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Abstract: This paper studies the use of distributed, primal–dual dynamics to solve continuous,
time–dependent optimization problems on the fly. When using primal–dual dynamics, the
availability of a strongly convex–strongly concave Lagrangian is desirable, but this is a strong
assumption not satisfied in many applications. To deal with this, we develop a new Lagrangian
regularization technique that seeks to minimize the perturbation to the original solutions and
is compatible with the distributed nature of the optimization problem. We provide analytic
bounds of the tracking error of the optimal solution using standard Lyapunov stability analysis
techniques. As an application, we consider a receding horizon formulation of a dynamic traffic
assignment problem and illustrate the performance of our approach in simulation.
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1. INTRODUCTION

The areas of application of distributed algorithms are
numerous, including telecommunications, robotics, social
networks, power systems, and traffic. Due to this, dis-
tributed algorithms are nowadays ubiquitous. Thus, the
importance of deepening into their analysis, uncovering
their convergence and stability properties, is out of doubt.
We focus here on the use of online, primal–dual methods to
deal with optimization problems. The basic approach is to
recast the optimization problem as a saddle point problem
defined by the associated Lagrangian. These saddle points
can then be computed using primal–dual dynamics (also
called saddle-flow dynamics). Primal–dual dynamics have
also found extensions and valuable applications in time–
dependent optimization problems, tracking the trajectory
of optimal solutions.

In general, when the Lagrangian has nice features, for
instance it is strongly convex and strongly concave, the
resulting dynamics enjoys desirable characteristics, like
asymptotic convergence and robustness. When such prop-
erties are not available, one might obtain them at the
expense of sacrificing the accuracy of the attained solu-
tions. This can be done using regularization procedures,
like Tikhonov regularization. Here we focus on solving the
mentioned time–dependent optimization problems online
with rigorous guarantees of performance and stability, and
developing regularization methods that have a smaller
impact on the solutions of the original problem. Motivated
by the relevance of traffic flow problems in the context
of networked systems, here we apply our results to the
Dynamic Traffic Assignment (DTA) problem. The relevant
question that we address is how to optimally coordinate
the traffic flow online through different actuators, includ-
ing routing.
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Literature Review: The framework presented here is re-
lated to recent results on time–varying, distributed, multi–
user optimization (Koshal et al., 2011; Simonetto and
Leus, 2014) and control of power systems (Dall’Anese
and Simonetto, 2018; Dall’Anese et al., 2018). However,
the differences with respect to the present treatment are
meaningful. One important difference is the way our con-
vergence and error analysis is carried out. We also differ in
the regularization method, as we propose an alternative to
Tikhonov. See Koshal et al. (2011) for information about
Tikhonov regularization procedure.

In this work we present applications to the DTA problem
using the well-known Cell Transmission Model (CTM).
The origins of CTM go back to (Lighthill and Whitham,
1955; Richards, 1956) and Daganzo’s discretizations (Da-
ganzo, 1994). Since then, much effort has been devoted to
its understanding and extension. One natural approach
is to recast the associated control problem as a finite
horizon problem using Model Predictive Control (MPC)
(Gomes and Horowitz (2006); Hegyi et al. (2005)). Some
of the mentioned generalizations of CTM, also using MPC,
appeared in (Lovisari et al., 2014; Ba and Savla, 2016)
to deal with the DTA problem as well. However, the
resulting optimization problems in these papers turn out
to be non–convex. The work Como et al. (2016) proposes
a convex relaxation based on controlling directly the cell-
to-cell flows downstream as opposed to using the turning
ratios and outflow control. We follow this setting to some
extent, but rapidly diverge in our algorithmic solution
and analysis. A distributed solution to the DTA problem
is given in Ba and Savla (2016), where the distributed
algorithm design is based on ADMM which has higher
computational complexity.

Statement of Contributions: The main contributions of this
paper are i) the study of the convergence and stability
properties of primal—dual dynamics associated to strongly



convex-strongly concave Lagrangians for time-dependent
problems. We proceed directly in the continuous-time set-
ting, which allows us to obtain the results in an elegant
way using Lyapunov theory. We show that these La-
grangian functions produce dynamics which enjoy strong
stability properties. These properties provide robustness
against perturbations and allow us to explicitly describe
the tracking capabilities of the proposed algorithms. ii)
Since strongly convex–strongly concave Lagrangians are
desirable but do not appear naturally in practice, we resort
to regularization. We present a novel regularization proce-
dure that only modifies the saddle points in the necessary
directions to obtain a strongly convex-strongly concave
augmented Lagrangian. We want to stress the meaningful
difference with other regularizations, like Tikhonov, which
acts in all directions. The idea is that the smaller the
perturbation, the smaller the modification to the location
of the saddle points. The associated dynamics to these
regularizations can be implemented in a distributed way
in some situations and, due to the way is constructed, it
is very resistant against perturbations. Finally, iii) we
apply our results to solve the DTA problem on the fly in
a distributed fashion. We discuss the implementation of
the algorithm and illustrate its performance in simulation.
We also discuss some current research directions aimed
at implementing online algorithms with feedback. This
seeks to allow us to use sophisticated, high–fidelity network
models in our primal–dual dynamics, going beyond the
simple analytic models usually found in the literature.

2. PRIMAL–DUAL DYNAMICS

Consider the time–dependent problem

min
u

ft(u),

s.t ht(u) = 0,
gt(u) ≤ 0,

(1)

where u is a vector and the functions ht and gt may
be vector–valuated. Vectors are supposed to be column
vectors. The inequality is understood in the obvious sense.
The functions are differentiable and convex, and ht is affine
(ht(u) = A(t)u− b(t)). A classical approach to solve (1) is
to find the saddle–points of the Lagrangian

Lt = ft(u) + pTht(u) + yT gt(u). (2)

That is,
max

p∈Rn2 ,y∈Rn3
+

min
u∈Rn1

Lt. (3)

To converge to these points, we use the associated primal–
dual dynamics

du

dτ
(τ) = −∇uLt(u(τ), p(τ), y(τ)),

dp

dτ
(τ) = ∇pLt(u(τ), p(τ), y(τ)),

dy

dτ
(τ) = [∇yLt(u(τ), p(τ), y(τ))]+y(τ),

(4)

where [a]+b = max{0, a} if b = 0 and a otherwise. We
extend “[·]+” to vectors in the evident way. There are
two time–scales in this setting. We use “τ” to denote the
“time” of the dynamics/algorithm and maintain “t” for the
“real” time. Both variables are related by cτ = t, where c is
the computational time. We assume that Slater’s condition
holds.

2.1 Strongly Convex–Strongly Concave Lagrangians

If a Lagrangian, Lt, happens to be strongly convex (pri-
mal) and strongly concave (dual) (which is never the case
in (2), which is linear in the dual variables), as we assume
from now on, then there exists a unique saddle point at
any time, (u∗(t), p∗(t), y∗(t)). We assume that the changes
with time of this saddle point are bounded, i.e., that
there exists δ such that

∥∥ d
dt (u

∗(t), p∗(t), y∗(t))
∥∥ ≤ δ. The

following result characterizes the tracking capabilities of
the continuous-time primal-dual dynamics in this case.

Theorem 1. If Lt is ν–strongly convex and ε–strongly
concave, the dynamics (4) satisfies

lim sup
τ→∞

‖(u(τ), p(τ), y(τ))− (u∗(t), p∗(t), y∗(t))‖

≤ 2cδ

min{ν, ε}
.

2.2 Tikhonov Regularization, Limitations and Alternatives

In applications the Lagrangian may be only convex–
concave. For instance, the Lagrangians resulting from op-
timization problems always suffer this flaw, as they are
linear in the dual variables. A well–known approach to
fix this is Tikhonov regularization. For instance, the La-
grangian (2) could be regularized to

L̂tν,ε(u, p, y) = ft(u) + pTht(u) + yT gt(u)

+ν/2 ‖u‖2 − ε/2(‖p‖2 + ‖y‖2).
(5)

The reader should observe that the added terms are
gathered in the second line of the expression and depend on
the parameters ν and ε. Notice that this gives a ν–strongly
convex and ε–strongly concave Lagrangian at the cost of
modifying the saddle points in all possible directions in the
space under the concern. This is because the term ν/2 ‖u‖2
acts everywhere, treating all directions in an equal way.

Here we would like to have a “smarter” regularization that
acts only where it is necessary. As a means to achieve this
goal, first we propose to add the “augmentation” term
ν1/2 ‖ht(u)‖2 (remember that ht(u) = A(t)u − b(t)) to
the “initial” Lagrangian (2), where ν1 is a parameter. We
assume from now on that A is time–independent, this is
due to technical reasons that will be explained later on.
Since the term ν1/2 ‖ht(u)‖2 vanishes on the constraint
set, it does not modify the saddle points of the original
problem (3). But a simple computation shows that it does
modify the hessian of the original Lagrangian (2), adding
the term ATA which is a symmetric positive definite
matrix. This means that the augmented Lagrangian is
strongly convex in the directions u such that Au does not
vanish. Now, to make the Lagrangian strongly convex in
the whole space, the key observation is that we only need
to complement the augmentation term in the remaining
directions, that is, the ones coming from the kernel of A.
Let {vl} be a normalized basis of the kernel of A, then we
propose

Ltν,ε(u, p, y) = ft(u) + pTht(u) + yT gt(u)

+ν1/2 ‖ht(u)‖2 + ν2/2
∑
l

(vTl u)2 − ε/2(‖p‖2 + ‖y‖2),

(6)



where ν2 is another parameter. These results may be
extended to time–varying matrices, A(t), under regularity
assumptions, as the dimension of the kernel may change
with time.

Proposition 2. The Lagrangian described in (6) is strongly
convex–strongly concave for any ν1, ν2, ε > 0, in the
convex set u ∈ Rn1 , p ∈ Rn2 , y ∈ Rn3

+ .

2.3 Robustness: Stability and Tracking Capabilities

In real–world problems perturbations of the primal–dual
dynamics may happen. When the saddle–flow dynamics
comes from a strongly convex and strongly concave La-
grangian the same robustness properties that allowed us to
develop the tracking capabilities also make the dynamics
resistant against perturbations. Let Lt be a ν–strongly
convex and ε–strongly concave Lagrangian. Consider the
perturbed dynamics

du

dτ
(τ) = −∇uLt(u(τ), p(τ), y(τ)) + e1(t),

dp

dτ
(τ) = ∇pLt(u(τ), p(τ), y(τ)) + e2(t),

dy

dτ
(τ) = [∇yLt(u(τ), p(τ), y(τ) + e3(t)]+y(τ),

(7)

where ei(t) are time–dependent, vector–valued functions.

Assumption 1. We assume

‖(e1(t), e2(t), e3(t))‖ ≤ δe.

Next, we bound the error of using the dynamics (7) to
chase the saddle points of Lt.
Proposition 3. Under the previous assumptions, let
(u(τ), p(τ), y(τ)) be an integral curve of (7) and
(u∗(t), p∗(t), y∗(t)) the saddle point of Lt at time t. Then,

lim sup
τ→∞

‖(u∗(t), p∗(t), y∗(t))− (u(τ), p(τ), y(τ))‖

≤ 2(cδ + δe)

m
.

3. APPLICATION: THE DTA PROBLEM

In this section we apply the obtained results to the DTA
problem. The goal is to describe a distributed, online
algorithm to solve the problem.

3.1 Problem Setup

Here we follow the approach in Como et al. (2016); Lovisari
et al. (2014); Ba and Savla (2016). The topology of the
network under concern is described by a directed graph,
N = (V, E), where V is the vertex set and E ⊂ V × V the
edge set. Given an edge i, ζi stands for its head and σi

for its tails. The edges of the graph represent cells, and
the vertices embody junctions (including merge, diverge
or mixed type) between two consecutive cells. Two cells i
and j are consecutive if ζi = σj . One of the nodes, usually
denoted w, represents the exterior world and so all the
sources (on–ramps) or sinks (off-ramps) of the network are
connected to it. More precisely, sources are characterized
by having w as its tail, and sinks have w as its head.
The network state is totally characterized by a time–
dependent vector x(t) ∈ RE , such that each component

xi(t) denotes the traffic volume at time t and cell i. The
sets of sources and sinks are R and S respectively. The
keystones of the CTM are the law of mass conservation
and the fundamental diagram. The former describes the
variation of the traffic volume at each cell

ẋi(t) = ri(t)− zi(t), (8)

where ri(t) and zi(t) refer to the traffic inflow and outflow
at cell i and time t. These flows are determined by

ri(t) = λi(t) +
∑
j∈E

f ji(t), zi(t) = µi(t) +
∑
j∈E

f ij(t), (9)

where λi(t) is the inflow at the sources and zero otherwise.
In a similar fashion, µi(t) is the outflow from the network,
positive only at the sinks. Meanwhile, f ij(t) is the traffic
flow from cell i to j, which is assumed to be zero if the
cells are not consecutive. We assume that

f ij(t) = Rij(t)zi(t) (10)

where Rij(t) are time–varying matrices such that Rij = 0
if i and j are not consecutive, and such that

∑
j∈E R

ij = 1

and Rij ≥ 0 otherwise. Since inflows and outflows are
limited by the underlying infrastructure, it is necessary to
introduce a demand (di(xi)) and supply (si(xi)) functions
for each cell in the network. The maximum flow capacity is
denoted by Ci. The demand functions are non–decreasing
and di(0) = 0. At the non–source cells, the supply function
is non–increasing and si(0) > and inf{xi : si(xi) < 0}
represents the point where the cell achieves its maximum
capacity, xjam. At the sources the supply functions are
assumed to take the value ∞. These concepts constitute
the fundamental diagram, min{di(xi), Ci, si(xi)}. Mathe-
matically, this implies

ri(t) ≤ si(xi(t)), zi(t) ≤ min{di(xi(t)), Ci}. (11)

Assumption 2. The demand and supply functions are con-
cave and smooth.

We assume control over the outflow from each cell, which
may be deployed by ramp metering at the sources and
free-flow speed control at the non–source cells, with the
equations

d
i
(xi, α) = min{αdi(xi), Ci}, i ∈ E\R,

d
i
(xi, α) = min{di(xi), αCi}, i ∈ R,

(12)

where α(t) ∈ [0, 1]. With these controls the expressions
governing the outflow from each sink cell read

zi(t) = µi(t) = d(xi(t), αi(t)), i ∈ S, (13)

while different strategies can be used at the other cells.
One of them is zi = γd(xi, αi), where

max
k ∈ E
ζi = σk

(
γ
∑
h∈E

Rhkd
h
(xh, αh)− sk(xk)

)
≤ 0. (14)

This provides a First–in–First–Out (FIFO) policy, but
other policies could be implemented, see Lovisari et al.
(2014) for some related discussions.

3.2 Model Predictive Control Formulation

In MPC, in each iteration the control inputs are computed
for a fixed time horizon. Next, the control policy is applied
only during the first time step. This loop may be repeated



indefinitely. We fix a time horizon T and, at any time t, we

also assume that functions λit(s) and f
ij

t (s), defined on the
interval [T, t+T ], are provided. These functions encode the
exogenous inflows at the sources and the drivers’ desire to
follow certain routes from the current instant to the next
T seconds. We design a cost function of the form

ψ(x, z) + η
∑
i,j∈E

(f ij − f ij)2,

where η is a parameter to be tuned depending on the
weight associated to satisfy the driver’s desires. ψ is
supposed to be separable ψ =

∑
i∈E ψ

i(xi, zi) and can
take different forms. Commonly encountered examples are:
Total Travel Time (TTT), ψi = xi, and Total Travel
Distance (TTD), ψi = −lizi, where li is the length of
cell i.

Assumption 3. The functions ψi are smooth and convex.

Returning to the MPC, at any instant we face the problem

min

∫ t+T

t

ψi(xit(s), z
i
t(s)) + η

∑
i,j

(f ijt (s)− f ijt (s))2ds

s.t. xit(t) = xit for i ∈ E ,
Constraints (8)–(14),

(15)
where the unknowns are the functions xit(s), r

i
t(s), z

i
t(s),

αit(s), R
ij
t (s) defined on the interval [t, t + T ] and xit

is the state of the network at the beginning of each
problem. Unfortunately, these problems are non–convex
due to the non–linear equality constraints. This issue has
been considered in Como et al. (2016), where the idea is

to directly control the outflows, f ijt at the non–sink cells
and µit at the sinks. The suggested solution gets rid of the
equality constraints that were causing the non–convexity
and the convex relaxation reads

min

∫ t+T

t

ψi(xit, z
i
t) + η

∑
i,j

(f ijt − f
ij

t )2ds

s.t. xit(t) = xt, ẋ
i
t(s) = rit(s)− zit(s),

rit(s) = λit(s) +
∑
j∈E

f jit (s),

zit(s) = µit(s) +
∑
j∈E

f ijt (s),

rit(s) ≤ si(xit(s)), zit(s) ≤ min{di(xit(s)), Ci},

0 ≤ µit(s) if i ∈ S, µit(s) = 0 if i ∈ E\S,

0 ≤ f ijt (s), f ijt (s) = 0 if i and j non consec.

After discretizing the (t–dependent) problems (using
trapezoidal quadrature rule to compute the integral and
Euler’s explicit rule for the dynamics) and using the reg-
ularization procedure developed above, we have the La-
grangian below, in terms of the primal variables (x, f, µ).

Ltν,ε =
∑
i∈E

(h
2

(
ψi(xit(0),

∑
j∈E

f ijt (0) + µit(0))

+η
∑
j∈E

(f ijt (0)− f ijt (0))2
)

+

N−1∑
k=1

h
(
ψi(xit(k),

∑
j∈E

f ijt (k) + µit(k))

+η
∑
j∈E

(f ijt (k)− f ijt (k))2
)

+h/2
(
ψi(xit(N),

∑
j∈E

f ijt (N) + µit(N))

+η
∑
j∈E

(f ijt (N)− f ijt (N))2
))

+

N−1∑
k=0

∑
i∈E

pi1,t(k)
(
xit(k + 1)− xi(k)

−h(λit(k) +
∑
j∈E

f jit (k)− µit(k)−
∑
j∈E

f ijt (k))
)

−
N−1∑
k=0

∑
i∈S

yi1,t(k)µit(k)−
N∑
k=0

∑
i,j∈E

yij2,t(k)f ijt (k)

+

N∑
k=0

∑
i∈E

yi3,t(k)(
∑
j∈E

f jit (k)− si(xit(k)))

+

N∑
k=0

∑
i∈E

yi4,t(k)(
∑
j∈E

f ijt (k)− di(xit(k)))

+

N∑
k=0

∑
i∈E

yi5,t(k)(
∑
j∈E

f ijt (k)− Ci)

+

N−1∑
k=0

∑
i∈S

yi6,t(k)(µit(k)− di(xit(k)))

+

N−1∑
k=0

∑
i∈S

yi7,t(k)(µit(k)− Ci)− ε/2 ‖(p, y)‖2

+ν1/2
∥∥A · (x, f, µ)T − b

∥∥2 + ν2/2
∑
l

(vTl (x, f, µ)T )2.

(16)
We are making some abuse of notation as we are referring
to a function and its discrete version without distinction.
There is no room for confusion as we are only using the
discrete functions from now on. One should understand
that xit(k) in the discrete setting corresponds to the
value xit(t + kh) in the continuous framework. We also

assume that only flows f ijt of consecutive cells are taken
into account. It is easy to see that everything but the
addend ν2/2

∑
l(v

T
l (x, f, µ)T )2 can be implemented in a

distributed way.

Proposition 4. The basis of the kernel, {vl}, can be chosen
such that ν2/2

∑
(vTl (x, f, µ)T )2 and its partial derivatives

can be computed in a distributed way.

3.3 Data–Driven/Feedback Implementation

Recent work, cf. Dall’Anese and Simonetto (2018) and
Dall’Anese et al. (2018), takes advantage of measured data
to implement the primal–dual algorithm. The approach
taken in the mentioned references has two main advan-
tages, i) it allows to directly obtain the value of certain
magnitudes that cannot be computed in a distributed way



(for instance, the voltage in Dall’Anese and Simonetto
(2018)); and ii) the feedback is able to cope with model
mismatches, so the resulting algorithms are less dependent
on synthetic models. Related ideas are carried out in Gan
and Low (2016); Tang et al. (2017), where the feedback
is used to solve the implicit power flow equations. The
main idea is that lack of knowledge of certain functions or
dynamics can be overcome with data.

In our context, the idea is to replace analytic models of
traffic flow with information obtained by other means (e.g.,
high–fidelity simulations, measurements). More precisely,
these means would provide us with a mapping F which
expresses the state variables (xi) as a function of the
control variables (f jk, µl). From now on we drop the
indices for the sake of simplicity. Thus,

x = F(f, µ). (17)

Then, we can substitute (17) into the Lagrangian (16)
(we only remove the equality constraints associated to
the dynamics from the Lagrangian, as we are replac-
ing them with the dynamics given by F) and obtain

Ltν,ε(f, µ, p, y) = Ltν,ε(F(f, µ), f, µ, p, y). We compute the
corresponding primal–dual dynamics for the variables f ,

ḟ = −
∂Ltν,ε
∂f

= −
∂Ltν,ε(F(f, µ), f, µ, p, y)

∂f

= −
∂Ltν,ε
∂x

(F(f, µ), f, µ, p, y)
∂F
∂f

(f, µ)

−
∂Ltν,ε
∂f

(F(f, µ), f, µ, p, y).

Analogous expressions hold for the remaining variables
and are even simpler for the dual variables, where only the
value of the function F needs to be know at any iteration.
Observe that the partial derivatives of the function F
are also necessary in order to compute the primal–dual
dynamics. These partial derivatives are obtained through
the same means we computed F , and so they are also
considered as feedback. When discretized, this approach
has some nice benefits: i) the reduction of the number of
variables and especially ii) we may not know the analytic
expression of F which may be very complicated, but only
need its value at certain points and an approximation of its
derivatives. This is reminiscent of the previous references
in power flow systems where some of the functions are not
known, but they are supplied with data and first-order
information. The potential drawback of this approach
is that, since the function F is unknown, the original
optimization problem might actually be non-convex. The
search for these convergence results is the subject of our
current research effort.

3.4 Numerical Simulations

We implemented the results of this paper in the network
below (cells are numbered), where all the cells are as-
sumed to have equal length and equal supply and demand
function (si(x) = 20 − x, di(x) = x, Ci = 20), η = 0,
time horizon = 14. Initially (time = 0) the network is
empty. We want to illustrate two aspects of the algorithm
proposed here: stability and MPC solution tracking per-
formance.

w w
1 2

3

7
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9 10
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6

Stability Against Perturbations: We want to show here the
nice stability properties of the proposed regularization. In
order to do that we assume that at times 1, 2 and 3,
10 cars enter the network. Now we would like to show
the performance of the primal–dual approach to compute
one iteration of MPC in this scenario. In Figure 1 we
show the behavior of the dynamics described in this paper
for the first iteration of MPC in the setting described
before, we compare the regularization proposed here (ν1 =
50, ν2 = ε = 0.01) with Tikhonov. After 20000 iterations a
constant perturbation is produced, which stops after 25000
iterations. It is observed that the proposed regularization
adapts better to the perturbation.
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Fig. 1. Comparison: Tikhonov – Proposed regularization.
Approximating a solution of MPC

MPC Performance: Here we show the performance of
the algorithm tracking the optimal solution of the MPC
control. Consider two different groups of 5 cars enter the
network at times 1 (in red) and 3 (in blue). The supply,
demand and cell capacity are the same as before, but we
assume that the capacity in cell 4 drops to zero at time
5 due to an accident. Notice that in each of the MPC
iterations the optimum changes and it has to be recom-
puted: the primal–dual dynamics chases these optimums
permanently. In Figure 2, we show the corresponding plots
of the tracking for the 6 first iterations of MPC. The plot
shows the distance from the current iteration of primal–
dual to the solution of the corresponding MPC iteration.
We run 7500 iterations of primal–dual before changing the
MPC iteration. The “jumps” in the distance observed in
the figure below come from the change of optimum, not
by discontinuities in the primal–dual dynamics. Tables 1
and 2 show the computed approximation of iterations 1
and 5 of MPC by the primal–dual dynamics. Figures 3
and 4 interpret this outcome. We maintain the same colors
for the two groups, where the colored numbers represent
the times the two groups reach the associated cell and we
use bent arrows to avoid superposition. At the beginning,



the algorithm provides the shortest path for both groups
of cars, cf. Figure 3. The plan is followed until iteration 5.
At iteration 5, due to an accident, the algorithm deviates
the second group of cars, cf. Figure 4.

Table 1. Primal–dual approximation to MPC,
policy computed in iter.= 1. The table shows

the number of cars in the cells at any time.

Time Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 5.03 -0.06 0.15 0.07 0.25 -0.05 -0.30 0.14 -0.22 0.01

2 -0.03 4.92 -0.04 0.15 0.04 0.04 0.17 -0.25 0.10 -0.19

3 4.92 -0.02 4.96 0.13 -0.08 0.24 -0.05 -0.21 -0.18 0.26

4 0.03 4.84 -0.03 4.94 -0.02 0.05 0.05 0.04 -0.12 0.09

5 -0.01 -0.09 4.93 0.01 -0.05 -0.04 0.03 0.23 5.08 -0.01

6 -0.06 -0.05 0.03 4.93 0.05 0.09 0.01 0.12 -0.02 5.06

7 -0.01 -0.01 0.05 -0.01 0.04 0.08 0.10 0.06 4.87 0.02

8 0.02 0.02 0.09 0.07 -0.04 -0.03 0.15 0.05 -0.08 4.88

9 -0.08 0.09 0.15 0.14 -0.02 0.03 0.01 0.12 -0.07 0.04

10 -0.04 0.03 0.08 0.12 -0.02 0.01 0.01 0.12 -0.00 -0.08

11 0.05 0.00 0.00 -0.03 0.02 -0.02 -0.09 0.10 0.02 0.05

12 0.11 -0.07 -0.07 0.06 -0.02 0.07 -0.19 0.02 -0.19 0.11

13 -0.01 0.18 -0.00 -0.06 -0.20 -0.01 -0.26 -0.14 -0.04 -0.08

14 -0.12 -0.13 -0.04 -0.07 0.03 -0.18 -0.27 0.02 -0.20 0.22

Table 2. Primal–dual approximation to MPC,
policy computed in iteration 5.

Time Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

0 -0.02 0.11 4.91 -0.05 0.01 0.01 0.04 -0.02 5.14 0.05

1 0.02 0.08 0.07 0.06 0.17 4.83 -0.00 -0.01 -0.21 5.04

2 0.03 0.07 -0.08 -0.12 0.06 -0.05 4.98 -0.03 -0.15 0.03

3 0.19 0.07 -0.26 -0.01 -0.15 0.01 -0.10 4.89 0.04 0.03

4 -0.16 -0.21 -0.09 0.04 0.04 -0.04 0.05 -0.00 5.15 0.11

5 -0.03 -0.02 0.11 0.13 0.03 0.01 -0.08 -0.05 -0.08 4.88

6 -0.04 0.04 0.12 0.01 -0.12 -0.04 0.03 -0.02 -0.13 0.04

7 -0.07 0.08 0.03 -0.17 -0.10 -0.09 -0.10 0.01 0.15 0.16

8 0.01 0.10 -0.02 0.02 -0.01 -0.12 -0.03 0.08 0.06 0.03

9 -0.06 0.03 0.00 0.02 0.02 -0.08 0.20 0.07 -0.09 0.01

10 0.07 0.01 -0.01 -0.13 0.01 0.00 0.02 0.07 0.03 0.01

11 -0.03 0.03 0.15 0.07 -0.06 -0.05 0.14 0.12 -0.20 -0.15

12 0.04 0.10 -0.01 -0.20 0.05 -0.04 -0.02 -0.04 -0.09 0.06

13 0.09 -0.07 0.00 -0.04 -0.07 -0.05 0.05 0.03 -0.08 0.01

14 0.04 -0.01 -0.01 -0.15 0.06 -0.08 0.06 0.02 0.03 -0.00
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Fig. 2. Primal–dual tracking MPC optimums.
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Fig. 3. Optimal evolution computed by MPC, iter.= 1.
The first group of cars is in red and the second one
in blue. Numbers represent the arrival time of the
corresponding group.
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Fig. 4. Optimal evolution computed by MPC, iter.= 5.

4. CONCLUSIONS

We have presented an approach for the regularization of
time-dependent convex optimization problems that builds
on augmentation techniques to minimize the perturba-
tion to the location of the saddle points. This technique
respects the distributed character of the original prob-
lem and results in strongly convex-strongly concave La-
grangians, for which primal-dual dynamics exhibits robust
tracking performance. Future work will explore the an-
alytic characterization of the perturbation of the saddle
points and the combination of the proposed approach with
data-driven, feedback techniques to deal with increasingly
realistic scenarios.
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