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Abstract— This paper studies the evolution of ambiguity
sets employed in distributionally robust optimization problems.
We assume the unknown distribution of the random variable
evolves according to a known deterministic dynamics. Assuming
that the initial distribution of the data is compactly supported,
we study how the assimilation of samples collected during some
time interval evolution can be leveraged to make inferences
about the unknown distribution of the process at the sampling
horizon end. Under perfect knowledge of the dynamics’ flow
map, we provide sufficient conditions relating the solutions’
growth and the sampling rate, which establish reduction of
the ambiguity set size as the horizon increases. In the case
where numerical errors are modeled during the computation
of the flow, or the dynamics are subject to an unknown bounded
disturbance, we also characterize the exploitable sample history
that results in the guaranteed reduction of the ambiguity set.

I. INTRODUCTION

Stochastic optimization constitutes a natural framework
to address mathematical programming problems with prob-
abilistic uncertainty, finding applications in numerous do-
mains, including finance, control technology, and commu-
nication networks. To provide reliable results also in the
case where the underlying probabilistic structure of the data
is unknown, distributionally robust optimization (DRO) has
emerged as a promising approach. A characteristic feature of
DRO formulations is that the worst-case performance of the
optimization problem is evaluated over a set of probability
distributions containing the true one, termed an ambiguity
set, which can be characterized through their appropriate
closeness to the unknown distribution in a certain metric.

To a large extent, the formulation of DRO problems is
performed under the assumption that the exploitable data
is measured in a direct manner. However, there are sev-
eral interesting problems where this is no longer the case,
since the data can be governed by a time-varying process
and is collected progressively. Thus, previous values of the
assimilated samples are not directly exploitable to infer about
the current status of the process. Our goal in this paper
is to consider DRO problems when the time-varying data
evolves according to some dynamic law. This motivates the
study of how the associated ambiguity sets evolve in time
and the identification of trade-offs between the amount of
progressively assimilated data and its future adequacy, due
to gradual precision loss in its predicted values.

Literature review: DRO optimization is an area of stochas-
tic programming [1] which has gained significant recent
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research attention [9], [18], [4], in view of the progress
on robust optimization during the last two decades [2].
A main characteristic of DRO is that worst-case decisions
against model uncertainty can be quantified with perfor-
mance guarantees, by considering a set of distributions up
to a certain distance from a candidate model. There is
an exhaustive number of choices for distances in spaces
of probability distributions [16]. Among the most popular
distance-type notions for DRO problems are φ-divergences
[3], [12], and Wasserstein metrics [11], [6]. For data-driven
problems where robustness is measured with respect to the
empirical distribution, the Wasserstein distance becomes a
suitable choice, since it does not require any absolute con-
tinuity conditions between the associated distributions. The
work [9] leverages recent inequalities [10] on concentration
of measure for the characterization of Wasserstein ambiguity
sets around the empirical distribution and provides tractable
reformulations of the resulting infinite-dimensional problem
into finite-dimensional convex programs. These formulations
with out-of-sample guarantees are employed in [7], [8],
where a distributed reformulation of the min-max DRO
problem is established via saddle-point dynamics, and in
[15], where online sample assimilation is fused with an
efficient optimization algorithm to provide on-the-fly data-
driven DRO solutions. It is worthwhile mentioning also the
work [5], where the notion of a robust Wasserstein profile
function is leveraged, providing fast asymptotic convergence
rates for high-dimensional samples. Recent work has con-
sidered distributionally robust Kalman filtering approaches
for the state estimation of uncertain time-varying processes
for the Kullback-Leibler [14], τ -divergences [20], and the
Wasserstein [17] metrics.

