
1

Data-driven ambiguity sets with probabilistic
guarantees for dynamic processes

Dimitris Boskos Jorge Cortés Sonia Martı́nez

Abstract—Distributional ambiguity sets provide quantifiable
ways to characterize the uncertainty about the true probability
distribution of random variables of interest. This makes them
a key element in data-driven robust optimization by exploiting
high-confidence guarantees to hedge against uncertainty. This
paper explores the construction of Wasserstein ambiguity sets
in dynamic scenarios where data is collected progressively and
may only reveal partial information about the unknown random
variable. For random variables evolving according to known
dynamics, we leverage assimilated samples to make inferences
about their unknown distribution at the end of the sampling
horizon. Under exact knowledge of the flow map, we provide
sufficient conditions that relate the growth of the trajectories
with the sampling rate to establish a reduction of the ambiguity
set size as the horizon increases. Further, we characterize the
exploitable sample history that results in a guaranteed reduction
of ambiguity sets under errors in the computation of the flow
and when the dynamics is subject to bounded unknown distur-
bances. Our treatment deals with both full- and partial-state
measurements and, in the latter case, exploits the sampled-data
observability properties of linear time-varying systems under
irregular sampling. Simulations on a UAV detection application
show the superior performance resulting from the proposed
dynamic ambiguity sets.

I. INTRODUCTION

In stochastic optimization, ambiguity sets play a key role
by accounting for ’what-if’ scenarios regarding the true prob-
ability distribution of random variables affecting the objective
function or the constraints. Rigorous guarantees on the prob-
ability of these sets containing the true distribution allows the
designer to robustify decisions in the face of uncertainty. This
explains the numerous applications that distributionally robust
optimization (DRO) with ambiguity sets finds in decision mak-
ing under uncertainty, reliability-based design, and data-driven
modeling. Moving beyond the static problem, where full-state
measurements on the random variable are available all at once,
this paper instead looks at scenarios where the random variable
evolves dynamically and data is collected incrementally. We
are interested in developing methods to construct ambiguity
sets and track their evolution across time while maintaining
their probabilistic guarantees about the true distribution. These
methods should handle exact and approximate knowledge of
the dynamics, the presence of disturbances, and the availability
of partial-state measurements of the random variable. We also
seek to shed light on the trade-offs between data assimilation
and accuracy of the resulting ambiguity sets.
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Literature review: DRO optimization is an area of stochastic
programming [30] which has gained significant recent research
attention [14], [29], [7], in view of the progress on robust
optimization during the last two decades [5]. A main char-
acteristic of DRO is that worst-case decisions against model
uncertainty can be quantified with performance guarantees, by
considering a set of distributions up to a certain distance from
a candidate model. There is an exhaustive number of choices
for distances in spaces of probability distributions [27]. Among
the most popular distance-type notions for DRO problems
are φ-divergences [6], [18], and Wasserstein metrics [16], [9].
For data-driven problems, Wasserstein ambiguity sets centered
around the empirical distribution become a suitable choice
because they provide rigorous guarantees on containing the
true distribution with high probability. Wasserstein ambiguity
sets also capture distribution variations relevant to the opti-
mization problem without being overly conservative, since the
Wasserstein distance penalizes horizontal dislocations between
probability distributions, and their associated DRO problems
admit tractable reformulations. To this end, the work [14]
leverages recent concentration of measure inequalities [15]
to build Wasserstein ambiguity sets around the empirical
distribution of the data, and provides tractable DRO problem
reformulations with out-of-sample guarantees. These are ex-
ploited in [11], where a distributed reformulation of the min-
max DRO problem is established via saddle-point dynamics,
and in [26], where online sample assimilation is fused with
an efficient optimization algorithm to provide on-the-fly data-
driven DRO solutions. Other emerging applications of data-
driven DRO with Wasserstein ambiguity sets explore model-
free receding horizon control [12], optimal power flow in
power systems [17], appointment scheduling [19], and select-
ing regularization parameters without using cross validation
in machine learning algorithms [8]. Wasserstein ambiguity
sets have also been employed [36] in the synthesis of control
policies that are robust against distribution errors in Markov
decision processes. Recent work has developed distribution-
ally robust safe policy synthesis for stochastic systems [37]
and distributionally robust Kalman filtering approaches for
the state estimation of uncertain time-varying processes for
the Kullback-Leibler [25], τ -divergences [40], and the Wasser-
stein [28] metrics.

