ Rq×q ∀i, v ∈ Rq and bi ∈ Rq ∀i.
Remark 4.2: Solving linear algebraic equations distribu-

tively is an interesting problem of its own, cf. [17], [18].
Specifically, equations with same structure as (13) appear fre-
quently [19] and have numerous applications, like distributed
sensor fusion [20], or to find the maximum-likelihood es-
timate of an unknown parameter [21]. [20] exploits the
positive definiteness of the matrices and [21] uses element
wise average consensus to find the solutions of (13). [19]
also exploits the positive definite property of the individual
matrices and requires the agents to know the state as well
as the matrices of the neighbors. In Section V, we propose
a distributed algorithm that does not need the individual
matrices to be positive definite and has exponential rate of
convergence. •

V. DISTRIBUTED ALGORITHM FOR SOLVING LINEAR
EQUATIONS

In this section, we propose an exponentially fast dis-
tributed algorithm to find the solutions of the linear equa-
tion (13) developed in Section IV. Consider each agent
having its own version of v denoted by vi. Then we can
rewrite (13) as

n∑
i=1

Nivi =

n∑
i=1

bi (14a)

(L⊗ Iq)V = 0 (14b)

where, V := [v1; . . . ; vn]. Equation (14b) ensures that all
the vis are same. Although (14b) is distributed (meaning that
agent i needs to only know the value of its vi and {vj}j∈N i

to check if the equation is satisfied), (14a) is not. To make it
distributed, we introduce a new variable yi ∈ Rq . Let Y =
[y1; . . . ; yn] and introduce the following set of equations.(

η −L⊗ Iq
L⊗ Iq 0

)(
V
Y

)
=

(
B
0

)
(15)

where, η :=

N1

. . .
Nn

 and B =

b1...
bn

. Note that

the set of equations (15) is distributed. The following result
characterizes the equivalence between (15) and (13).

Lemma 5.1: (Equivalence between (15) and (13)): Solv-
ing (15) finds the solution of (13).

We propose the following algorithm to find the solution
of (15).

V̇ = −η′[ηV − (L⊗ Iq)Y −B] (16a)
− (L⊗ Iq)′(L⊗ Iq)V

Ẏ = (L⊗ Iq)′[ηV − (L⊗ Iq)Y −B] (16b)

For the implementation of above algorithm, agent i needs
to know its state and the state of its 2-hop neighbors.
Hence, it is distributed. The following result characterizes
the convergence properties of (16).

Proposition 5.2: (Exponential convergence to the desired
solution): The dynamics in (16) find the solution of (15).

From the above discussion, it is clear that we can
solve (13) in a distributed way. As a result, each agent
would have a copy of the Lagrange multiplier functions
(λ(x), µ(x)) and their gradients (∇λ(x),∇µ(x)). In the next
section, we show that the framework proposed in this section
could actually be used to compute other non-distributed
terms in the gradient of penalty function and then, we
propose our smooth distributed algorithm for finding an
optimizer to (9).

VI. DISTRIBUTED OPTIMIZATION OF THE PENALTY
FUNCTION

In this section, we first complete our discussion of the dis-
tributed computation of the gradient of the penalty function
and propose our distributed algorithm to find an optimizer
of the original constrained problem (9).

A. Distributed computation of the gradient

As mentioned in Section IV, if each variable has a copy
of the Lagrange multiplier functions (λ(x), µ(x)) and their
gradients (∇λ(x),∇µ(x)), all that remains to calculate the
gradient of the penalty function in a distributed way is the
knowledge of ρ(x). All the individual quantities in ρ(x) are
similar in nature in the sense they all need an agent to know
the values of all the constraints, including the ones in which
the agent is not involved. Let us look at how to calculate the
first term. The discussion for the remaining two is same.

m∑
j=1

gj(x)∇xī
λj(x) =

n∑
i=1

m∑
j=1

(gij/nj)∇xī
λj(x) (17)

From the above equation, if agent i needs to calculate
∇xi

f ε(x), it needs to estimate the above combined contribu-
tion from all the agents. To make the sure that the estimate
is consistent, we would need all the agents to estimate this.
This could again be proved equivalent to solving a linear
equation of the form (15). The following result establishes
this fact.

Lemma 6.1: (Formulation of estimation of (17) as a
linear equation): For a given x, estimating the expression
of (17) by all the agents is equivalent to solving a problem
with the same structure as the linear algebraic equation (15).

Estimating (17) becomes similar to (15) with q = n if we
need to estimate it for all the agents, i.e. ∀ī = {1, . . . , n}.

Now that we know that (17) is similar to (15), we can use
dynamics similar to the one in (16) to solve it. With the
above discussion, it is clear that each agent i can calculate
∇xi

f ε(x) locally.

B. Dynamics for the optimization of penalty function

Now that each agent i can calculate ∇xi
f ε(x) locally,

we propose to use the gradient dynamics to find an opti-
mizer of (9). Let us denote by χ(x), the vector containing
the versions of λ(x), µ(x),∇λ(x),∇µ(x), ρ(x) for all the
agents and the auxiliary variable Y(x) associated with them.
Ideally, we would like to implement the following

ẋ = −∇f ε(x, χ(x)) (18)

But, in practice agents do not know χ(x) exactly and all the
agents are estimating χ(x) using the dynamics

˙̂χ(x) = −F (x, χ̂(x))

where, F (x, χ̂(x)) is given by an expression similar to (16).
χ(x) would the equilibrium manifold for χ̂(x). We want to
run the dynamics for both x and χ̂(x) simultaneously and
do not want to initialize the dynamics of x at every iteration
after χ̂(x) has converged to somewhere near χ(x) as the
latter would make the run-time of algorithm much higher.
Hence, instead of (18), we propose to use the interconnected
dynamics

ẋ = −∇f ε(x, χ̂(x)) (19a)
˙̂χ(x) = −F (x, χ̂(x)) (19b)

A formal characterization of the convergence properties of
this dynamics, and particularly of the fact that it finds an
optimal solution of (9) if EMFCQ is satisfied, is the subject
of our current research.

VII. SIMULATIONS

In this section, we illustrate the effectiveness of the
proposed gradient based distributed algorithm for a nonlinear
optimization problem. For simplicity and clarity of figures,
we limit the number of variables to five. We assume the
communication topology to be chain, i.e. all the agents
are connected in series. The optimization problem that we
consider is the following

min
x

f(x) = x31 + 5x2 + 10ex3 + x24 + 2x25

s.t. x4 − x3 ≤ 0

x1 − x22 = 0

We first implement the centralized gradient descent for the
penalty function. For implementation of the dynamics in
MATLAB, we use first-order Euler discretization with a
step-size of 0.002 and value of ε and γ as 0.1 and 1,
respectively. Then, we implement the distributed gradient
dynamics with a step-size of 0.002 for the dynamics of x and
a higher step-size of 0.01 for the dynamics of χ̂(x). Figure 1
shows the evolution of the original objective function f(x)
and the unconstrained objective function f ε(x). Figure 2

displays the convergence of the agents’ variables to their
optimal values. We start with the initial conditions outside
F and that explains why the value of penalty function is
higher than the objective function in the starting. For both
the centralized gradient descent as well as the proposed
distributed algorithm, the values of the penalty function
(and the objective function) and the optimizer after 4000
iterations are the same and given by f ε(x∗) = 0.3962 and
x∗ =

[
0.9297 −0.9642 −1.3266 −1.3266 0.0000

]′
,

respectively.

0 500 1000 1500 2000 2500 3000 3500 4000

Number of iterations

0

10

20

30

40

50

60

F
un

ct
io

n
va

lu
es

Objective function and penalty function

f (x)
f(x)

Fig. 1. Evolution of the objective function and penalty function for
the centralized gradient descent and the proposed dynamics. Dashed lines
represent the evolution using the centralized gradient descent and the solid
ones represent the evoultion of functions using the proposed dynamics.

0 500 1000 1500 2000 2500 3000 3500 4000

Number of iterations

-1.5

-1

-0.5

0

0.5

1

1.5

V
ar

ia
bl

e
va

lu
es

Evolution of all the variables

x
1

x
2

x
3

x
4

x
5

Fig. 2. Convergence of the variables of all the agents to the optimizers.
Dashed lines represent the evolution using the centralized gradient descent
and the solid ones represent the evoultion of functions using the proposed
dynamics.

VIII. CONCLUSIONS

We have considered the problem of distributed optimiza-
tion of nonlinear programs using gradient descent method
based on the continuously differentiable exact penalty meth-
ods. We propose a framework to implement any gradient
based algorithm in a distributed way. We also developed
an algorithm to solve linear equations in a distributed
way. Our proposed algorithms, both for the solution of
optimization problem and the linear algebraic equation are
based on gradient descent. Future work will be the formal
characterization of the convergence and robustness properties
of our algorithm. Also, we would consider subclasses of
optimization problems whose structure allows us to simplify

our approach and use accelerated methods to further improve
the speed of convergence.

ACKNOWLEDGEMENTS

This work was supported by the ARPA-e Network Opti-
mized Distributed Energy Systems (NODES) program, DE-
AR0000695.

REFERENCES

[1] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[2] M. Zhu and S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 151–164, 2012.

[3] J. Wang and N. Elia, “A control perspective for centralized and
distributed convex optimization,” in IEEE Conf. on Decision and
Control, Orlando, Florida, 2011, pp. 3800–3805.

[4] A. Cherukuri and J. Cortés, “Initialization-free distributed coordination
for economic dispatch under varying loads and generator commit-
ment,” Automatica, vol. 74, pp. 183–193, 2016.

[5] D. Richert and J. Cortés, “Robust distributed linear programming,”
IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2567–
2582, 2015.

[6] D. Feijer and F. Paganini, “Stability of primal-dual gradient dynamics
and applications to network optimization,” Automatica, vol. 46, pp.
1974–1981, 2010.

[7] A. Cherukuri and J. Cortés, “Distributed generator coordination for
initialization and anytime optimization in economic dispatch,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 3, pp. 226–
237, 2015.

[8] D. P. Bertsekas, “Convergence of discretization procedures in dynamic
programming,” IEEE Transactions on Automatic Control, vol. 20,
no. 6, pp. 415–419, 1975.

[9] ——, Constrained Optimization and Lagrange Multiplier Methods.
Belmont, MA: Athena Scientific, 1982.

[10] G. Di Pillo and L. Grippo, “Exact penalty functions in constrained
optimization,” SIAM Journal on Control and Optimization, vol. 27,
no. 6, pp. 1333–1360, 1989.

[11] G. Di Pillo, “Exact penalty methods,” in Algorithms for Continuous
Optimization: The State of the Art, E. Spedicato, Ed. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 1994, pp. 209–253.

[12] T. Glad and E. Polak, “A multiplier method with automatic limitation
of penalty growth,” Mathematical Programming, vol. 17, no. 1, pp.
140–155, 1979.

[13] S. Lucidi, “New results on a continuously differentiable exact penalty
function,” SIAM Journal on Optimization, vol. 2, no. 4, pp. 558–574,
1992.

[14] F. Bullo, J. Cortés, and S. Martı́nez, “Distributed algorithms for robotic
networks,” in Encyclopedia of Complexity and System Science, R. A.
Meyers, Ed. New York: Springer, 2009, entry 00168.

[15] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[16] R. T. Rockafellar, “Augmented Lagrange multiplier functions and du-
ality in nonconvex programming,” SIAM Journal on Control, vol. 12,
no. 2, pp. 268–285, 1974.

[17] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving
a linear algebraic equation,” IEEE Transactions on Automatic Control,
vol. 60, no. 11, pp. 2863–2878, 2015.

[18] B. D. O. Anderson, S. Mou, A. S. Morse, and U. Helmke, “Decentral-
ized gradient algorithm for solution of a linear equation,” Numerical
Algebra, Control and Optimization, vol. 6, no. 3, pp. 319–328, 2016.

[19] J. Lu and C. Y. Tang, “A distributed algorithm for solving positive
definite linear equations over networks with membership dynamics,”
IEEE Transactions on Control of Network Systems, 2018, to appear.

[20] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed sensor
fusion using dynamic consensus,” in IFAC World Congress, Prague,
CZ, July 2005, electronic proceedings.

[21] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Symposium on Information
Processing of Sensor Networks, Los Angeles, CA, Apr. 2005, pp. 63–
70.