Statement of contributions: Our motivation comes from
the construction of ambiguity sets for DRO problems where
the data generating process is time-varying and samples
are collected in an online manner. To form the ambiguity
sets we build on concentration of measure results, which
establish appropriate closeness between the empirical and
actual distribution in the Wasserstein metric. As discussed
in [9], the choice of such a metric compared to divergences
comes from the requirement to consider distributions admit-
ting densities (for such distributions, the divergence from
the empirical distribution is infinite, resulting in ambiguity
sets that contain the true distribution with zero confidence).
Regarding the data evolution, we consider dynamic processes
with random initial conditions, and assume that samples are
assimilated through multiple independent realizations of the



process, progressively in time. Samples collected up to a
given time instant are used to infer about the corresponding
unknown distribution of the process. Thus, we can draw
conclusions about the expected state at this instant for an-
other, unobserved independent realization of the system. This
differentiates our approach from Kalman filtering, where
the objective is to estimate the state of a single trajectory
based on noisy observations of it. In particular, we focus
on how such prior collected samples can be pushed forward
in time and fused with newly assimilated data to provide
information about the current distribution of the process. In
addition, we identify the limitations of this fusion, in view of
computation errors and disturbances. Our first contribution is
to provide sufficient conditions relating the random elements’
growth and the sampling rate, which establish convergence
of the ambiguity radius. Our second contribution is the
quantification of an effective sampling horizon over which
the associated samples qualify for uncertainty reduction in
the presence of model disturbances or computation errors
during the pushforward. Due to space constraints, all proofs
are omitted and will appear elsewhere.

Organization: Section II introduces notation and technical
preliminaries. Section III presents the problem statement.
In Section IV we present concentration of measure results
for compactly supported distributions and leverage them to
study the relation between the dynamics and asymptotic
convergence of the ambiguity sets. Section V characterizes
the effect of computation errors and disturbances on the
ambiguity size. We gather our conclusions and ideas for
future work in Section VI.

II. PRELIMINARIES

In this section we present general notation and concepts
from probability theory that will be used throughout the
paper.

Notation: We denote by ‖·‖ and ‖·‖∞, the Euclidean and
infinity norm in Rd, respectively, and by [n1 : n2], the set
of integers {n1, n1 + 1, . . . , n2} ⊂ N. Given a differentiable
function G : Rn → Rm we use the notation DG(x) for its
derivative at x ∈ Rn.

Probability theory: We denote by B(Rd) the Borel σ-
algebra on Rd, and by P(Rd) the space of probability
measures on (Rd,B(Rd)). Given a real number p ≥ 1, we
denote by Pp(Rd) the probability measures in P(Rd) with
finite p-th moment, i.e.,

Pp(Rd) :=
{
µ ∈ P(Rd) |

∫
Rd
‖x‖pdµ <∞

}
.

For any p ≥ 1, and probability measures µ, ν ∈ Pp(Rd),
their Wasserstein distance is defined as

Wp(µ, ν) :=
(

inf
π∈H(µ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

,

where H(µ, ν) is the set of all probability measures on Rd×
Rd with marginals µ and ν, respectively. Also, given two
measurable spaces (Ω,F), (Ω′,F ′), and a measurable map

Ψ from (Ω,F) to (Ω′,F ′), the pushforward map Ψ# assigns
to each measure µ in (Ω,F), a new measure ν in (Ω′,F ′),
defined by ν := Ψ#µ iff ν(B) = µ(Ψ−1(B)) for all B ∈ F ′.
The map Ψ# is linear and satisfies Ψ#δω = δΨ(ω), with δω
the Dirac measure centered at ω ∈ Ω.

III. PROBLEM FORMULATION

Traditionally, a DRO Problem (DROP) is formulated as

(P) inf
x∈X

sup
P∈P̂N

EP [f(x, ξ)],

where x ∈ X ⊂ Rn is the decision variable and ξ represents
a random variable distributed according to an unknown
distribution Pξ ∈ P(Rd). Thus, a “worst-case” expectation
problem is set up over an ambiguity set P̂N , which contains
the true distribution Pξ of ξ with confidence 1 − β. This
ambiguity set is built based on N i.i.d. samples ξ1, . . . , ξN

of the unknown distribution P ≡ Pξ from a probability space
(Ω,F ,P), and which satisfies

P(Pξ ∈ P̂N ) ≥ 1− β.

We will also refer to this common formulation as a static
DROP. Instead, we are interested in building this set online,
as it may not be possible to process many samples instan-
taneously in view of the fact that the random element is
dynamically varying.

A. Motivating example

Assume that the random data evolves according to certain
dynamics over a given time horizon [0, T ]. As a concrete
example, let ξt = (ξ1t, ξ2t) describe the position and velocity
of a unit acceleration particle, with dynamics

ξ̇1t = ξ2t, ξ̇2t = 1. (1)

The initial position and velocity of the particle are considered
random elements with an unknown probability distribution.
Therefore, its state at each t is a random variable with
law Pξt . Our goal is to describe the trajectory of state
distributions over time, motivated by solving a DROP prob-
lem at time T , i.e., at the end of the horizon. Given that
these distributions are unknown, we will focus on specifying
an ambiguity set P̂NT at time T which contains the true
distribution PξT with a given confidence. For this, we assume
that independent samples from the distribution of ξt are
collected at time instants 0 ≤ t1 < . . . < tN = T . That
is, at each ti we sample once from the distribution Pξti as
shown in Figure 1. Based on the conventional approach of
solving static DROPs of the form (P), a first attempt to solve
a DROP with respect to PξT would be based on constructing
an ambiguity set based on the single sample ξNtN . However,
such an approach would result in poor performance, given
that reliable ambiguity sets require a finite but sufficiently
large amount of data. This motivates the problem of how to
leverage the collection of samples at previous time instants to
improve performance at time T . Note that each such previous
sample can alternatively be considered as a realization of
the state of system (1) at the corresponding time instant, as
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Fig. 1. Illustration of a time-varying distribution Pξt from which samples
are drawn at successive time instants t1, . . . , tN .

shown in Figure 2. Thus, given the sampled value of (1)
at ti, for i = 1, . . . , N − 1, it is possible to determine its
corresponding value at T by pushing ξiti forward through
the dynamics’ flow map Φ. In particular, we have that
ξiT = ΦT,ti(ξ

i
ti), where for any 0 ≤ s ≤ t ≤ T , and state

ξs = (ξ1s, ξ2s) of (1) at time s, the state at t is explicitly
obtained as

Φt,s(ξs) = (ξ1s + (t− s)ξ2s + (t− s)2/2, ξ2s + (t− s)).

Based on these considerations, assume that an observer
collects samples from N independent particles evolving ac-
cording to the same dynamics (1) and i.i.d. initial conditions
ξi0. Creating an ambiguity set by using all these samples as
above enables the observer to make probabilistic inferences
with high confidence at time T about an other unobserved
particle, which has the same dynamics and unknown random
characteristics. In this example, the dynamics are perfectly
known and not subject to computational errors. A question
of interest will be the analysis of the accuracy-horizon-length
tradeoffs when the flow map can not accurately be computed.

( )
( )

( )

Fig. 2. Illustration of how samples collected in previous time instants
can be pushed forward through the flow map to construct higher-confidence
ambiguity sets.

B. Fixed horizon dynamic DROP

Building on the example in Section III-A, here we depart
from the static DROP paradigm and formulate the dynamic
DROPs considered in this paper, where the data evolves
according to the dynamics

ξ̇t = F (t, ξt), ξt ∈ Rd. (2)

The initial condition ξ0 is considered random with an un-
known distribution Pξ0 . Based on the evolution of (2) over
a time horizon [0, T ], we are interested in solving a DROP
with respect to the unknown distribution PξT . In analogy
to the example, we make the following assumption for the
sampling process.

Assumption 3.1: The data are collected from independent
trajectories ξi, i = 1, 2, . . . of (2) with i.i.d. initial conditions
ξi0, over a strictly increasing sequence of sampling instants
0 ≤ t1 < · · · < tN̄ = T . At each ti, a single sample ξiti is
taken from trajectory ξi.