Observability of linear and nonlinear systems occupies a
central part of the control literature [31]. Of considerable
practical interest is the case where the output of a system
is not continuously measured and samples are collected in-
stead. Classical results regarding observability for linear time-
invariant systems under periodic sampling with equidistributed
measurements can be found in [31]. For the same system
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class, a periodic sampling schedule which always maintains
observability of the continuous plant was proposed in [23].
Observability under regular sampling for nonlinear models has
been studied in [3] for systems on compact manifolds, in [1]
for bilinear systems, and conditions under which the property
become generic are given in [2]. Results on the asymptotic
state estimation in the nonlinear case through sampled-data
observes are derived in [20]. Also, the observability of linear
time-invariant (LTI) systems under irregular sampling, using
properties of exponential polynomials, has been studied in the
recent works [34], [38], and exploited to establish observability
of LTI ensembles in [39].

Statement of contributions: We consider multiple indepen-
dent realizations of dynamically evolving random variables of
unknown distribution from which samples are collected in an
online fashion. These are assimilated up to a given time instant
and used to infer the corresponding unknown distribution of
the process. This allows us to draw conclusions about the
expected state at this instant for another, unobserved, indepen-
dent realization of the system. This differentiates our approach
from Kalman filtering, where the objective is to estimate the
state of a single trajectory conditioned on noisy partial obser-
vations of it under known distributions for the initial state, and
measurement/internal noise. Similarly, robust Kalman filtering
considers a set of plausible variations for the noise/initial
state distributions and the dynamics’ parameters, and the
designer seeks for a “robust” state estimator, given the output
measurements, that corresponds to the worst-case plausible
variation. Our contributions revolve around providing solutions
to integrate the data to construct distributional ambiguity sets
based on the Wasserstein metric that enjoy rigorous prob-
abilistic guarantees. Throughout the technical approach, we
pay attention to characterizing how the information contained
in the incrementally collected data can be pushed forward in
time to infer properties about the evolving distribution of the
process. Under full-state measurements and exact pushforward
through the flow, our first contribution builds ambiguity balls
that incorporate past data to enjoy desirable guarantees on
the probability of containing the true distribution. We also
identify conditions on the growth of the dynamics of the
random variable under which the ambiguity radius shrinks
as the horizon increases. Our second contribution considers
scenarios with approximate pushforwards and disturbances in
the dynamics, and characterizes the modifications necessary
in the ambiguity radius that retain the same high-confidence
probabilistic guarantees. This result allows us to quantify
the effective sampling horizon that ensures the monotonic
reduction of the ambiguity set with the number of sampling
times. To enable the extension of these results to the case
with partial-state measurements, our third contribution studies
robust sample-data observability under irregular sampling of
linear time-varying systems. We provide conditions on the
inter-sampling time of the trajectories under which full-state
information can be extracted. Our final contribution is the
construction of high-confidence distributional ambiguity sets
under partial-state measurements. We illustrate our results
in a UAV detection scenario application formulated as a
distributionally robust optimization problem.

Notation: Throughout the paper, we use the following
notation. We denote by ‖ · ‖ and ‖ · ‖∞ the Euclidean and
infinity norm in Rn, respec., and by [n1 : n2] the set of
integers {n1, n1 + 1, . . . , n2} ⊂ N ∪ {0}. The interpretation
of a vector in Rn as an n × 1 matrix should be clear form
the context (this avoids writing double transposes). Given a
differentiable function G : Rn → Rm, DG(x) denotes its
derivative at x ∈ Rn. The diameter of S ⊂ Rn is diam(S) :=
sup{‖x − y‖∞ |x, y ∈ S} and the distance of x ∈ Rn to
S is dist(x, S) := inf{‖x− y‖ | y ∈ S}. For A ∈ Rm×n, A†

denotes its Moore-Penrose pseudoinverse, and ‖A‖ its induced
Euclidean norm, namely, ‖A‖ := max‖x‖=1 ‖Ax‖/‖x‖. For
the distinct eigenvalues λ1, . . . , λq of A, the index mi of each
eigenvalue is the exponent of the term λ− λi in the minimal
polynomial

∏q
j=1(λ − λj)

mj of A; equivalently, mj is the
dimension of the largest Jordan block corresponding to λj .
We let A ⊗ B denote the Kronecker product. We denote by
diag(a1, . . . , an) the diagonal matrix with entries a1, . . . , an
in its main diagonal. For any z ∈ C, =(z) represents its
imaginary part. We denote by B(Rd) the Borel σ-algebra
on Rd, and by P(Rd) the space of probability measures on
(Rd,B(Rd)). Given p ≥ 1, we denote by Pp(Rd) the set of
probability measures in P(Rd) with finite p-th moment. Given
µ, ν ∈ Pp(Rd), their Wasserstein distance is

Wp(µ, ν) :=
(

inf
π∈H(µ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

,

whereH(µ, ν) is the set of all probability measures on Rd×Rd
with marginals µ and ν, respectively. For any µ ∈ P(Rd),
its support is the closed set supp(µ) := {x ∈ Rd |µ(U) >
0 for each neighborhood U of x}, or equivalently, the smallest
closed set with measure one. Given two measurable spaces
(Ω,F), (Ω′,F ′), and a measurable function Ψ from (Ω,F) to
(Ω′,F ′), the pushforward map Ψ# assigns to each measure µ
in (Ω,F), a new measure ν in (Ω′,F ′), defined by ν := Ψ#µ
iff ν(B) = µ(Ψ−1(B)) for all B ∈ F ′. The map Ψ# is
linear and satisfies Ψ#δω = δΨ(ω), with δω the Dirac measure
centered at ω ∈ Ω.

II. PROBLEM FORMULATION

A distributionally robust optimization problem (DROP)
takes the form

(P) inf
x∈X

sup
P∈P̂N

EP [f(x, ξ)],

where x ∈ X ⊂ Rn is the decision variable and ξ represents
a random variable distributed according to a distribution Pξ ∈
P(Rd). This distribution is unknown and hence one formulates
a worst-case expectation problem over an ambiguity set P̂N
which contains it with some probabilistic guarantee. Such
guarantees can be obtained when data about the random
variable is available: given N i.i.d. samples ξ1, . . . , ξN drawn
according to the unknown distribution Pξ and a reliability
parameter β ∈ (0, 1), one can construct [14] an ambiguity
set such that P(Pξ ∈ P̂N ) ≥ 1− β. We refer to this common
formulation as a static DROP. In a nutshell, the motivation for
this paper is to construct ambiguity sets for the optimization
in dynamic scenarios where data is evolving and samples are
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collected over time. The drawback of employing the static
DRO paradigm when data is assimilated from a time-varying
distribution is that one can make inferences about the process
distribution at a particular time instant by exploiting only
full-state samples that are collected precisely at that instant.
Instead, our goal is to combine knowledge of the dynamics’
model with the collected data and optimize the information
that can be exploited to infer the state distribution of the
process. We illustrate this in the following example.

A. Motivating example

Let ξt = (ξ1t, ξ2t) be the position and velocity of a unit-
acceleration particle which evolves according to the known
dynamics

ξ̇1t = ξ2t, ξ̇2t = 1,

over a time horizon [0, T ]. Assume that we can measure the
position ζt = H(ξt) := ξ1t, but not the velocity. Then, taking
two position measurements are sufficient to reconstruct the full
state of the particle. Both its initial position and velocity are
random with unknown probability distribution. Therefore, the
particle state at each t is a random variable with law Pξt . Given
that these distributions are unknown, we focus on specifying
an ambiguity set P̂NT at time T which contains the true
distribution PξT with high confidence. To do this, independent
output samples from the distribution of ζt = H(ξt) are
available at time instants 0 ≤ t1 < . . . < tN̄ = T ,
cf. Figure 1. In this scenario, a direct application of the
conventional approach to static DROPs would only employ
the samples obtained at tN̄ to construct the ambiguity set and
solve (P). This would not be desirable because (i) constructing
reliable ambiguity sets requires a finite, but sufficiently large
amount of data, and (ii) the output map reveals information
about the particle’s position, but not about its velocity.

𝜁
𝜁 𝜁

𝜁

𝑡
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Fig. 1. Partial measurements across a sequence of time instants of trajectories
of the random variable can be exploited to generate samples of the full-state
distribution at T . The latter can be employed to construct ambiguity sets that
contain the true unknown distribution with high confidence. The blue curves
show how the probability density of the state distribution evolves over time.
We display the output samples with the red stars and use a bent arrow to
represent the output map applied to the trajectories’ states at the sampling
instants. Each yellow star depicts either the reconstructed state of a trajectory
once the last output sample is collected from it, or its corresponding value
pushed forward to tN̄ = T .

These considerations motivate the question of how to lever-
age the full set of samples and the system’s observability
properties to construct a better ambiguity set at time T . If
full-state samples were drawn from different realizations of

the system at each ti, they could be pushed forward through
the flow map to obtain their corresponding values at T and
increase the exploitable data for the construction of the ambi-
guity set. Building on this observation, we address here three
interconnected problems: (i) the dynamics transforms, and may
potentially increase, the initial uncertainty about the random
variable. It is therefore of interest to understand to what extent
this may be compensated by the number of collected samples;
(ii) bounded errors in the dynamics or, even if it is fully known,
when the flow map cannot be computed exactly, induce errors
in the propagation of the collected samples. It is therefore of
interest to characterize accuracy versus horizon-length trade-
offs; (iii) in the case of partial-state measurements, the issues
(i) and (ii) need to be revisited to unveil how multiple output
samples from each realization can be leveraged to recover the
corresponding full state at time T .

B. Fixed horizon dynamic DROP
We depart here from the static DROP paradigm and formu-

late the dynamic DROPs considered in this paper, where the
data evolves according to the dynamics

ξ̇t = F (t, ξt), ξt ∈ Rd, (1)

and is measured through the output map

ζt = H(t, ξt), ζt ∈ Rm. (2)

The initial condition ξ0 is considered random with an un-
known distribution Pξ0 . Based on the evolution of (1) over
an horizon T , we are interested in solving a DROP with
respect to the unknown distribution PξT . As in Section II-A,
cf. Figure 1, the samples are assumed to be gathered from
independent realizations of the system. Because of the partial
measurements, we make the following hypothesis on how
trajectories are sampled.

Assumption 2.1: (Sampling schedule). The data are gath-
ered from N̄ independent trajectories of (1) over the horizon
[0, T ], denoted by ξi, i = 1, . . . , N̄ , having i.i.d. initial condi-
tions ξi0. From each trajectory ξi we collect ` output samples
ζi
tli

= H(tli, ξ
i
tli

), at tli, l ∈ [1 : `], with 0 ≤ t1i < . . . < t`i ≤ T
and assume that 0 ≤ t`1 ≤ · · · ≤ t`

N̄
= T . We also denote

t`i ≡ ti for all i ∈ [1 : N̄ ], and, if H(t, ξ) ≡ ξ, we take ` = 1.
The assumption is motivated by scenarios where the trajec-

tories’ outputs can be measured for a restricted amount of time.
That can happen for instance when measurements are taken by
a limited-range sensor, due to the fact that the location of the
sensor and/or the random variable’s realizations changes with
time (cf. Section VI). Figure 2 illustrates the sampling times
associated to Assumption 2.1. We refer to `, which represents
a sufficient number of output samples to reconstruct the full
state of a trajectory, as the observation horizon length. The
hypothesis that ` is common for all trajectories is made without
loss of generality, since we can otherwise take into account
only the ones from which at least ` samples are collected,
and select the last ` of them. The same holds also for the
assumption that 0 ≤ t`1 ≤ · · · ≤ t`

N̄
= T , which can be

enforced by simply relabeling the trajectories, i.e., by naming
trajectory 1 the one whose `-th sample is taken first and so
forth for the other trajectories.



4

♭

♭

ℓ

ℓ

ℓ

♭
ℓ

♭
ℓ

Fig. 2. Sampling times where data are collected from independent trajectories
according to Assumption 2.1, where t`i ≡ ti for all i ∈ [1 : N̄ ]. The
green arrows depict the tightest inter-trajectory sampling-time bound ∆ and
intra-trajectory inter-sampling-time bound ∆′. The blue double-sided arrow
illustrates the time span associated to the effective sampling horizon.

We call any ∆ > 0 such that ∆ ≥ max{ti − ti−1 | i ∈
[2 : N̄ ]}, an inter-trajectory sampling-time bound, and any
∆′ > 0 such that ∆′ ≥ max{tli− t

l−1
i | l ∈ [2 : `], i ∈ [1 : N̄ ]}

an intra-trajectory inter-sampling-time bound. In addition,
we introduce the effective sampling horizon [N [ : N̄ ], to
indicate that the data used for the ambiguity set construction
is collected from the trajectories ξN

[

up to ξN̄ , which we call
effective trajectories (cf. Figure 2). The samples are exploited
to estimate the state values of the N := N̄ −N [ + 1 effective
trajectories at the horizon end T . The reason for considering
this subset of trajectories is that it may not be desirable to use
measurements from trajectories where the assimilation starts
before tN[ , due to the errors induced by the pushforward,
which accumulate over time.

Problem statement: Given the horizon [0, T ], and under
Assumption 2.1, we seek to use each output tuple (ζi

t1i
, . . . , ζi

t`i
)

to estimate the state ξ̂i
t`i

of each effective trajectory ξi at

t`i(≡ ti), and determine an ambiguity set P̂NT containing the
true distribution PξT with high confidence. Under a fixed inter-
trajectory sampling-time bound, we also seek to characterize
the effect of the horizon length T on the size of the constructed
ambiguity set. Finally, in the presence of numerical errors or
disturbances in the dynamics, we aim to quantify the effective
horizon length up to which the ambiguity set is guaranteed to
improve with the number of samples.

We start by addressing these problems for the case of full-
state measurements, obtaining first high-confidence ambiguity
sets of the true unknown distribution in dynamic scenarios
under perfect knowledge of the flow map in Section III. This
enables us to present the main ideas behind the exploitation
of the dynamics to build more accurate ambiguity sets. Then,
we branch out to increasingly complex and more general
scenarios. We study data-assimilation versus precision trade-
offs in the presence of computational errors in Section IV.
Section V extends the results to the case when the random
variable is only partially measured and evolves linearly.

III. AMBIGUITY SETS UNDER FULL-STATE
MEASUREMENTS

In this section, we characterize ambiguity sets that appear
in dynamic DROPs, as described in the problem formulation

of Section II-B, when full-state measurements H(t, ξ) ≡ ξ are
available. Thus, according to Assumption 2.1, there is an in-
creasing sequence of sampling times 0 ≤ t1 ≤ · · · ≤ tN̄ = T ,
where at each ti, the state sample ξiti is collected from a
trajectory ξi of (1), and the observation horizon is ` = 1. The
ambiguity set P̂NT is built based on the N = N̄ −N [ + 1 last
effective samples by leveraging concentration of measure in-
equalities. For a moment, assume that N independent samples
ξiT become available at time T , and that a selected confidence
1− β > 0 is chosen. Thus, an ambiguity ball in Pp(Rd) can
be constructed using the Wasserstein metric Wp with center
at the empirical distribution P̂NξT and radius εN (β). It can
be shown, cf. [14, Theorem 3.5], that the true distribution
PξT is in this ball with probability at least 1 − β, namely,
P(Wp(P̂

N
ξT
, PξT ) ≤ εN (β)) ≥ 1 − β. Recalling that in our

setting the samples ξiti , i ∈ [N [ : N̄ ] are to be collected
progressively prior to tN̄ = T , we alternatively seek to build
the cumulative empirical distribution P̄NξT , using predicted
values ξ̄iT of these samples at T .

More formally, consider a probability space (Ω,F ,P) and a
finite sequence of i.i.d. Rd-valued random variables (ξi0)i∈[1:N̄ ]

with law Pξ0 ≡ P , where each ξi0 represents the initial
condition of a trajectory ξi. The trajectories evolve according
to the dynamics (1). From now on, we assume that F in (1)
is continuous and locally Lipschitz in ξ, and that the system
is forward complete. Then, the flow map Φ : DΦ → Rd,
where DΦ := {(t, s, ξ) ∈ R≥0 × R≥0 × Rd : t ≥ s},
is defined by Φ(t, s, ξ) := ξt(s, ξ), inducing a family of
maps Φt,s : Rd → Rd. Assuming that all trajectories start
at time s = 0 and using the notation Φt = Φt,0, the state
of each trajectory ξi at time t ≥ 0 is given by the random
variable ξit = Φt ◦ ξi0, with common law Pξt = Φt#P , i.e.,
the pushforward of the distribution P through the map Φt
(see the notation conventions described in Section I for the
definition of the pushforward Ψ# of a map Ψ). We next
show that, under perfect knowledge of the flow map, the
cumulative empirical distribution at T formed by the predicted
values ξ̄iT := ΦT,ti(ξ

i
ti), coincides with that of all the samples

gathered at time T . The proof of the result is given in the
Appendix.

Lemma 3.1: (Ideal pushforward of sample states). Con-
sider a sequence of trajectories ξi as in Assumption 2.1, and
the empirical distribution P̂NξT formed by the N state samples
of the effective trajectories ξN

[

, . . . , ξN̄ at T , i.e.,

P̂NξT :=
1

N

N̄∑
i=N[

δξiT . (3)

Then, (i) all ξiT are i.i.d., and (ii) if we consider the cumulative
empirical distribution

P̄NξT :=
1

N

N̄∑
i=N[

δξ̄iT , (4)

with ξ̄iT = ΦT,ti(ξ
i
ti), i ∈ [N [ : N̄ ], i.e., by pushing the

collected samples ξiti forward to time T through the flow map,
it holds that P̄NξT = P̂NξT .
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This result solves the issue of computing the evolving
center of the ambiguity ball. We next turn our attention to
determining its radius so as to ensure that the true distribution
is contained in it with high confidence.

A. Ambiguity radius for compactly supported distributions

We next present results from concentration of measure to
determine the radius of the ambiguity set P̂NT that contains
the true distribution PξT of the data at T with a selected
confidence. Our focus is on the class of compactly supported
distributions, which is preserved under the flow of forward
complete systems. The following result provides a concentra-
tion inequality for such laws and its explicit dependence on
the distribution’s support.

Proposition 3.2: (Concentration inequality). Consider a
sequence (Xi)i∈N of i.i.d. Rd-valued random variables with
a compactly supported law µ. Then, for any p ≥ 1, N ≥ 1,
and ε > 0, it holds that

P(W p
p (µ̂N , µ) ≥ ε) ≤ χN (ε, ρ; p, d),

χN (ε, ρ) := C


e
− cN
ρ2p

ε2
, if p > d/2,

e
−cN ε2

ρ2p(ln(2+ρp/ε))2 , if p = d/2,

e
− cN
ρd
ε
d
p

, if p < d/2,

(5)

where µ̂N := 1
N

∑N
i=1 δXi , ρ := 1

2 diam(supp(µ)), and the
constants C and c depend only on p and d.

Proof: We employ the following fact, which can be found
in [33, Proposition 7.16] and [13, Lemma 1].
. Fact I. Let T : Rd → Rd with T (x) = x̄+Lx for all x ∈ Rd,
where x̄ ∈ Rd and L > 0. Then, for any µ, ν ∈ Pp(Rd) it
holds that LWp(µ, ν) = Wp(T#µ, T#ν). /
Let z ∈ Rd with ‖x − z‖∞ ≤ ρ for all x ∈ supp(µ) and
consider the mapping y = T (x) := x−z

ρ and the random
variables Yi = T (Xi), i ∈ N, with law µY = T#µ. Then,
the Yi’s are also i.i.d. and without loss of generality they are
considered supported precisely on (−1, 1]d. We claim that

{W p
p (µ̂NY , µY ) ≥ ε} = {W p

p (µ̂N , µ) ≥ ρpε}, (6)

where µ̂NY =
∑N
i=1 δYi . Indeed, let ω ∈ Ω. Then, we have that

Yi(ω) = T (Xi(ω)) for all i and using the properties of the
pushforward map, we get

T#µ̂
N (ω) = T#

1

N

N∑
i=1

δXi(ω) =
1

N

N∑
i=1

T#δXi(ω)

=
1

N

N∑
i=1

δT (Xi(ω)) =
1

N

N∑
i=1

δYi(ω) = µ̂NY (ω).

Taking also into account that T#µ = µY , and exploiting Fact I
with x̄ = − zρ and L = 1

ρ , it follows that Wp(µ̂
N , µ) =

ρWp(µ̂
N
Y , µY ), and we conclude that (6) holds. In order to

derive the desired inequality, we will use the following result:
. [15, Proposition 10] Consider a sequence (Zi)i∈N of
i.i.d. Rd-valued random variables with law ν, supported on
(−1, 1]d. Then, for any p ≥ 1, N ≥ 1, and ε > 0, it holds that
P(W p

p (ν̂N , ν) ≥ ε) ≤ χN (ε, 1), where ν̂N := 1
N

∑N
i=1 δZi ,

C and c depend only on p and d, and χN is given in (5). /

By applying this result with ν = µY and ν̂N = µ̂NY to
bound P(W p

p (µ̂NY , µY ) ≥ ε) and substituting the right-hand
side of (6) in this probability, we obtain the desired result.

The following consequence of Proposition 3.2 characterizes
the radius of the ambiguity balls in terms of the selected
confidence and the support of the unknown distribution.

Corollary 3.3: (Ambiguity radius). Under the assumptions
of Proposition 3.2, for any confidence 1 − β, β ∈ (0, 1), it
holds that P(Wp(µ̂

N , µ) ≤ εN (β, ρ)) ≥ 1− β, where

εN (β, ρ) :=



(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > d/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = d/2,(
ln(Cβ−1)

c

) 1
d ρ

N
1
d
, if p < d/2,

(7)

with h−1 the inverse of h(x) = x2

(ln(2+1/x))2 , x > 0.

B. Growth conditions for ambiguity radius convergence

Here, we present sufficient conditions on the system’s
dynamics and the sampling rate to guarantee that, for any
prescribed confidence 1−β, the radius of the ambiguity balls
converges to zero as the horizon [0, T ] grows. We start with
a Lyapunov-type characterization of the growth rate of the
system dynamics.

Proposition 3.4: (Lyapunov-type growth rate condition).
For system (1), assume that there exist a locally integrable
function α : R≥0 → R, and a function V ∈ C1(Rd;R), with

a1‖ξ‖r ≤V (ξ) ≤ a2‖ξ‖r, ∀ξ ∈ Rd, (8a)
DV (ξ)F (t, ξ) ≤α(t)V (ξ) +M1V (ξ)q,

∀t ≥ 0, ξ ∈ Rd \ {0}, (8b)

for certain a1, a2 > 0, r > 1, M1 ≥ 0, and q ∈ (−∞, 1).
Then, for any initial condition ξ0 ∈ Rd: (i) if M1 = 0, then

‖ξ(t)‖ ≤ (a2/a1)
1
r ‖ξ0‖e

1
r

∫ t
0
α(s)ds, ∀t ≥ 0; (9)

(ii) if M1 > 0, and additionally∫ t2

t1

α(t)dt ≤M2, ∀ t2 ≥ t1 ≥ 0, (10)

for certain M2 > 0, then

‖ξ(t)‖ ≤ M̄(1 + c̄t)
1

r(1−q) , ∀t ≥ 0, (11)

with

M̄ := (eM2(1 + a2‖ξ0‖r)/a1)
1
r , c̄ := M1(1− q). (12)

The proof of Proposition 3.4 is given in the Appendix. Next,
we provide the main result of this section under the assumption
of a uniform inter-trajectory sampling-time bound for any
sampling horizon. We show that when full-state measurements
are gathered and pushed without errors forward in time, the
ambiguity sets formed by dynamics which satisfy the growth
conditions of Proposition 3.4 shrink as the DROP’s horizon
increases.

Proposition 3.5: (Ambiguity radius convergence). Assume
that system (1) satisfies the assumptions of Proposition 3.4
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and that Pξ0 is supported on the compact set K. Select a
confidence 1− β, an exponent p ≥ 1, and assume that

M1 > 0, r(1− q) > max{2p, d}, (13a)

where r, q,M1 are given in Proposition 3.4, or that

M1 = 0, rq′ > max{2p, d},
∫ t

0

α(s)ds ≤ ln t

q′
,∀t ≥ t0

(13b)

for some q′ > 0 and t0 > 0. For any horizon [0, T ], consider
a sampling sequence as in Assumption 2.1, with t1 = 0 and
inter-trajectory sampling-time bound independent of T , and let

ρT := diam(ΦT (K))/2, (14)

with ΦT (K) the set of reachable states at T from K. Then,

P (Wp(P̄
N
ξT , PξT ) ≤ εN (β, ρT )) ≥ 1− β, (15a)

lim
T→∞

εN (β, ρT ) = 0, (15b)

where εN is given in (7) and P̄NξT is the cumulative empirical
distribution in (4), with N [ = 1 and N = N̄ .

Proof: We will leverage the results of Lemma 3.1, Corol-
lary 3.3, and Proposition 3.4 for the proof. Note first that,
under perfect knowledge of the flow map, it follows from
Lemma 3.1(ii) that the center P̄NξT of the ambiguity ball in
(15a) is the same as P̂NξT , i.e., the empirical distribution formed
by N samples ξ1

T , . . . , ξ
N
T of independent trajectories at T .

Due to Lemma 3.1(i), these samples are i.i.d.. Thus, we can
apply Corollary 3.3 to the empirical distribution µ̂N = P̂NξT =

P̄NξT to infer that P(Wp(P̄
N
ξT
, PξT ) ