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Abstract

This paper studies event-triggered stabilization of linear time-invariant systems over time-varying rate-

limited communication channels. We explicitly account for the possibility of channel blackouts, i.e., intervals

of time when the communication channel is unavailable for feedback. We assume prior knowledge of the

channel evolution and we introduce the notion of bit capacity as the maximum total number of bits that could

be communicated over a given time interval. We then provide an efficient real-time algorithm to lower bound

the bit capacity for a deterministic channel whose characteristics are piecewise constant in time. Building

on these results, we design an event-triggering strategy that guarantees Zeno-free, exponential stabilization

at a desired convergence rate even in the presence of intermittent channel blackouts. The contributions

are the notion of channel blackouts, the effective event-triggered control despite their occurrence, and the

analysis and quantification of the bit capacity for a class of time-varying continuous-time channels. Various

simulations illustrate the results.

1 Introduction

Control under communication constraints has key theoretical and practical importance given the increasing

ubiquity of networked cyber-physical systems in nearly every aspect of modern life. This has motivated a vast

∗A preliminary version of this paper appeared as [39].
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amount of research to address the challenges posed by communication channels with limited, time-varying, and

unreliable bit rates. This paper is a contribution to the growing body of results that employ either information-

theoretic or opportunistic triggered control to address the problem of stabilization under constrained resources.

Specifically, we seek to combine both approaches to deal with the control of linear time-invariant systems under

time-varying channels, including for the possibility of blackouts, i.e., intervals of time during which the channel

is completely unavailable for control.

Potential applications: We assume that the channel evolution, including the occurrence of blackouts, is

known a priori. This is an arguably simplifying assumption convenient for our design and analysis, that never-

theless is still applicable in a variety of scenarios. These include communication in contested environments with

a fixed scheduling of shared communication resources, where there is prior knowledge of the channel evolution

and the controller can plan its transmission schedule ahead of time or scenarios involving multi-agent systems

where each individual is informed ahead of time when it will have access to a shared resource and the specific

conditions of such access. Examples include spacecraft telemetry, tracking & command (TT&C) [4, 21, 34, 3],

wherein due to the essentially deterministic trajectories of the spacecraft and the earth, communication win-

dows are known a priori. Similarly, it is well known that radio frequency communication under water is highly

impractical [13]. Thus, a potential method to remotely control underwater vehicles is to have fixed deterministic

surfacing schedule for the vehicles, which can then communicate using radio frequency. Further, our setup is

also applicable to time-varying channels that can be modeled deterministically (e.g., stochastic channels whose

evolution can be predicted with sufficiently high accuracy using training data or in scenarios where a worst-case

analysis is carried out by reasoning with guaranteed lower bounds on channel capacity). Note that, in the

scenarios described above, the a priori knowledge of the availability of the shared resource does not violate

causality.

Literature review: The literature of control under communication constraints focuses on identifying necessary

and sufficient conditions on the bit rates that guarantee stabilization under various assumptions on the (often

stochastically modeled) communication channels. Comprehensive overviews may be found in [30, 11]. Early

data rate results [28, 29, 41] provided tight necessary and sufficient conditions on the data rate of the encoded

feedback for asymptotic stabilization in the discrete-time setting. Since then, the problem has been studied under

increasingly complex assumptions on the communication channels, see e.g., [23, 25, 24]. In the continuous-

time setting, the problem has been studied under either periodic sampling or aperiodic sampling with known

upper and lower bounds on the sampling period. The works [15, 16] deal with single-input systems, [32]

deals with nonlinear feedforward systems, and [20] deals with switched linear systems and characterizes the

convergence rate of the finite data-rate stabilization scheme. The recent work [31] explores the stabilization

problem under a state-based aperiodic transmission policy, with the inter-transmission intervals being integral

multiples of a fixed stepsize. In general, this literature has not explored the potential advantages of tuning the

sampling period in the periodic case or if state-based aperiodic sampling can provide any gains in efficiency and

performance. On the other hand, the event-triggered approach, see e.g. [36, 42, 14] and references therein,

exploits the tolerance to measurement errors to design goal-driven, opportunistic state-based aperiodic sampling.

The literature on event-triggered control mainly focuses on guaranteeing control performance while minimizing

the number of transmissions but largely ignores quantization, bit capacity, and other important aspects of

communication. Some of the few exceptions include [37, 12], which utilize static logarithmic quantization

and [17, 18, 35] (see also references therein) which use dynamic quantization. All these works guarantee a

positive lower bound on the inter-transmission times, while [17, 18, 35] also provide a uniform bound on the

communication bit rate (i.e., the number of bits per transmission). However, these references do not address

the inverse problem of triggering and quantization given a limit on the communication bit rate. Moreover, the

channel is assumed to always be available to the control system and hence event-triggered designs typically

do not take into account the possibility of channel blackouts. An important exception is [2], which uses the

deadlines generated by a self-triggered controller to perform a kind of instantaneous or short-term scheduling.

However, if the communication latency is time-varying either because of a time-varying channel or because of

time-varying packet sizes it is difficult to guarantee long-term future schedulability and system performance.

2



Another approach in the literature to event-triggered control over shared channels is to consider independent

identically distributed packet drops [7, 5, 22, 40] or to assume a model of a channel that guarantees an upper

bound on the number of consecutive packet drops [8]. On the other hand, [6, 26, 27, 1] incorporate a centralized

real-time arbitration mechanism for several processes to use a shared channel. A closely related problem is that

of control under denial-of-service attacks. [10] assumes there is a lower bound on the time intervals during which

there is no attack and proposes an event-triggered control strategies for cases with and without knowledge of

such a lower bound. [33, 9] instead assume knowledge of average frequency and maximum duration of the

attacks and propose an event-triggered control strategy for stabilization. However, these works assume infinite

precision feedback and no time delays.

Compared to these works, this paper pursues the view that modeling the long term data requirements for

a process, as in control under communication constraints, is helpful in either controlling a single system over

a channel with blackouts or in online scheduling (as opposed to arbitration) of feedback communication of

multiple systems over a shared channel. While a “denial-of-service” model of a shared channel as in [10, 33, 9]

may require milder assumptions on the knowledge of the channel evolution, it may still lead to an inefficient

usage of a shared communication resource essentially because there is no coordination between the users.

On the other hand, an evaluation of the data requirements of each process sharing a communication channel

may help coordinate its usage and lead to greater efficiency. In this context, our recent work [38] combines

the information-theoretic and event-triggered control approaches to address the problem of event-triggered

stabilization of continuous-time linear time-invariant systems under bounded bit rates. The event-triggered

formulation allows us to guarantee, in the absence of channel blackouts, a specified rate of convergence under

non-instantaneous communication.

Statement of contributions: We address the stabilization problem for linear time-invariant systems over

time-varying rate-limited communication channels that may be subject to sporadic but known blackouts. Our

starting point is a description of the communication channel through two time-varying channel functions repre-

senting, respectively, the minimum instantaneous communication-rate and the maximum packet size that can

be successfully transmitted. Our model explicitly accounts for the possibility of channel blackouts, which are

intervals of time during which no packet can be successfully transmitted. The proposed design critically relies

on three elements: a performance-trigger function that measures how close the system state is to violating the

control objective, a channel-trigger function that keeps track of the number of bits required at any moment

to guarantee performance at least for a certain period of time in the future, and lower bounds on bit capacity

provided by our real-time algorithm. The first two elements are extensions of our design in [38] to the case of

time-varying channels. On the other hand, the third element is a distinctive part of the present treatment, and

its design requires a number of contributions that we detail next.

Our first contribution is the definition of the concept of data capacity, i.e., the maximum number of bits

that may be communicated over possibly multiple transmissions during an arbitrary time interval under complete

knowledge of the channel evolution. This concept plays a key role in effectively controlling the system despite

the occurrence of blackouts. The computation of bit capacity for general time-varying channels is challenging.

We show that, for the class of piecewise-constant channel functions, the computation of bit capacity can be

formulated as an allocation problem involving the number of bits to be transmitted over each interval where

the channel functions are constant. This equivalence sets the basis for our second contribution, which is the

design of an algorithm to lower bound in real time the bit capacity over an arbitrary time interval. Our third

and final contribution is the synthesis of event-triggered control schemes that, using prior knowledge of the

channel information, plans the transmissions in order to guarantee the exponential stabilization of the system

at a desired convergence rate, even in the presence of intermittent channel blackouts. Our notion of scheduled

channel blackouts and stabilization despite their occurrence is a key contribution in the context of event-triggered

control, which typically assumes the channel is available for feedback on demand. Simulations illustrate our

results.

Notation: We let R, R≥0, Z>0, and Z≥0 denote the set of real, nonnegative real, positive integer, and

nonnegative integer numbers, resp. We let |S| denote the cardinality of S. We denote by ‖.‖2 and ‖.‖∞ the
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Euclidean and infinity norm of a vector, resp., or the corresponding induced norm of a matrix. For a symmetric

matrix A ∈ Rn×n, we let λm(A) and λM(A) denote its smallest and largest eigenvalues, resp. For any matrix

norm ‖.‖, note that ‖eAτ‖ ≤ e‖A‖τ . For a number a ∈ R, we let [a]+ , max{0, a}. For a function f : R 7→ Rn
and any t ∈ R, we let f (t−) and f (t+) denote the limit from the left, lim

s↑t
f (s) and the limit from the right,

lim
s↓t
f (s), resp.

2 Problem statement

We describe here the system dynamics, the model for the communication channel, and the control objective.

2.1 System description

We consider a linear time-invariant control system,

ẋ(t) = Ax(t) + Bu(t), (1)

where x ∈ Rn is the plant state and u ∈ Rm the control input, while A ∈ Rn×n and B ∈ Rn×m are the system

matrices. We assume that the pair (A,B) is stabilizable. Thus, we can select a control gain K ∈ Rm×n such

that Ā = A+BK is Hurwitz, which mean the continuous-time feedback u(t) = Kx(t) renders the origin of (1)

globally exponentially stable.

The plant is equipped with a sensor (the encoder ) and an controller (the decoder ) that are not co-located.

The sensor can measure the state exactly and the controller can exert the input to the plant with infinite

precision. However, the sensor may transmit state information to the controller at the controller only at

discrete time instants of its choice, using only a finite number of bits. We let {tk}k∈Z>0 ⊂ R≥0 be the sequence

of transmission times at which the sensor transmits an encoded packet of data, {rk}k∈Z>0 ⊂ R≥0 the sequence

of reception times at which the decoder receives a complete packet of data, and {r̃k}k∈Z>0 ⊂ R≥0 the sequence

of update times at which the encoder and the decoder update their copies of the controller state (this is possible

because we assume a reliable acknowledgment from the decoder to the encoder). At a transmission time tk ,

the sensor sends bk bits, which encode the plant state. Due to causality, r̃k ≥ rk ≥ tk , and we denote the k th

communication time and k th time-to-update, respectively, by ∆k , rk − tk , ∆̃k , r̃k − tk . Figure 1 illustrates

the major components of the overall networked control system.

2.2 Communication channel

Our model for the time-varying communication channel is fully described by the map R : R≥0 → R≥0, where

Ra(t) = nR(t) is the minimum instantaneous communication rate at a given time t, and the piecewise-constant

map p̄ : R≥0 → Z≥0, where b̄(t) = np̄(t) is the maximum packet size that can be successfully transmitted at

a given time t. The k th communication time and the k th time-to-update satisfy

∆̃k ≥ ∆k ≥ 0, (2a)

∆k ≤ ∆(tk , pk) ,
pk

R(tk)
=

bk
Ra(tk)

, (2b)

where bk = npk is the size of the packet (number of bits) that are actually transmitted at tk , the k th transmission

time. The condition (2a) is that of causal communication while (2b) is an upper bound on the communication

time. Note that the actual instantaneous communication rate at tk is bk/∆k and we can rewrite (2b) as

bk
∆k

=
npk
∆k
≥

npk
∆(tk , pk)

= Ra(tk).
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Figure 1: Major components of the networked control system. The sensor determines the time instants tk
at which to transmit npk bits of data. The channel, if available at tk , communicates this data at rk to the

controller. On receiving a packet at rk , the controller chooses to update the control at r̃k . We model the

channel with two functions of time - minimum instantaneous communication rate nR(.) and maximum packet

size np̄(.). During time intervals when p̄(t) = 0, the channel is unavailable and we refer to such intervals as

channel blackouts.

Thus, Ra(tk) is a lower bound on the number of bits communicated per unit time of all the bits transmitted at

time tk . Thus, for example, if Ra(tk) =∞, then the packet sent at tk is received instantaneously.

Also note that the transmission policy has to ensure that bk ≤ b̄(tk) (maximum packet size), or equivalently

pk ≤ p̄(tk), pk ∈ Z≥0 (3a)

for all k ∈ Z≥0. We refer to an interval of time during which p̄ = b̄ = 0 as a (channel) blackout. We assume

that the encoder knows the functions t 7→ R(t) and t 7→ p̄(t) a priori or sufficiently in advance, which we make

clear in the sequel.

Since the channel has bounded bit capacity and in order to maintain synchronization between the encoder

and the decoder, the transmission policy has to make sure that the encoder does not transmit a packet before

a previous packet is received by the decoder and the controller updated, i.e.,

tk+1 ≥ r̃k , (3b)

for all k ∈ Z≥0. We say the channel is busy at time t if t ∈ [tk , rk), for some k ∈ Z>0. Finally, we refer to

the sequences of transmission times {tk} ⊂ R≥0, packet sizes {bk} ⊂ Z≥0, and update times {r̃k} ⊂ R≥0 as

feasible if (2) and (3) are satisfied for every k ∈ Z>0.

2.3 Encoding and decoding

We use dynamic quantization for finite-bit transmissions from the encoder to the decoder. In dynamic quanti-

zation, there are two distinct phases: the zoom-out stage, e.g., [19], during which no control is applied while

the quantization domain is expanded until it captures the system state at time r0 = t0 ∈ R≥0; and the zoom-in

stage, during which the encoded feedback is used to asymptotically stabilize the system. We focus exclusively

on the latter, i.e., for t ≥ t0. We assume both the encoder and the decoder have perfect knowledge of the plant

system matrices, have synchronized clocks, and synchronously update their states at update times {r̃k}k∈Z>0 .

For simplicity, we assume that at transmission tk the sensor (encoder) encodes each dimension of the plant

state using pk bits so that the total number of bits transmitted is bk = npk .
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The state of the encoder/decoder is composed of the controller state x̂ ∈ Rn and an upper bound de ∈ R≥0

on ‖xe‖∞, where xe , x − x̂ is the encoding error. Thus, the actual input to the plant is u(t) = Kx̂(t). During

inter-update times, the state of the dynamic controller evolves as

˙̂x(t) = Ax̂(t) + Bu(t) = Āx̂(t), t ∈ [r̃k , r̃k+1). (4a)

Let the encoding and decoding functions at the k th iteration be represented by qE,k : Rn × Rn 7→ Gk and

qD,k : Gk ×Rn 7→ Rn, respectively, where Gk is a finite set of 2bk symbols. At tk , the encoder encodes the plant

state as zE,k , qE,k(x(tk), x̂(t−k )), where x̂(t−k ) is the controller state just prior to the encoding time tk , and

sends it to the controller. The decoder can decode this signal as zD,k , qD,k(zE,k , x̂(t−k )) at any time during

[rk , r̃k ]. At the update time r̃k , the sensor and the controller also update x̂ using the jump map,

x̂(r̃k) = eĀ∆̃k x̂(t−k ) + eA∆̃k (zD,k − x̂(t−k ))

, qk(x(tk), x̂(t−k )), (4b)

where qk : Rn ×Rn 7→ Rn represents the quantization that occurs as a result of the finite-bit coding. We allow

the quantization domain, the number of bits and the resulting quantizer, qk , for each transmission k ∈ Z>0 to

be variable. The evolution of the plant state x and the encoding error xe on [r̃k , r̃k+1) can be written as

ẋ(t) = Āx(t)− BKxe(t), (5a)

ẋe(t) = Axe(t). (5b)

While the encoder knows xe precisely, the decoder can only compute a bound de(t) on ‖xe(t)‖∞ as follows

de(t) , ‖eA(t−tk )‖∞δk , t ∈ [r̃k , r̃k+1), k ∈ Z≥0, (6a)

δk+1 = de(tk+1)/2pk+1 . (6b)

The encoder and the decoder can use Algorithms 1 and 2, as described in Appendix A, to implement (4b).

These algorithms are adapted from [38] with minor modifications. Further, Algorithms 1 and 2 maintain

consistent x̂(t) and de(t) signals and also ensure that ‖xe(t)‖∞ ≤ de(t) for all t ≥ t0 if ‖xe(t0)‖∞ ≤ de(t0),

cf. Lemma A.1. For simplicity of exposition, we do not consider here the inclusion of additional bits in the

transmitted packets dedicated to routing, error detection, or error correction. Note that the encoder and

decoder algorithms can easily be augmented as in [38] to handle disturbances in the dynamics.

2.4 Control objective

We quantify the performance of the closed-loop system through a Lyapunov function. Given an arbitrary

symmetric positive definite matrix Q ∈ Rn×n, let P be the unique symmetric positive definite matrix that

satisfies the Lyapunov equation P Ā + ĀTP = −Q. Define x 7→ V (x) = xTPx and let the desired control

performance be

Vd(t) = Vd(t0)e−β(t−t0), (7)

with β > 0. We assume that

W ,
λm(Q)

λM(P )
− aβ > 0, (8)

with a > 1 an arbitrary constant. Note that, given P , Q, this imposes a bound on the achievable convergence

rates. Assumption (8) is sufficient to guarantee a convergence rate faster than β for (1) under the continuous-

time and unquantized feedback control u(t) = Kx(t).

Given the system and the communication channel model above, our objective is to design an event-triggered

communication and control strategy that ensures exponential stability of the origin. Formally, we seek to

6



synthesize an event-triggered control strategy that recursively determines the sequences of transmission times

{tk}k∈Z>0 and update times {r̃k}k∈Z>0 , along with a coding scheme for messages and a rule to determine the

number of bits {bk}k∈Z>0 to be transmitted, so that

V (x(t)) ≤ Vd(t),

holds for all t ≥ t0. This objective is especially challenging given the time-varying nature of the communication

channel and the possibility of intermittent blackouts.

2.5 Proposed design solution

The main component of our solution is the event-triggering condition, which determines when the finite bit

transmissions occur. The core principle of event-triggered control is to design an online condition that determines

when the control goal is about to be violated based on the state and the dynamics of the system. We use

the same principle in this paper, albeit with channel state and its evolution conceptually incorporated into the

system state and dynamics.

Our event-triggering design has three main elements: (i) The first element is oblivious to bit capacity

restrictions, or even to the finite precision feedback, and simply seeks to ensure the control performance

V (x(t)) ≤ Vd(t) for all t ≥ t0 given the bounds on communication delays; (ii) The second element checks if

the channel functions at the current time are sufficient to ensure that, if the encoder transmitted a packet, the

encoding error is still manageable by the time the packet is received. A transmission is triggered when either

of the conditions in (i) or (ii) are anticipated to be violated. However, both of these elements are oblivious of

the time-varying nature of the channel and in particular of blackouts; Thus, (iii) the third element computes an

upper bound on the amount of data required to ensure that the control objective is satisfied until the end of

the next blackout. It also computes the maximum amount of data that could be transmitted from the current

time until the beginning of the next blackout. The comparison between these two quantities leads to trigger a

transmission when we anticipate the data requirement exceeding the available data capacity.

Comparison with [38]

Elements (i) and (ii) above come from our previous work [38], with some modifications that we outline in

Section 3. Instead, the design of element (iii) is the major contribution of this paper. This task first requires

us to clearly define bit capacity and to design an algorithm to compute it in real time, which we discuss in

Section 4. In general, a transmission policy that maximizes the data throughput in a time interval may not be

able to ensure the satisfaction of the control objective and vice versa. Hence, achieving the control objective at

the current time while making sure that enough data can be transmitted in the future if needed to keep satisfying

it requires some planning. Section 5 describes the way we incorporate this planning into the event-triggering

rule and the integration of its various elements. In Section 5.1, we extend the results of [38] to the case of

time-varying channels with explicit modeling of the instantaneous communication rate, albeit without channel

blackouts. In this case, the requirements on the fore-knowledge of the channel evolution are also milder. In

Section 5.2 we present our design and results for the case with channel blackouts. For reference, Table 1 lists

the main elements of our design.

3 Performance- and channel-trigger functions

To achieve the control objective of Section 2.4 with opportunistic transmissions, we need a performance-trigger

function that informs about how close the system state is to violating the convergence requirement. Bounded

precision quantization further requires us to keep track (through a channel-trigger function) of the number

of bits required at any moment to guarantee performance at least for a certain period of time. Threshold

crossings of these two functions form the basis of our event-triggering mechanism. Further, to take care of
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Performance and channel-trigger functions

Definition and properties: Section 3

Use: Control in absence of blackouts: Section 5.1

Control in presence of blackouts: Section 5.2

Bit capacity

Definition: Section 4.1

Under piece-wise constant channel functions: Section 4.2

Computation

Efficient sub-optimal solutions: Appendix B

Approximation via real-time algorithm: Section 4.3

Use: Control in presence of blackouts: Section 5.2

Table 1: Elements of the proposed event-triggered controller. Performance and channel-trigger functions are

borrowed from [38] with minor modifications. Bit capacity is the primary contribution of this paper along with

the design of its use in event-triggered control.

communication delays, the triggering mechanism instead uses guaranteed upper bounds on the performance and

channel-trigger functions up to the maximum possible communication delay for the current channel state. In

this section, we describe each of these components.

3.1 Performance-trigger function

We define the performance-trigger function as the ratio hpf (t) , V (x(t))/Vd(t). Thus, the control objective

is to maintain hpf (t) ≤ 1 at all times. This is why, in general, it is of interest to characterize the open-loop

evolution of the performance-trigger function. The next result provides an upper bound on the value of hpf in

the future as a function of the information available now.

Lemma 3.1. (Upper bound on open-loop evolution of performance-trigger function [38]). Given tk ∈ R>0 such

that hpf (tk) ≤ 1, then

hpf (τ + tk) ≤ h̄pf (τ, hpf (tk), ε(tk)),

for τ ≥ 0, where

ε(t) ,
de(t)

c
√
Vd(t)

, h̄pf (τ, h0, ε0) ,
f1(τ, h0, ε0)

f2(τ)
, (9)

f1(τ, h0, ε0) , h0 +
Wε0

w + µ
(e(w+µ)τ − 1), f2(τ) , ewτ ,

c ,
W
√
λm(P )

2
√
n‖PBK‖2

, w ,
λm(Q)

λM(P )
− β > 0, µ , ‖A‖2 +

β

2
.

As we will see in the sequel, ε(t) in Lemma 3.1 is an important signal. In particular, it compares the bound

on the estimation error de(t) against the control performance function Vd(t). Loosely, if Vd(t) is large then

the control algorithm can tolerate larger bounds de(t) on the estimation error. Thus, in the sequel, we seek

to maintain ε(t) within a certain bound that can guarantee the control performance. The result in Lemma 3.1

motivates the definition of the function

Γ1(h0, ε0) , min{τ ≥ 0 : h̄pf (τ, h0, ε0) = 1,
dh̄pf

dτ
≥ 0},

as a lower bound on the time it takes hpf to evolve to 1 starting from hpf (tk) = h0 with ε(tk) = ε0. Some useful

properties of Γ1 are listed in the following result.
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Lemma 3.2. (Properties of the function Γ1 [38]). The following holds true,

(i) Γ1(1, 1) > 0.

(ii) If h1 ≥ h0 and ε1 ≥ ε0, then Γ1(h0, ε0) ≥ Γ1(h1, ε1). In particular, if h0 ∈ [0, 1], then Γ1(h0, ε0) ≥
Γ1(1, ε0).

(iii) For T > 0, if h0 ∈ [0, 1] and

ε0 ≤ ρT (h0) ,
(w + µ)(1− h0)

W (e(w+µ)T − 1)
+ 1, (10)

then Γ1(h0, ε0) ≥ min{Γ1(1, 1), T}.

(iv) For T > 0 and h0 ∈ [0, 1],

Γ1(h0, ε0) ≥ T ⇐⇒ h̄pf (T, h0, ε0) ≤ 1.

The statement with strict inequalities is also true.

Note that the function Γ1 may not be amenable to evaluation in real time. However, we can provide a simple

rule to check in real time, if Γ1(h0, ε0) is larger or smaller than a given threshold. We present this method in

the next result.

Lemma 3.3. (Algebraic Condition to Check if hpf < 1 for the next T ◦ units of time [38]). Let T ◦ > 0. For

any h0 ∈ [0, 1], Γ1(h0, ε0) > T ◦ if and only if h̄pf (T ◦, h0, ε0) < 1. Further, the corresponding statement with

the inequalities replaced by equalities is true.

3.2 Channel-trigger function

We define the channel-trigger function as the ratio hch(t) , ε(t)/ρT (hpf (t)), where T > 0 is a fixed design

parameter and the function ρT (.) is defined in (10). The channel-trigger function hch depends on the bound

on the encoding error de through ε. Since de evolves as (6), the channel-trigger function hch also jumps at

the update times r̃k . Lemma 3.2(iii) implies that for any time s0 ≥ t0, if hch(s0) ≤ 1, then hpf (t) ≤ 1 for at

least t ∈ [s0, s0 + min{T,Γ1(1, 1)}) even without any transmissions or receptions. Thus, assuming that the

communication delays are smaller than min{T,Γ1(1, 1)}, a transmission strategy ( {tk}k∈Z>0 and {bk}k∈Z>0

such that bk = npk) is to ensure that, for each k , hch(r̃k) ≤ 1 so that Γ1(hpf (r̃k), ε(r̃k)) ≥ min{T,Γ1(1, 1)}.
Thus, we now require an upper bound on the open-loop evolution of hch, which is provided in the following

result. Its proof follows from the definitions of ε and ρT in (9) and (10), respectively, and the evolution of de
described in (6).

Lemma 3.4. (Upper bound on the channel-trigger function at the update times r̃k). If tk ∈ R>0 is such that

hpf (tk) ∈ [0, 1], then

hch(r̃k) ≤ h̄ch(r̃k − tk , hpf (tk), ε(tk), pk), (11)

where bk = npk bits are transmitted at tk and

h̄ch(τ, h0, ε0, p) ,
‖eAτ‖∞e

β
2
τε0

ρT (h̄pf (τ, h0, ε0))
·

1

2p
. (12)

Note that for t, t + τ ∈ [r̃k , tk+1), for any k ∈ Z≥0, we have hch(t + τ) ≤ h̄ch(τ, hpf (t), ε(t), 0).

Now, analogous to Γ1, we define

Γ2(b0, ε0, p) , min{τ ≥ 0 : h̄ch(τ, b0, ε0, p) = 1},

which essentially is an lower bound on the communication delay r̃k − tk , for which we can still guarantee

hch(r̃k) ≤ 1. Given the interpretation of Γ2, one of the conditions in our event-triggering rule would be to check

if Γ2 is less than a maximum communication delay. Lemma 3.5 provides a way to check this in real time.
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Lemma 3.5. (Algebraic condition to compare value of Γ2 against a given constant [38]). Let T ◦ > 0. For any

h0 ∈ [0, 1] and ε0 ∈ [0, ρT (h0)], Γ2(h0, ε0, p) > T ◦ if and only if h̄ch(T ◦, h0, ε0, p) < 1. Further, the statement

with equalities is also true.

The following result provides a lower bound for Γ2 uniform in its first two arguments. This bound will be

useful in our event-triggered design later.

Lemma 3.6. (Lower bound on Γ2). If ε0 ∈ [0, ρT (h0)] then Γ2(h0, ε0, p) ≥ T ∗(p) with

T ∗(p) , min{τ ≥ 0 : g(τ, p) = 1},

g(τ, p) ,
‖eAτ‖∞e

β
2
τ

2p
·

e(w+µ)T − 1

e(w+µ)T − e(w+µ)τ
.

Proof. From the definition of hpf and (10), we have

ρT (h̄pf (τ, h0, ε0))

=
(w + µ)(1− e−wτ (h0 + Wε0

w+µ(e(w+µ)τ − 1)))

W (e(w+µ)T − 1)
+ 1

= ρT (e−wτh0)−
e(w+µ)τ − 1

e(w+µ)T − 1
e−wτε0

≥ ρT (e−wτh0)
e(w+µ)T − e(w+µ)τ

e(w+µ)T − 1
,

where the inequality follows from the assumption that ε0 ≤ h0. Now, substituting this lower bound in (12) and

noting the fact that ρT (e−wτh0) ≥ ρT (h0) gives

h̄ch(τ, h0, ε0, p) ≤ g(τ, p).

The claim now follows from the definition of Γ2.

4 Characterization of the bit capacity

Our study of bit capacity here is motivated by the need of the encoder to know how much data can be

transmitted successfully before a channel blackout. We structure our discussion into three parts. In Section 4.1,

we define the notion of bit capacity and motivate the assumption of a piecewise-constant evolution of the channel

communication rate R. Under this assumption, we formulate in Section 4.2 the computation of the bit capacity

problem as an optimal allocation problem which is combinatorial in nature. Thus, in Section 4.3, we present

a real-time algorithm to compute a sub-optimal solution to the bit capacity problem, in particular from the

current time until the next blackout. We then use this in our event-triggered policy.

4.1 Bit capacity

We denote the number of bits communicated (transmitted by the encoder and completely received by the

decoder) during [τ1, τ2] under the feasible sequences {tk}, {pk}, and {∆̃k} (satisfying (2) and (3)) as

D(τ1, τ2, {tk}, {∆̃k}, {pk}) , n
kτ2∑
k=kτ1

pk ,
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where kτ1
= min{k : tk ≥ τ1} and kτ2 = max{k : tk + ∆̃k ≤ τ2}. Notice that we count only the bits that

are communicated during [τ1, τ2]. We define the bit capacity during [τ1, τ2] as the maximum data that can be

communicated during the time interval under all possible communication delays, i.e.,

D(τ1, τ2) , max
{tk},{pk}

s.t. (3) holds
∀∆k≤∆(tk ,pk )

D(τ1, τ2, {tk}, {∆k}, {pk}).

Notice that to maximize the data communicated, it must be that r̃k = rk (∆̃k = ∆k) for all k ∈ Z>0. This

explains the fact that only the sequences {tk} and {pk} are the optimization variables. Next, notice that

maximization under all possible communication delays (∆k ≤ ∆(tk , pk)) is the same as maximization under

maximum communication delays (∆k = ∆(tk , pk)). Thus,

D(τ1, τ2) , max
{tk},{pk}

s.t. (3) holds

D(τ1, τ2, {tk}, {∆(tk , pk)}, {pk}).

In general, the precise computation of D(τ1, τ2) involves solving an integer program with non-convex feasibility

constraints. Therefore, we seek a class of channel functions R and b̄ that are meaningful and yet simple enough

to efficiently compute a lower bound for the bit capacity. To this end, we make the following observation.

Lemma 4.1. (Bit capacity under constant communication rate). Suppose ∀t ∈ [τ1, τ2] (i) R(t) = R ≥ 0 and

(ii) p̄(t) ≥ 1 (no blackouts). Then, D(τ1, τ2) = nbR(τ2 − τ1)c.

The proof of Lemma 4.1 follows directly by noting that an optimal solution can be constructed by choosing

pk = 1 and tk+1 = r̃k = rk for all k ∈ Z≥0. Motivated by this result, we assume in the sequel that R is

piecewise constant so that the problem of finding a reasonable lower bound on D(τ1, τ2) is tractable while also

ensuring that the overall problem is meaningful. Note that any given R can be approximated to an arbitrary

degree of accuracy by a piecewise-constant function. In addition, according to (2b), R is a lower bound on

the instantaneous communication rate and it is reasonable to assume it is piecewise constant. Specifically, we

assume that

R(t) = Rj , p̄(t) = π̄j , ∀t ∈ (θj , θj+1] (13)

where {θj}∞j=0 is a strictly increasing sequence of time instants and π̄j ∈ Z≥0 for each j . We denote Tj , θj+1−θj
as the length of the j th time slot Ij , (θj , θj+1]. Again note that identical {θj} sequences for R and p̄ is not a

restriction because one can always refine the sequence {θj}. In order to concisely express the constraints in the

definition of D, we assume, without loss of generality, that τ1 = θj0 and τ2 = θjf , for some j0, jf ∈ Z≥0. Finally,

we choose left-open intervals in (13) as it provides a slight technical advantage in lowering the gap between the

optimal and our sub-optimal solutions.

4.2 Formulation as an allocation problem

Here we show that, for piecewise-constant channel functions, we can think of the computation of D(θj0 , θjf ) as

an allocation problem: that of allocating the number of bits {nφj}, with φj ∈ Z≥0, to be transmitted in the time

slots {Ij} for j ∈ N jf
j0
, {j0, . . . , jf −1}. For convenience, we let φjfj0 , (φj0 , . . . , φjf−1). Given φjfj0 , the sequences

{tk} and {pk} are determined so that transmissions start at the earliest possible time in Ij and the channel is

not idle until all the allocated bits φj are received, i.e., tk+1 = r̃k = rk = ∆(tk , pk) during Ij and {pk} during

Ij is any sequence that respects the channel upper bound π̄j and adds up to φj . Given this correspondance,

our forthcoming discussion focuses on expressing the constraints in the optimization problem in terms of the φ

variables. In the sequel, a standing constraint is that φj ∈ Z≥0 for each j , unless we mention otherwise.
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4.2.1 Constraints of the allocation problem

Maximum bits that may be transmitted: First, we present the constraint that describes the maximum bound

on the number of bits that may be transmitted in each slot Ij . Note that according to Lemma 4.1, in the time

slot Ij , nbRjTjc bits could be transmitted and received within bRjTjc/Rj ≤ Tj units of time. In addition, nπ̄j
more bits could be transmitted during the closed interval [ bRjTjc, θj+1], though these bits are received only in

subsequent time slots. Thus, we have for each j ∈ N jf
j0

nφj ≤

{
nRjTj + nπ̄j , if π̄j > 0

0, if π̄j = 0
(14)

where in the first case we have used the fact that φj ∈ Z≥0 to avoid the use of the floor function.

Reduced channel availability in a time slot due to prior transmissions: As noted above, if φj > bRjTjc, then

these bits take up some of the time in Ij+1 and possibly even subsequent slots. Thus, effectively the time

available in Ij+1 and consequently the upper bound on φj+1 is reduced. Moreover, in general, the number of

bits transmitted in Ij has an effect on the number that could be transmitted in all subsequent intervals either

directly or indirectly. Thus, for each j1, j ∈ N jf
j0

, we introduce

T̄j1,j(φ
jf
j0

) ,
(
Tj −

j−1∑
j=j1

( φj
Rj
− Tj

))
= θj+1 − θj1 −

j−1∑
j=j1

φj
Rj

The next result shows that these functions determine the available time in slot Ij given φjfj0 . Its proof appears in

Appendix C.

Lemma 4.2. (Available time in slot Ij). Let T̄j(φ
jf
j0

) be the time available for transmissions in the slot Ij given

the bit allocation φjfj0 . Then,

T̄j(φ
jf
j0

) =
[

min
j1∈N

jf
j0

{T̄j1,j(φ
jf
j0

), Tj}
]

+
.

As a consequence of Lemma 4.2, for each j ∈ N jf
j0

and j1 ∈ Z≥0 ∩[j0, j − 1], consider the constraints

nφj ≤

{
nRj T̄j1,j(φ

jf
j0

) + nπ̄j , if T̄j1,j(φ
jf
j0

) > 0

0 otherwise
(15a)

which we obtain using the same reasoning as in (14) with Tj replaced by T̄j1,j(φ
jf
j0

). Note that if T̄j1,j(φ
jf
j0

) ≥ Tj ,
then the constraint (15a) is weaker than (14) and hence inactive. For T̄j1,j(φ

jf
j0

) ∈ (0, Tj), the constraint reflects

the reduced available time in the time slot Ij and if T̄j1,j(φ
jf
j0

) ≤ 0, for some j1 ∈ Z≥0 ∩[j0, j − 1], then it

corresponds to the case when the channel is busy for the whole of the time slot Ij (T̄j(φ
jf
j0

) = 0). Thus (15a)

accurately reflects the effect of possibly reduced available time during the slot Ij due to prior transmissions.

Counting only the bits transmitted and received during [θj0 , θjf ]: Finally, since in the computation of

D(θj0 , θjf ), we are interested in the maximum number of bits that can be communicated (transmitted and

received) during the time interval, we also require that any bits transmitted during the slot Ij are received before

θjf , i.e.,

φj
Rj
≤

{
T̄j(φ

jf
j0

) + θjf − θj+1, if T̄j(φ
jf
j0

) > 0

0, otherwise.

Using the definition of T̄j(φ
jf
j0

), this can be rewritten giving the following constraints for each j ∈ N jf
j0

and

j1 ∈ Z≥0 ∩[j0, j ]

φj
Rj
≤

{
T̄j1,j(φ

jf
j0

) + θjf − θj+1, if T̄j1,j(φ
jf
j0

) > 0

0, otherwise.
(15b)
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Then, the bit capacity is given as

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (14), (15) hold

n

jf−1∑
j=j0

φj . (16)

Ignoring the fact that this is an integer program, the constraints (15) still make the problem combinatorial.

Often, we may be satisfied with an efficiently computable sub-optimal solution {φsj }j∈Z≥0
to give a lower bound

on the bit capacity of the form

Ds(θj0 , θjf ) , n
jf−1∑
j=j0

φsj , (17)

Appendix B presents efficient methods to achieve this.

4.3 Computing bit capacity in real time

As mentioned earlier, we want the encoder to compute a lower bound for the bit capacity up to the end of the

next blackout period. However, the computation of D(τ1, τ2) or even Ds(τ1, τ2) as presented in Appendix B

may not be suitable for real-time computation. Thus, given D(θj0 , θjf ) (or Ds(θj0 , θjf )), we propose a simpler

procedure to compute a lower bound on D(t, θjf ) (or Ds(t, θjf )) for any t ∈ [θj0 , θj0+1). We present the procedure

in the following result, whose proof appears in Appendix C.

Theorem 4.3. (Real-time computation of bit capacity). Let φ∗ (or φs) be any optimizing solution to D(θj0 , θjf )

(or Ds(θj0 , θjf )). Let

D̂(t, θjf ),
[
n
⌊
φ∗j0 − Rj0 (t − θj0 )

⌋]
+

+ n

jf−1∑
j=j0+1

φ∗j

D̂s(t, θjf ),
[
n
⌊
φsj0 − Rj0 (t − θj0 )

⌋]
+

+ n

jf−1∑
j=j0+1

φsj , (18)

for any t ∈ [θj0 , θj0+1). Then, 0 ≤ D(t, θjf )− D̂(t, θjf ) ≤ n and 0 ≤ Ds(t, θjf )− D̂s(t, θjf ) ≤ n.

Theorem 4.3 guarantees that D̂(t, θjf ) (resp. D̂s(t, θjf )) under-approximates D(t, θjf ) (resp. Ds(t, θjf )) by

at most n bits, one per each dimension of the plant state. Thus, D̂(t, θjf ) and D̂s(t, θjf ) are tight sub-optimal

solutions to the bit capacity problem. Moreover, given any optimizing solution to D(θj0 , θjf ) (resp. Ds(θj0 , θjf ))

D̂(t, θjf ) (resp. D̂s(t, θjf )) can be found in real time. The implication is that, if one has the computational

resources, then one may solve the full optimization problem D(θj1 , θj2 ) for j1, j2 ∈ Z≥0 and use the above result

to find a tight sub-optimal solution D̂(t, θj2 ) for any t ∈ [θj1 , θj1+1].

5 Event-triggered stabilization

In this section, we address the problem of event-triggered control under a time-varying channel. Section 5.1

addresses the case with no channel blackouts. Section 5.2 builds on this design and analysis to deal with the

presence of channel blackouts.

5.1 Control in the absence of channel blackouts

In the case of no channel blackouts, the encoder may choose to transmit at any time and, in addition, we

assume the channel rate R is sufficiently high (the exact technical assumption is specified later) so that there is
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no need to resort to the computation of bit capacity. For this reason, we are able to consider arbitrary (i.e., not

necessarily piecewise constant) functions t 7→ R(t). Note that, by its discrete nature, the function t 7→ p̄(t) is

always piecewise constant. For any p ∈ Z≥0, let

TM(p) = σmin{Γ1(1, 1), T, T ∗(p)}, (19)

where σ ∈ (0, 1) is a design parameter, T is the parameter chosen in (10) and T ∗ is as defined in Lemma 3.6.

As we show in the sequel, if TM(p) is an upper bound on the communication delay when b = np bits are

transmitted, then it is sufficient to design an event-triggering rule that guarantees the control objective is met.

In the presence of communication delays, we need to make sure (i) that the control objective is not violated

between a transmission and the resulting control update and (ii) that at the control update times, the encoding

error is sufficiently small to ensure future performance. To this end, we define

L1(t) , h̄pf (TM(p̄(t)), hpf (t), ε(t)) , (20a)

L2(t) , h̄ch (TM(p̄(t)), hpf (t), ε(t), p̄(t))) , (20b)

to take care of each of these requirements. From the discussion of Section 3, we know that ensuring that these

two functions do not grow beyond 1 guarantees that both objectives (i) and (ii) are met. Specifically, if up to

b̄ = np̄ bits are transmitted at time t, then L1(t) provides an upper bound on the performance-trigger function

hpf at the reception time (which would be less than t +TM(p̄(t))), while L2(t) provides an upper bound on the

channel-trigger function hch if the control is updated as soon as the packet is received. Now, we present our

first main result. Its proof appears in Appendix C.

Theorem 5.1. (Event-triggered control in the absence of blackouts). Suppose t 7→ p̄(t) is piecewise constant,

as in (13), with a uniform lower bound 1 (i.e., no blackouts) and a uniform upper bound pmax. Assume that

R(t) ≥
p

TM(p)
, ∀p ∈ {1, . . . , p̄(t)}, ∀t. (21)

Consider the system (1) under the feedback law u = Kx̂ , with t 7→ x̂(t) evolving according to (4) and the

sequence {tk}k∈Z≥0
determined recursively by

tk+1 = min{t ≥ r̃k : L1(t) ≥ 1 ∨ L1(t+) ≥ 1 ∨
L2(t) ≥ 1 ∨ L2(t+) ≥ 1}. (22)

Let {rk}k∈Z≥0
and {r̃k}k∈Z≥0

be given as r̃0 = r0 = t0 and r̃k = rk ≤ tk + ∆k for k ∈ Z>0. Assume the encoding

scheme is such that (6) is satisfied for all t ≥ t0. Further assume that L1(t0) ≤ 1, L2(t0) ≤ 1 and that (8)

holds. Define

pk,min{p ∈ Z>0 : h̄ch

( p

R(tk)
, hpf (tk), ε(tk), p

)
≤ 1}. (23)

Then, the following hold:

(i) p1 ≤ p̄(t1). Further for each k ∈ Z>0, if pk ∈ Z>0 ∩[pk , p̄(tk)], then pk+1 ≤ p̄(tk+1).

(ii) the inter-transmission times {tk+1 − tk}k∈Z>0 and inter-update times {r̃k+1 − r̃k}k∈Z>0 have a uniform

positive lower bound,

(iii) the origin is exponentially stable for the closed-loop system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

The interpretation of the three claims of the result is as follows. Claim (i) essentially states that if the

number of bits transmitted in the past is according to the given recommendation, then in the future, the

sufficient number of bits bk = npk to guarantee continued performance will respect the time-varying channel

constraints. Claim (ii) is sufficient to guarantee non-Zeno behavior and claim (iii) states that indeed the control

objective is met.
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Remark 5.2. (Requirements on the knowledge of channel information). Note that in the scenario with no

channel blackouts, the encoder needs to know the channel information given by R and p̄ only over a time

horizon of length δt . Further, if a uniform lower bound on t 7→ p̄(t) greater than or equal to 1 is known,

then it is sufficient for the encoder to know only the channel information at the current time and use this

bound to schedule the transmissions (however, this might result in more frequent transmissions with smaller

packet sizes). •

5.2 Control in the presence of channel blackouts

Here, we address the scenario of channel blackouts. The main difficulty comes from the fact that, in the

presence of blackouts, the channel might be completely unavailable. Thus, the event-triggering condition not

only needs to be based on L1 and L2 in (20) as in Section 5.1, but also on the available bit capacity up to

the next blackout. Throughout the section, we assume both R and p̄ are piecewise-constant functions, as in

Section 4, and, without loss of generality, that blackout time slots are not consecutive. We let Bk , (θjk , θjk+1]

denote the k th blackout slot, with k ∈ Z>0. Also, for any t ≥ t0, we let

τl(t) , min{s ≥ t : p̄(s) = 0},
τu(t) , min{s ≥ τl(t) : p̄(s) > 0},

give, respectively, the beginning and the end times of the next channel blackout slot from the current time t.

When there is no confusion, we simply use τl and τu, dropping the argument t. Hence, for t ∈ [t0, θj1 ), we

have τl(t) = θj1 and τu(t) = θj1+1. Similarly, for any k ∈ Z>0 and t ∈ (θjk , θjk+1
], we have τl(t) = θjk+1

and

τu(t) = θjk+1+1. To build up to the main result of this section, we first investigate the question of amenability

of the time-varying channel (and in particular of the blackouts) to the control objective.

5.2.1 Control feasibility under channel blackouts

At time t, the length of the next channel blackout slot, Tb(t) , τu(t) − τl(t), determines a sufficient upper

bound on the encoding error de(τl), or equivalently ε(τl), for non-violation of the control objective during the

blackout or immediately subsequent to it. We quantify this bound next (the proof appears in Appendix C).

Lemma 5.3. (Upper bound on required ε before blackout). For t ∈ [t0,∞), suppose

ε(τl(t)) ≤ εr (t) , min
{(ewTb(t) − 1)(w + µ)

W (e(w+µ)Tb(t) − 1)
,

1

eµ̄Tb(t)

}
,

where µ̄ , ‖A‖∞ + β
2 . If hpf (τl(t)) ≤ 1, then hpf (s) ≤ 1 for all s ∈ [τl(t), τu(t)] and hch(τu(t)) ≤ 1 (in

particular ε(τu(t)) ≤ 1).

The ability to ensure that ε(τl) is sufficiently small is determined by the bit capacity D(t, τl). To have a

real-time implementation, we make use of the sub-optimal lower bound D̂s(t, τl), cf. Theorem 4.3. However,

notice that maximizing the data throughput and satisfying the primary control goal of exponential convergence

may not be compatible in general - if maximizing data throughput is the only goal, then certain transmissions

might be delayed and this might lead to the violation of the primary control objective. Conversely, if the control

objective is the only goal, this might lead to an inefficient use of the channel that could be detrimental later.

Thus, to use the building blocks of Section 5.1, we need to impose a time-varying artificial bound on the allowed

packet size in place of p̄(t) that prevents the system from affecting the bit capacity until the next blackout.

To this end, we store in the variable Pj the value of φsj , where φs is defined in Appendix B for Ds(θj , τl(θj)).

Then, we define

Φτl (t) , [bPj − Rj(t − θj)c]+ , t ∈ (θj , θj+1]. (24)
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We notice from (18) that nΦτl (t) is the optimal number of bits to be transmitted during (t, θj+1] to obtain the

sub-optimal bit capacity D̂s(t, τl(t)). Note that some of nΦτl (t) bits may be received after θj+1. Now, we let

ψτl (t) , min{p̄(t),Φτl (t)} (25)

be the artificial bound on the packet size for transmissions. Notice that Φτl (t) may at times be zero, even

when p̄(t) > 0, which means letting ψτl (t) be the bound on packet size may itself introduce artificial blackouts.

However, we can upper bound their length as follows (the proof appears in Appendix C).

Lemma 5.4. (Upper bound on the length of artificial blackouts). Let B̃j , {t ∈ Ij = (θj , θj+1] : ψτl (t) = 0}.
Then, for each j ∈ Z≥0, B̃j is an interval and if π̄j > 0, then the length of B̃j is less than 2/Rj = 2/R(θj+1).

In the sequel, we use the upper bound of Lemma 5.4 on the length of the artificial blackouts in our event-

triggering rule and the analysis of the resulting closed-loop system of Section 5.2.2.

Before proceeding to our event-triggered design, there is a final point of contention that we need to address:

clearly, we cannot satisfactorily control the system for arbitrary channel characteristics with arbitrary channel

blackout slots. To make this precise, we define the function L3 that captures the effect of bit capacity,

L3(t, ε) , n log2

(eµ̄(τl (t)−t)ε

εr (t)

)
− σ1D̂s(t, τl(t)), (26a)

where σ1 ∈ (0, 1) is a design parameter. Recall that the notation τl(t) denotes the time of the beginning of

the next blackout given t. From Lemma 5.3, recall that εr (t) is the upper-bound on ε(τl(t)) that would ensure

non-violation of the control objective during the blackout. Thus, the first term in the function L3 quantifies the

“least amount of data required to successfully get through the next blackout” while the second term quantifies

the “maximum amount of data that can be communicated before the next blackout”. Given this interpretation,

the objective is then to keep the value of this function below 0 at all times. Using this function, the next result

presents a sufficient condition on the length of the blackout slots and the available bit capacity to ensure the

control objective is met during each blackout slot. The proof can be found in Appendix C.

Lemma 5.5. (Control feasibility in the presence of blackouts). Suppose t 7→ R(t) and t 7→ p̄(t) are piecewise-

constant functions as in (13). Let {(θjk , θjk+1]}k∈Z>0 be a sequence of channel blackout slots. Assume p̄(t0) > 0,

L3(t0, ε(t0)) ≤ 0 and, for each k ∈ Z>0, L3(θjk+1, 1) ≤ 0. Then, there exists a transmission policy ensuring

the control objective is met hpf ≤ 1 during each blackout.

There are three conditions in Lemma 5.5 related to the channel. The first is that p̄(t0) > 0, i.e., initially

the channel does not start in a blackout state. We make this assumption purely for convenience (it could easily

be replaced by a more general condition in case the channel starts in a blackout state). The second condition

L3(t0, ε(t0)) ≤ 0 merely states that the initial condition of the system and the channel is such that it is possible

to successfully overcome the first blackout. In the third condition, we consider the maximum value of ε (or

equivalently the maximum bound on the encoding error) at the end of each blackout such that hch ≤ 1 is

guaranteed for all possible values of hpf ∈ [0, 1]. This maximum value is ε = 1. Thus, L3(θjk+1, 1) ≤ 0 implies

that even in such a worst-case scenario the bit capacity until the next blackout is sufficient.

5.2.2 Event-triggered control under channel blackouts

With the study of control feasibility in place, we are ready to describe our event-triggered design. In addition

to L3 in (26a) to capture the effect of bit capacity, our design involves functions analogous to L1 and L2 to,

resp., monitor the compliance with the control objective and ensure the encoding error is sufficiently small at

the control update times to ensure future performance,

L̃1(t) , h̄pf (T (t), hpf (t), ε(t)) , (26b)

L̃2(t) , h̄ch (T (t), hpf (t), ε(t), ψτl (t)) , (26c)
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where

T (t) ,

{
TM(ψτl (t)), if ψτl (t) ≥ 1

2
R(t) , if ψτl (t) = 0.

We are ready to present our next main result. Its proof appears in Appendix C.

Theorem 5.6. (Event-triggered control in the presence of blackouts). Suppose t 7→ R(t) and t 7→ p̄(t) satisfy

the assumptions of Lemma 5.5. In addition, assume that p̄ is uniformly upper bounded by pmax ∈ Z>0. Also,

assume

R(t) ≥
(p + 2)

TM(p)
, ∀p ∈ {1, . . . , pmax}, ∀t. (27)

Consider the system (1) under the feedback law u = Kx̂ , with t 7→ x̂(t) evolving according to (4) and the

sequence {tk}k∈Z≥0
determined recursively by

tk+1 = min
{
t ≥ r̃k : ψτl (t) ≥ 1 ∧(
max{L̃1(t), L̃1(t+), L̃2(t), L̃2(t+)} ≥ 1

max{L̃3(t), L̃3(t+)} ≥ 0
)}
, (28)

where L̃3(t) , L3(t, ε(t)). Let {rk}k∈Z≥0
be given as r̃0 = r0 = t0 and rk ≤ tk + ∆k for k ∈ Z>0. Let the

update times {r̃k}k∈Z≥0
be given as r̃0 = r0 and for k ∈ Z>0

r̃k = min{t ≥ rk : ψτl (t) ≥ 1 ∨ p̄(t) = 0}. (29)

Assume the encoding scheme is such that (6) is satisfied for all t ≥ t0. Further assume that L̃1(t0) ≤ 1,

L̃2(t0) ≤ 1 and that (8) holds. Define

pk,min{p ∈ Z>0 : h̄ch (TM(p), hpf (tk), ε(tk), p) ≤ 1}. (30)

Then, the following hold:

(i) p1 ≤ ψτl (t1). Further for each k ∈ Z>0, if pk ∈ Z>0 ∩[pk , ψ
τl (tk)], then pk+1 ≤ ψτl (tk+1).

(ii) the inter-transmission times {tk+1 − tk}k∈Z>0 and inter-update times {r̃k+1 − r̃k}k∈Z>0 have a uniform

positive lower bound,

(iii) the origin is exponentially stable for the closed-loop system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

Claim (i) in the result may be interpreted as the satisfaction of the constraints imposed by the channel. The

use of ψτl in (28) and (29) also ensures that the bit capacity is not lowered at any time in the future due to

past transmissions. The interpretation of claims (ii) and (iii) is the same as in Theorem 5.1.

Remark 5.7. (Requirements on the knowledge of channel information). In the scenario with channel blackouts,

the encoder needs to know, at t ∈ [t0,∞), the time at which the next blackout will occur τl(t) and its duration

Tb(t), from which εr (t) may be computed. The encoder also needs to know the channel functions s 7→ R(s)

and s 7→ p̄(s) for all s ∈ [t, τl(t)]. Using this information, the encoder can compute the lower bound on the

remaining bit capacity by computing D̂s(t, τl(t)). •

Remark 5.8. (Application of time-varying channels and channel blackouts in shared communication channels).

The idea of time-varying channels and channels with blackouts can be utilized in scenarios where multiple

processes share communication resources. In such scenarios, the shared communication resource may be

‘split’ among all the processes and each process can be assigned its own channel functions R and p̄. Figure 2

shows an example of a channel that is shared by two processes, red and blue. When the maximum packet

size function p̄ for a process is zero, then that process cannot utilize the channel. A process may be
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given exclusive access to the channel or the channel resources may be ‘split’ non-exclusively, akin to time-

division and frequency-division multiplexing, respectively. Thus, for each control system that shares the

communication channel, it is sufficient to know the ‘portion’ of the channel that is allotted to it. This

effectively decouples the transmission decisions of the individual processes while also coordinating effective

usage of the limited communication resources. The question of how to exactly ‘split’ the channel among

multiple processes is a design problem in itself and control feasibility results such as Lemma 5.5 can aid such

a design. •

Figure 2: Channel is ‘split’ among two processes - blue and red. During each slot, except the last one, one of

the processes gets exclusive access to the channel. In the last slot, both processes share the channel.

6 Simulation results

In this section we illustrate the execution of our event-triggered design of Section 5. The simulation results we

present correspond to the strategy described in Theorem 5.6 on the system given by (1) with

A =

[
1 −2

1 4

]
, B =

[
0

1

]
, K =

[
2 −8

]
.

The plant matrix A has eigenvalues at 2 and 3, while the control gain matrix K places the eigenvalues of the

matrix Ā = A+ BK at −1 and −2. We select the matrix Q = I2, with solution

P =

[
2.2500 −0.9167

−0.9167 0.5833

]
to the Lyapunov equation. The desired control performance is specified by

Vd(t0) = 1.2V (x(t0)), β = 0.8
λm(Q)

λM(P )
.

We set a = 1.2 in (8), so that W > 0, and assume, without loss of generality, t0 = 0. The initial condition is

x(t0) = (6,−4), and the encoder and decoder use the information

x̂(t0) = (0, 0), de(t0) = 1.5‖x(t0)− x̂(t0)‖∞.

In (26), we chose σ1 = 0.8. For these parameters, Γ1(1, 1) = 0.5699. We select T = 0.1 × Γ(1, 1) and

TM(p) = 0.06×min{Γ(1, 1), T, T ∗(p)}. The time-varying channel functions np̄ and R are plotted in Figures 3(a)

and 3(b) respectively with dashed lines. Figure 3(a) also shows the times of transmission and the number of bits

transmitted on each one. Note that, in this simulation, the maximum possible number of bits are transmitted on

each transmission. Figure 4(a) shows the evolution of V and Vd and it is clear that the control goal is satisfied.

Notice that, just before a blackout, V decreases to a low value in anticipation to ensure that the control goal is
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Figure 3: (a) shows the transmission times, the number of bits transmitted on each transmission and the time-

varying function np̄ (dashed line). The three intervals, (4.88, 6.88], (11.52, 13.52] and (17.05, 19.05], with

p̄ = 0 are the blackouts. (b) shows the time-varying function R.
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Figure 4: Evolution of (a) V and Vd and (b) total number of bits transmitted, the inset shows that the

transmission times are separated.

not violated during the blackout. Figure 4(b) shows the (interpolated) cumulative number of bits transmitted

as a function of time. We see that there is a rush of transmissions just prior to 4.88 units of time, which we

see from Figure 3(a) is the beginning of the first blackout. The number of transmissions in the 20 units of time

in the simulation are 16, with the average inter-transmission interval as 1.26 and the minimum as 0.002. From

Figure 4(b), we also see that on an average 11.5 bits are transmitted per unit time.
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7 Conclusions

We have addressed the problem of event-triggered control of linear time-invariant systems under time-varying

rate-limited communication channels. The class of channels we consider is broad enough to include intermittent

occurrence of channel blackouts, which are intervals of time when the communication channel is unavailable for

feedback. We have designed an event-triggered control scheme that, using prior knowledge about the channel,

guarantees the exponential stabilization of the system at a desired convergence rate, even in the presence of

intermittent channel blackouts. Key enablers of our design are the definition and analysis of the bit capacity,

which measures the maximum number of bits that can be communicated over a given time interval through one

or more transmissions. We have also provided an efficient real-time algorithm to lower bound the bit capacity

for a time-slotted model of channel evolution. An important assumption we make is that the encoder has

knowledge of the channel evolution sufficiently ahead of time so that it can plan its transmission schedule.

In many practical scenarios, the channel will have to be estimated, and only uncertain knowledge of its future

evolution may be available. Nevertheless, our results show that the problem of estimating the bit capacity, which

is needed to design a meaningful mechanism to guarantee exponential stability, is challenging even assuming

full channel information. Future work will explore the reduction of the conservatism of the proposed design,

the determination of design parameters that optimize performance and communication cost, the comparison

with alternative design solutions that combine model predictive control and periodic event-triggered control,

scenarios with bounded disturbances, a stochastic model of channel evolution. Other promising future directions

of research include developing and quantifying notions of data capacity under partial knowledge of the channel

evolution, such as knowledge of only frequency and duration of blackouts, which could also be extended to the

cases with blackouts caused by an adversary, and the trade-off between the available information pattern at the

encoder and the ability to perform event-triggered control.
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A Encoder and decoder schemes

Here, we detail for completeness, the schemes (cf. Algorithms 1 and 2) executed by the encoder and decoder

during the system evolution.

The next result is a slight extension of [38, Lemma V.1] to accommodate the distinction between reception

and update times and guarantees that the output of the encoder’s and decoder’s algorithms are consistent.

The proof is analogous to that of [38, Lemma V.1] and we omit it here for brevity.

Lemma A.1. (Consistency of Algorithms 1 and 2). If initially the encoder and the decoder share identical

values for x̂(t0) and de(t0), with ‖x̂(t0)‖∞ ≤ de(t0), then Algorithms 1 and 2 result in consistent x̂(t) and

de(t) signals for all t ≥ t0. Further, t 7→ x̂(t) evolves according to (4) and ‖xe(t)‖∞ ≤ de(t) for all t ∈ [t0,∞)

with de defined according to (6).
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Algorithm 1 : Update of encoder variables

At t = t0 = r0, the encoder initializes

1: δ0 ← de(t0) {store initial bound on encoding error}

At t ∈ {tk}k∈Z>0
, the encoder sets

2: zk ← x̂(t−k ) {store encoder variable}
3: zE,k ← qE,k(x(tk), zk)

{encode plant state with pk bits}
4: δk ← de(t−k )/2pk {compute bound on encoding error}

At t ∈ {r̃k}k∈Z>0
, the encoder sets

5: zD,k ← qD,k(zE,k , zk) {decode plant state at tk}
6: x̂(r̃k)←eĀ∆̃k zk+eA∆̃k (zD,k − zk)

{update controller state}
7: de(r̃k)← ‖eA∆̃k ‖∞δk

{update bound on encoding error}

Algorithm 2 : Update of decoder variables

At t = t0 = r0, the decoder initializes

1: δ0 ← de(t0) {store initial bound on encoding error}

At t ∈ {r̃k}k∈Z>0
, the decoder sets

2: zk ← e−Ā∆̃k x̂(r̃−k ) {compute encoder state at tk}
3: zE,k {received from the encoder}
4: δk ← 1

2pk

(
‖eA(t−

k
−tk−1)‖∞δk−1

{compute bound on encoding error at tk}
5: zD,k ← qD,k(zE,k , zk) {decode plant state at tk}
6: x̂(r̃k)←eĀ∆̃k zk+eA∆̃k (zD,k − zk)

{update controller state}
7: de(r̃k)← ‖eA∆̃k ‖∞δk

{update bound on encoding error}

B Efficient approximation of bit capacity

Here, we propose methods to efficiently approximate bit capacity. The next result is the basis for the construction

of a sub-optimal solution to the problem (16).

Lemma B.1. (Bound on “channel variation”). If there exists J ∈ Z≥0 such that

π̄j
Rj

<

i=j+1+J∑
i=j+1

Ti , ∀j ∈ N jf
j0
, (31)

then, for any j ∈ N jf
j0

, any bits transmitted in time slot Ij would be received strictly before the end of the slot

Ij+1+J .

Proof. The term π̄j/Rj is the time it takes a packet of size up to nπ̄j bits transmitted during Ij to reach

the decoder. Thus, the claim follows by noting that any bits transmitted during Ij would be received before

t = θj+1 + (π̄j/Rj).

Lemma B.1 relates the three sequences of parameters, {Rj}, {π̄j} and {Tj}, that define the channel state

at any given time. The result may be interpreted as the imposition of a bound on how often there is a change

in the channel state as measured by the time slot lengths Tj . The parameter J may be interpreted as a uniform

upper bound on the number of consecutive time slots that may be fully occupied due to a prior transmission.
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B.1 Guaranteed channel availability in each time slot

The case of J = 0 is of special interest and will be addressed next. This case is interesting because the

constraints (15) reduce to a simpler form, as presented in the following result, and using which we can compute

a good sub-optimal solution subsequently.

Lemma B.2. (bit capacity in the case of J = 0). Suppose the channel is such that J = 0 for all j ∈ N jf
j0

. Then,

the constraints (15a) reduce to

nφj + nRj

j−1∑
i=j1

φi
Ri
≤ nRj(θj+1 − θj1 ) + nπ̄j , (32a)

for each j ∈ N jf
j0

and j1 ∈ Z≥0 ∩[j0, j − 1] while the constraints (15b) reduce to

jf−1∑
i=j1

φi
Ri
≤ θjf − θj1 , (32b)

for each j1 ∈ Z≥0 ∩[j0, jf − 1]. The bit capacity is

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (14), (32) hold

n

jf−1∑
j=j0

φj . (33)

Proof. Indeed, if J = 0 then for each j and j1 ∈ N jf
j0

, T̄j1,j(φ
jf
j0

) > 0 and hence T̄j > 0 also. Thus, the

constraints (15a) reduce to nφj ≤ nRj T̄j1,j(φ
jf
j0

) +nπ̄j , which after using the definition of T̄ gives us (32a). Note

that Lemma B.1, with J = 0, guarantees that the constraints (15b) are satisfied for all j ∈ {j0, . . . , jf − 2},
while for jf − 1 (15b) reduce to

φjf−1

Rjf−1
≤ T̄j1,j(φ

jf
j0

),

which by expanding and rearranging the terms, we get the constraints (32b). Bit capacity (33) follows from (16)

and the equivalence of (15) and (32).

Note that for J = 0 all the constraints, (14) and (32) are linear, though φj are still restricted to be integers.

This brings us to the next result.

Proposition B.3. (A sub-optimal solution and quantification of sub-optimality in the case of J = 0). Suppose

the channel is such that J = 0 for all j ∈ J = {j0, . . . , jf }. Let Ds(θj0 , θjf ) , n
∑jf−1

j=j0
φsj where

φs , bφrc , (bφrj0c, . . . , bφ
r
jf−1c), (34)

φr = argmax
φj∈R≥0, ∀j∈N

jf
j0

s.t. (14), (32) hold

jf−1∑
j=j0

φj .

Then φs is a sub-optimal solution to (33), and

D(θj0 , θjf )−Ds(θj0 , θjf )

≤ n|{j ∈ Z≥0 ∩[j0, jf−1] : π̄j > 0}|.

Proof. Clearly, φs satisfies the constraints (14) and (32) since φr does and for each j , φsj ≤ φrj and φs ∈ Z≥0.

Thus, φs is a sub-optimal solution to (33). The sub-optimality bound follows from the fact that for any a ∈ R,

(a − bac) ∈ [0, 1).
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B.2 No guaranteed channel availability

If J > 0, we forgo optimality in favor of an easily computable lower bound of the bit capacity. With a slight

abuse of notation, we let

φsj = bRj(θj+1 − θj)c, j ∈ Z≥0,

which is the number of bits that can be communicated during the time slot Ij = [θj , θj+1). Hence, {φsj }j∈Z≥0
is

a feasible solution and, again with an abuse of notation, we denote

Ds(θj0 , θjf ) , n
jf−1∑
j=j0

φsj ,

which is a sub-optimal lower bound of the bit capacity.

C Proofs of the main results

In this appendix, we present the proofs of the main results and of the intermediate lemmas.

Proof of Lemma 4.2. Observe that for any j1, j ∈ N jf
j0

, θj+1 − θj1 is the total time in the slots j1 to j , while∑j−1
i=j1

φi
Ri

is the total time taken by the bits transmitted in slots j1 to j − 1. Thus,
[
T̄j1,j(φ

jf
j0

)
]

+
is an upper

bound on the time available for transmission in the slot Ij . Now, let

j2 = max{i ∈ Z≥0 ∩[j0, j − 1] : T̄i(φ
jf
j0

) = Ti}

Then clearly, {φi}j−1
i=j2

is sufficient to determine T̄j(φ
jf
j0

). Next, for the allocation φjfj0 , the bits transmitted during

the time slots Ii for i ∈ {j2, j−1} are received by θj2 +
∑j−1

j=j2

φj
Rj

and thus in deed T̄j(φ
jf
j0

) =
[

min{T̄j2,j(φ
jf
j0

), Tj}
]

+
.

Finally, for each j1 ∈ Z≥0 ∩[j0, j2 − 1], T̄j1,j(φ
jf
j0

) ≥ T̄j2,j(φ
jf
j0

), which proves the result.

Proof of Theorem 4.3. Here we prove only the statements about D(t, θjf ) as the proof of the statements for

Ds(t, θjf ) are exactly analogous to those of D(t, θjf ). First of all notice that for any τ1 < τ2 < τ3

D(τ1, τ3) ≥ D(τ1, τ2) +D(τ2, τ3). (35)

Now, let T0 = θj0 +
φ∗j0
Rj0

. Clearly, from the optimality of D(θj0 , θjf ), it follows that

D(θj0 , T0) = nφ∗j0 , D(T0, θjf ) = n

jf−1∑
j=j0+1

φ∗j . (36)

Thus, for the special choice of T0, we have the stronger relation D(θj0 , θjf ) = D(θj0 , T0) + D(T0, θjf ). Now,

using (35) twice we get

D(θj0 , θjf ) ≥ D(θj0 , t) +D(t, θjf )

≥ D(θj0 , t) +D(t, T0) +D(T0, θjf ),

which implies

D(θj0 , θjf )−D(θj0 , t) ≥ D(t, θjf ) ≥ D(t, T0) +D(T0, θjf ).

Notice that D(t, T0) + D(T0, θjf ) = D̂(t, θjf ). Now, we compute the difference between the upper and lower

bounds on D(t, θjf )

D(θj0 , θjf )−D(θj0 , t)− D̂(t, θjf )
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= D(θj0 , T0) +D(T0, θjf )−D(θj0 , t)− D̂(t, θjf )

= n [Rj0 (T0 − θj0 )− bRj0 (t − θj0 )c − bRj0 (T0 − t)c]
= n [−bRj0 (t − θj0 )c − b−Rj0 (t − θj0 )c] ≤ n,

where, in arriving at the second last relation, we have used bRj0 (T0 − t)c = bRj0 (T0 − θj0 ) − Rj0 (t − θj0 )c and

the fact that Rj0 (T0 − θj0 ) = φ∗j0 is an integer. The statement now follows.

Proof of Theorem 5.1. We start by establishing two claims that we later invoke to establish the result.

Claim (a): First, we show that for any t ≥ t0, if hpf (t) ≤ 1 and hch(t) ≤ 1 then L1(s) < 1 and L2(s) < 1,

with s = t and s = t+. Indeed, if hpf (t) ≤ 1 and hch(t) ≤ 1, then Lemma 3.2 says Γ1(hpf (t), ε(t)) ≥
min{Γ1(1, 1), T}. Then, from (19), (20a) and from Lemma 3.2(iv), we see that the claim is true for L1.

Again, the conditions hpf (t) ≤ 1 and hch(t) ≤ 1 along with Lemma 3.6 guarantee that for any p ∈ Z≥0,

Γ2(hpf (t), ε(t), p) ≥ T ∗(p). Thus, (19), (20b) and Lemma 3.5 imply that the claim is true for L2.

Claim (b): Next, we claim that for any k ∈ Z≥0, if hpf (r̃k) ≤ 1 and hch(r̃k) ≤ 1, then Li(tk+1) ≤ 1, for

i ∈ {1, 2}. If the signal p̄ is constant during [r̃k , tk+1], the claim immediately follows from Claim (a) and (22).

Now, let us suppose there exists θ ∈ [r̃k , tk+1) at which time p̄ is discontinuous, i.e., θ ∈ {θj}j∈Z>0 as defined

by (13). Then, from (22), it is clear that, for i ∈ {1, 2}, Li(θ) < 1 and Li(θ+) < 1. This implies that there

exists an interval Iθ = [θ, θ + ε) such that Li(s) < 1 for each s ∈ Iθ and i ∈ {1, 2}. Then, by continuity of Li
on each interval (θj , θj+1] and by invoking induction over the discontinuity times of p̄, we conclude the claim is

true.

Now, we show that (i) holds. The facts L1(t0) ≤ 1 and L2(t0) ≤ 1 together with the arguments used

above ensure that L1(t1) ≤ 1 and L2(t1) ≤ 1. Then, (23) ensures that p1 ≤ p̄(t1). Now, for each k ∈ Z>0, if

L1(tk) ≤ 1 and L2(tk) ≤ 1 and pk ∈ Z>0 ∩[pk , p̄(tk)] then

r̃k − tk = rk − tk ≤
pk

R(tk)
≤
p̄(tk)

R(tk)
≤ TM(p̄(t)), (37)

where the last inequality follows from (21). As a result of (37), we see that hpf (r̃k) ≤ 1 and hch(r̃k) ≤ 1. Then,

invoking Claim (b), we see that L2(tk+1) ≤ 1, from which it follows that pk+1 ≤ p̄(tk+1), which proves (i).

Now, we prove (ii) - the main idea here is that for each k ∈ Z≥0, either r̃k − tk or tk+1 − r̃k is sufficiently

large to guarantee (ii). To show this, we pick σ1 ∈ (0, 1) and partition the set Z≥0 into two subsets G and L,

G = {k ∈ Z≥0 : r̃k − tk > σ1TM(pk)},
L = {k ∈ Z≥0 : r̃k − tk ≤ σ1TM(pk)}.

Then, it is clear that {tk+1−tk}k∈G and {r̃k+1− r̃k}k∈G are uniformly lower bounded by σ1TM(1). Thus, all that

remains is to handle the set L. Recall that the assumptions and the design are such that, for each k ∈ Z≥0,

we guarantee hpf (r̃k) ≤ 1 and hch(r̃k) ≤ 1 for r̃k ≤ tk + TM(pk). As a result, and due to the fact that {pk}
is upper bounded by pmax, there exist h0

pf , h
0
ch ∈ (0, 1) such that hpf (r̃k) ≤ h0

pf and hch(r̃k) ≤ h0
ch for all k ∈ L.

Thus, from Claim (a) and (22), it is clear that for any k ∈ L, tk+1 − r̃k ≥ TL, where TL is a lower bound on

the time it takes hpf to evolve from h0
pf to 1 and the time it takes hch to evolve from h0

ch to 1. Finally, because

both h0
pf and h0

ch are strictly less than 1, it follows TL > 0, which proves (ii).

Regarding (iii), we have already seen that for any k ∈ Z≥0, hpf (t) ≤ 1 for all t ∈ [tk , r̃k ]. Further, (22)

also ensures that hpf (t) ≤ 1 for all t ∈ [r̃k , tk+1]. Therefore hpf (t) ≤ 1 (V (x(t) ≤ Vd(t)) for all t ≥ t0, which

completes the proof.

Proof of Lemma 5.3. From Lemma 3.2, we know Γ1(hpf (τl), ε(τl)) ≥ Γ1(1, εr (t)). So, we need to show that

Γ1(1, εr (t)) ≥ Tb(t) or, as per Lemma 3.2(iv), that h̄pf (Tb(t), 1, εr (t)) ≤ 1. Direct computation shows that

this is indeed the case, which implies hpf (s) ≤ 1 for all s ∈ [τl , τu] by the definition of Γ1. The second claim

follows from

hch(τu) ≤ h̄ch(Tb(t), 1, εr (t), 0)
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= ‖eATb(t)‖∞e
β
2
Tb(t)εr (t) ≤ eµ̄Tb(t)εr (t) ≤ 1. �

Proof of Lemma 5.4. The fact that B̃j is an interval follows directly from the definition (24). If π̄j > 0, then

at any time t ∈ Ij , p̄(t) = π̄j > 0. Thus, if ψτl (t) = 0 for some t ∈ Ij ,

Pj − Rj(t − θj) = Pj − Rj(t + Tj − θj+1) < 1

=⇒ (θj+1 − t) <
1

Rj
+
(
Tj −

Pj
Rj

)
<

2

Rj
,

where the last inequality follows from the optimality of Ds(θj , τl(θj)) because otherwise, if RjTj −Pj ≥ 1, then

the optimality of Pj would imply that Pj = Pj + 1, which is a contradiction. This proves the result.

Proof of Lemma 5.5. Notice from the definition of ε(t) in (9) and (6) that for any k ∈ Z≥0 and s ∈ [rk , rk+1)

ε(s) =
‖eA(s−tk )‖∞e(β/2)(s−tk )ε(t−k )

2pk
≤
eµ̄(s−tk )ε(t−k )

2pk
,

which when recursively used gives us

ε(τl(t)) ≤
eµ̄(τl (t)−t)ε(t)

2(B(t,τl (t))/n)
,

where B(t, τl(t)) is the total number of bits communicated (transmitted and received) during the time interval

[t, τl(t)]. In other words, for any t ≥ t0, if

B(t, τl(t)) ≥ n log2

(eµ̄(τl (t)−t)ε(t)

εr (t)

)
ensures that ε(τl(t)) ≤ εr (τl(t)). Initially, L3(t0, ε(t0)) ≤ 0 ensures that there is enough bit capacity, i.e.,

B(t0, θj1 ) ≤ D̂s(t0, θj1 ) to ensure the inequality holds. Lemma 5.3 guarantees that for any k ∈ Z>0, if ε(θjk ) ≤
εr (θjk ) then ε(θjk+1) ≤ 1. Then by induction and the use of the fact that L3(θjk+1, 1) ≤ 0 for each k ∈ Z≥0 we

deduce that there exists a transmission policy that ensures ε(θjk ) ≤ εr (θjk ) for each k ∈ Z>0. Consequently, by

invoking Lemma 5.3 again, there exists a control policy that ensures hpf (s) ≤ 1 for all s ∈ (θjk , θjk+1] for each

k ∈ Z>0.

Proof of Theorem 5.6. Notice that (28) ensures that for any k ∈ Z>0, ψτl (tk) ≥ 1. Now, notice from (29)

that for any k ∈ Z>0, r̃k > rk if and only if ψτl (rk) = 0 and p̄(rk) ≥ 1. That is, r̃k > rk if and only if rk ∈ (τ1, τ2],

an artificial blackout interval. In all other cases, r̃k = rk . Thus, it follows from Lemma 5.4 that r̃k − rk ≤ 2
R(rk )

for all k ∈ Z>0. Hence, for all k ∈ Z>0, we have

r̃k − tk = (r̃k − rk) + (rk − tk) ≤
2

R(rk)
+

pk
R(tk)

=⇒ r̃k − tk ≤

{
pk

R(tk ) , if r̃k = rk
(pk+2)

min{R(tk ),R(rk )} , if r̃k > rk .

In either case, it follows from (27) that r̃k − tk ≤ TM(pk) ≤ TM(ψτl (tk)) for all k ∈ Z>0. Thus, claims (a) and

(b) in the proof of Theorem 5.1 hold here also.

Next observe that, by the construction of t 7→ ψτl (t) in (25), we have D̂s(r̃k , τl) ≥ D̂s(tk , τl)− npk . Next,

noting that

ε(r̃k) = ‖eA∆̃k‖∞e
β
2

∆̃k
ε(tk)

2pk
≤ eµ̄∆̃k

ε(tk)

2pk
,
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we have

n log2

(
eµ̄(τl−r̃k )ε(r̃k)

εr

)
≤ n log2

(
eµ̄(τl−tk )ε(tk)

εr

)
− npk

≤ σ1D̂s(tk , τl)− npk ≤ σ1(D̂s(tk , τl)− npk)

≤ σ1D̂s(r̃k , τl),

where the second inequality follows from L̃3(tk) ≤ 0 and the third inequality follows from σ1 ∈ (0, 1). Therefore,

L̃3(r̃k) ≤ 0. Thus, using induction, the proposed transmission policy ensures that by the beginning of the next

blackout, t = τl , ε(τl) ≤ εr . Lemma 5.3 then implies that, at the end of blackout, we have hch(τu) ≤ 1 and

hpf (s) ≤ 1 for all s ∈ [τl , τu]. Hence, claim (i) follows as in the proof of Theorem 5.1(i) and using induction

over the sequence of blackout slots.

Claim (ii) also follows by arguments analogous to the proof of Theorem 5.1(ii). Finally, we prove (iii).

Notice (28) ensures that L̃1(tk) ≤ 1 for any k ∈ Z>0, which as a consequence of Lemma 3.2(iv) means that

hpf (t) ≤ 1 for all t ∈ [tk , r̃k ] for any k ∈ Z>0. Now, for t ∈ [r̃k , tk+1) for k ∈ Z≥0, there are three cases.

Case I: ψτl (t) ≥ 1. In this case, hpf (t) ≤ 1 because L̃1(t) < 1. Case II: ψτl (t) = 0 and p̄(t) ≥ 1, which

corresponds to a time during an artificial blackout (τ1, τ2]. Recall from Lemma 5.4 that τ2 − τ1 ≤ 2/R(τ1),

which using (27) then implies τ2 − τ1 ≤ TM(ψτl (τ−1 )). Next, by design (29), r̃k /∈ (τ1, τ2] and hence r̃k < τ1

and no transmission is in progress during (τ1, τ2], which must mean L̃1(τ−1 ) < 1. Lemma 3.2(iv) then implies

Γ1(hpf (τ1), ε(τ1)) ≥ TM(ψτl (τ−1 ) ≥ τ2−τ1. Therefore, hpf (t) ≤ 1 for all t ∈ [τ1, τ2). Case III: ψτl (t) = p̄(t) =

0, which corresponds to a time in a channel blackout slot. We have already seen in the proof of (i) that the

proposed transmission policy ensures hpf (s) ≤ 1 for all s ∈ [τl , τu] for any channel black out [τl , τu]. Therefore,

hpf (t) ≤ 1 (V (x(t)) ≤ Vd(t)) for t ≥ t0.
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