This hypothesis is made without any loss of generality to
simplify the exposition. We will call any time length

∆ ≥ max{ti − ti−1 | i ∈ [1 : N̄ ]}

an inter-sampling time bound, and introduce the effective
sampling horizon [N [ : N̄ ], N [ ∈ [1 : N̄ ], to denote that
the data used for the ambiguity set construction is collected
from time tN[ up to time tN̄ . We now formulate the problem.

Problem formulation: Based on the collected data along
[0, T ], determine an ambiguity set that contains the true
distribution PξT with a given confidence. Also, in the
presence of numerical errors or disturbances, whose effect on
the ambiguity set accuracy integrates with time, quantify the
effective sampling horizon length, up to which the ambiguity
set is guaranteed to improve with the number of samples.

In Section IV we will study properties of dynamic ambi-
guity sets assuming perfect knowledge of the flow map, and
data-assimilation-precision tradeoffs due to numerical errors
or disturbances will be considered in Section V.

IV. FIXED-HORIZON AMBIGUITY SETS UNDER
DYNAMIC DATA

In this section, we characterize ambiguity sets that appear
in dynamic DROPs, as described in the problem formulation
of Section III-B. Recall that according to Assumption 3.1,
we consider a strictly increasing sequence of sampling times
0 ≤ t1 < · · · < tN̄ = T where at each ti, the sample ξiti is
collected from a trajectory ξi of (2). The ambiguity set P̂NT
is built based on the N = N̄ −N [+ 1 last effective samples
by leveraging concentration of measure inequalities, which
upper bound the distance between the empirical and actual
distribution with a given confidence. In this way, using the
Wasserstein metric Wp in the space of probability measures
Pp(Rd), an ambiguity ball is constructed, with a center P̂NξT
that corresponds to the empirical distribution built from N
independent samples ξiT at time T , and a radius εN (β) which
depends on a selected confidence 1− β. More precisely, the
true distribution PξT is εN (β)-close to the empirical P̂NξT
with probability at least 1− β, namely,

P(Wp(P̂
N
ξT , PξT ) ≤ εN (β)) ≥ 1− β.

Recalling that in our problem formulation the samples ξiti ,
i ∈ [N [ : N̄ ] are progressively collected prior to tN̄ = T ,
we alternatively build the cumulative empirical distribution



P̄NξT , based on corresponding predicted values ξ̄iT of these
samples at T .

To formalize the above discussion, we consider a probabil-
ity space (Ω,F ,P) and a finite sequence of i.i.d. Rd-valued
random variables {ξi0}i∈[1:N̄ ], with each ξi0 representing the
initial condition of a trajectory ξi. All random variables ξi0
have the same law Pξ0 ≡ P , since they are identically
distributed. The corresponding trajectories evolve according
to the dynamics (2). We assume that F in (2) is continuous
and locally Lipschitz in ξ, and that the system is forward
complete, namely, for each s ≥ 0 and initial condition ξ the
solution ξt(s, ξ) is defined for all t ≥ s. Then, the flow map
Φ : DΦ → Rd, where

DΦ := {(t, s, ξ) ∈ R≥0 × R≥0 × Rd : t ≥ s},

is defined by

Φ(t, s, ξ) := ξt(s, ξ),

inducing a family of maps Φt,s : Rd → Rd. Assuming
that all trajectories start at time s = 0 and using the
notation Φt = Φt,0, the state of each trajectory ξi at certain
t ≥ 0 will be given by the random variable ξit = Φt ◦ ξi0,
with common law Pξt = Φt#P . We next show that under
perfect knowledge of the flow map, the cumulative empirical
distribution at T formed by the predicted values ξ̄iT :=
ΦT,ti(ξ

i
ti) of the progressively collected samples, produces

an equivalent empirical distribution to that corresponding to
samples extracted at the last time. This will be later leveraged
to show that under appropriate relations among the growth of
the system’s solutions and the sampling rate, the ambiguity
radius converges to zero as the horizon tends to infinity.

Lemma 4.1: (Sample ideal pushforward). Consider a se-
quence of trajectories ξi as in Assumption 3.1 and the em-
pirical distribution P̂NξT formed by the samples of trajectories
ξN

[

, . . . , ξN̄ at T , namely,

P̂NξT :=
1

N

N̄∑
i=N[

δξiT .

Then, (i) all ξiT are i.i.d.; and (ii) if we consider the
cumulative empirical distribution

P̄NξT :=
1

N

N̄∑
i=N[

δξ̄iT , (3)

with ξ̄iT := ΦT,ti(ξ
i
ti), i ∈ [N [ : N̄ ], it holds that P̄NξT = P̂NξT .

A. Concentration of compactly supported measures

We next present results from concentration of measure to
determine the radius of the ambiguity set P̂NT that contains
the true distribution PξT of the data at T with a selected
confidence. Our focus will be on the class of compactly
supported distributions, which is preserved under the flow
of forward complete systems. The following proposition is
based on [10, Proposition 10] and provides a concentration

inequality for such laws and its explicit dependence on the
distribution’s support.

Proposition 4.2: (Concentration inequality). Consider a
sequence (Xi)i∈N of i.i.d. Rd-valued random variables with
law µ, supported on the compact set K. Then, for any p ≥ 1,
N ≥ 1, and ε > 0, it holds that

P(W p
p (µ̂N , µ) ≥ ε) ≤ χN (ε, ρ; p, d),

χN (ε, ρ) := C


e
− cN
ρ2p

ε2
, if p > d/2,

e
−cN ε2

ρ2p(ln(2+ρp/ε))2 , if p = d/2,

e
− cN
ρd
ε
d
p

, if p < d/2,

where

µ̂N :=
1

N

N∑
i=1

δXi , ρ :=
1

2
sup{‖x− y‖∞ |x, y ∈ K},

and the constants C and c depend only on p and d.
The following corollary to Proposition 4.2 characterizes

the radius of the ambiguity balls in terms of the selected
confidence and the support of the unknown distribution. It is
leveraged to quantify how the flow map affects this radius,
by pushing forward the initial distribution.

Corollary 4.3: (Ambiguity radius). Under the assumptions
of Proposition 4.2, for any confidence 1 − β, β ∈ (0, 1), it
holds that

P(Wp(µ̂
N , µ) ≤ εN (β, ρ)) ≥ 1− β,

where

εN (β, ρ) :=



(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > d/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = d/2,(
ln(Cβ−1)

c

) 1
d ρ

N
1
d
, if p < d/2,

(4)

with h−1 the inverse of h(x) = x2

(ln(2+1/x))2 , x > 0.

B. Growth conditions for ambiguity radius convergence

Here, we present sufficient conditions, related to the sys-
tem’s dynamics and the sampling rate, to guarantee that for
any prescribed confidence, the ambiguity radius converges
to zero as the horizon becomes infinitely large. We will
therefore need the following Lyapunov-type result.

Proposition 4.4: (Lyapunov-type growth rate condition).
Assume that F in (2) is continuous and locally Lipschitz
in ξ, and that there exist a locally integrable function α :
R≥0 → R, and a function V ∈ C1(Rd;R), such that

a1‖ξ‖r ≤ V (ξ) ≤ a2‖ξ‖r, ∀ξ ∈ Rd,
DV (ξ)F (t, ξ) ≤ α(t)V (ξ) +M1V (ξ)q,

∀t ≥ 0, ξ ∈ Rd \ {0},∫ t2

t1

α(t)dt ≤M2, ∀ t2 ≥ t1 ≥ 0,

with a1, a2 > 0, M1,M2 ≥ 0, r > 1, and q ∈ (−∞, 1).
Then, for any initial condition ξ0 ∈ Rd, the solution of



(2) is defined for all t ≥ 0 and there exist constants c̄, M̄ ,
depending on ‖ξ0‖ and r, a1, a2,M1,M2, q, such that

‖ξ(t)‖ ≤ M̄(1 + c̄t)
1

r(1−q) , ∀t ≥ 0.

We now provide the main result of this section, which
shows that for bounded inter-sample durations and under the
assumption that state measurements are pushed without er-
rors forward in time, the ambiguity sets formed by dynamics
which satisfy the growth conditions of Proposition 4.4 shrink
as the DROP’s horizon increases.

Proposition 4.5: (Ambiguity radius convergence). Assume
that system (2) satisfies the assumptions of Proposition 4.4
and that Pξ0 is supported on K := {ξ ∈ Rd : ‖ξ‖∞ ≤ ρ},
for certain ρ > 0. Select a confidence 1 − β, an exponent
p ≥ 1, and assume that

r(1− q) > max{2p, d}, (6)

with r, q as given in Proposition 4.4. For any horizon [0, T ],
consider a sampling sequence as in Assumption 3.1 and
a common inter-sampling time bound ∆. Let P̄NξT be the
cumulative empirical distribution in (3), with N [ = 1,
N̄ = N , and

ρT := 1/2 sup{‖x− y‖∞ |x, y ∈ ΦT (K)}, (7)

with ΦT (K) the reachable states at T from K. Then, if we
denote εN (ρT ) ≡ εN (β, ρT ) with εN as in (4), it holds that

P(Wp(P̄
N
ξT , PξT ) ≤ εN (ρT )) ≥ 1− β, lim

T→∞
εN (ρT ) = 0.

Note that under the conditions of Proposition 4.4 the
system’s state growth is at most of order ∼ t

1
r(1−q) , i.e., lower

than the typical exponential case. To additionally establish
convergence of the ambiguity radius through Proposition 4.5,
since p ≥ 1, we deduce from (6) that the growth needs to
be asymptotically dominated by the square root of t.

V. AMBIGUITY SETS UNDER PUSHFORWARD ERRORS
AND DISTURBANCES

Recalling the motivating example in Section III-A, it is
worthwhile noting that in principle the dynamics (2) are not
as convenient as in (1), where the flow map is computed
explicitly. This requires the numerical integration of the
system’s solutions and results in an approximate model of the
flow map, denoted by Φnum

t,s , where t ≥ s ≥ 0. For instance,
if a first order Euler scheme is used to numerically compute
a trajectory of system (2) at time T , given its corresponding
value ξτ at τ < T with T − τ = κ∆t, we have that

Φnum
T,τ (ξτ ) = φ∆t

τ+(κ−1)∆t ◦ · · · ◦ φ
∆t
τ (ξτ ),

where

φ∆t
t (ξ) := ξ + ∆tF (t, ξ).

In addition, it may happen that the dynamics of the process
are subject to disturbances. Both cases suggest that the
cumulative empirical distribution P̄NξT in (3) will no longer
coincide with the empirical distribution P̂NξT in Lemma 4.1,
formed by N samples of independent trajectories at T .

We proceed to quantify this difference and characterize the
relevant ambiguity sets, focusing first on the case where the
flow is numerically integrated. The dynamics (2) will be
considered globally Lipschitz, namely,

‖F (t, ξ)− F (t, ξ′)‖ ≤ L‖ξ − ξ′‖,∀t ≥ 0, ξ, ξ′ ∈ Rd, (8)

for some L > 0. Thus, by invoking classical error quantifica-
tion results from numerical integration [19, Theorem 3.4.7.,
Page 239], we have that

‖Φnum
t,s (ξ)− Φt,s(ξ)‖ ≤ K(eL(t−s) − 1), (9)

for all t ≥ s ≥ 0 and certain K > 0. To build the center of
the ambiguity ball, we push the samples forward through
the numerical flow and form a variant of the cumulative
empirical distribution P̄NξT in (3). Using this variant, we
obtain the following characterization of the ambiguity radius.

Proposition 5.1: (Non-ideal ambiguity radius). Assume
that system (2) satisfies (8) and Pξt0 is supported on the
compact set K. Consider a sampling sequence as in As-
sumption 3.1 with inter-sampling time bound ∆ and the
cumulative empirical distribution P̄NξT in (3), with ξ̄iT :=

Φnum
T,ti

(ξiti), i ∈ [N [ : N̄ ]. Then, for any confidence 1 − β
and p ≥ 1 it holds that

P(Wp(P̄
N
ξT , PξT ) ≤ ψN (β,∆)) ≥ 1− β, (10a)

ψN (β,∆) : = εN (β, ρT ) + ε̄N (∆), (10b)

ε̄N (∆) : = K
( 1

N

∫ N

1

(eL∆s − 1)pds
) 1
p

, (10c)

with εN (β, ρT ) and ρT as given in (4) and (7), respectively.
We now quantify the effective sampling horizon up to

which reduction of the ambiguity radius is guaranteed with
respect to the number of samples.

Proposition 5.2: (Effective sampling horizon). Under the
hypotheses of Proposition 5.1, assume additionally that p 6=
d/2, and denote p̄ := max{2p, d} and

C̄ ≡ C̄(p̄, β, ρT ) :=

(
ln(Cβ−1)

c

) 1
p̄

ρT ,

with C, c as in (4). Then, there exists ∆∗ ≡ ∆∗(C̄, L,K) > 0
such that for every ∆ ∈ (0,∆∗), the set

N (∆) := {N ∈ N | C̄(κ−
1
p̄ − (κ+ 1)−

1
p̄ )

> ε̄κ+1(∆)− ε̄κ(∆), ∀κ ∈ [1 : N ]},

with ε̄N as given in (10c), is nonempty and bounded. In
addition, the ambiguity radius ψN (β,∆) in (10b) is strictly
decreasing with N , for N ∈ [1 : N∗(∆)], with N∗(∆) :=
max(N (∆)) + 1.

Closed-form expressions for ε̄N (∆) can be derived for
integer values of p and facilitate the computation of N∗(∆).
For instance, when p = 1 we get that

ε̄N (∆) =
K

N

(eL∆N − eL∆

L∆
− (N − 1)

)
.

It is noted that the results of this section are also applicable
if we consider the sampled trajectories subject to the same
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Fig. 3. (a) shows how the ambiguity radius ψN (β,∆), cf. (10b), varies with respect to the sampling period and the number of samples in the presence
of numerical errors. Given that the component εN of the radius, which is strictly decreasing with N , is proportional to the distributions’ support size and
that the effect of numerical errors is independent of ρT , the effective sampling horizon increases with ρT , as shown in (b).

unknown bounded disturbance, i.e., the dynamics are of
form ξ̇t = F (t, ξt, dt). Then, if F is globally Lipschitz
with respect to both ξ and d, it follows from the system’s
continuous dependence on parameters [13, Theorem 3.4],
that an estimate of the form (9) will hold, with Φt,s denoting
the undisturbed flow and Φnum

t,s being replaced by the flow
of ξ̇t = F (t, ξt, dt).

VI. CONCLUSIONS

We have provided a framework for the computation of
ambiguity sets suitable for DROPs with dynamically varying
data. For dynamic processes with random initial conditions
from a compactly supported distribution, we have studied
properties of the ambiguity sets computed at the end of the
finite time horizon. Under appropriate growth conditions for
the dynamics, we have shown that the ambiguity sets are
guaranteed to shrink as the horizon increases. Furthermore,
in the presence of numerical errors and disturbances, we
have quantified the number of exploitable past samples which
can be used to establish ambiguity reduction. Ongoing work
includes the consideration of partial measurements when the
full vector of the data is no longer available. In this case, the
dynamic evolution of the process can facilitate recovery of
the full data vector under appropriate observability assump-
tions. In addition, we aim to take into account data storage
limitations in the modeling, and to employ the obtained
results in receding horizon DRO formulations.
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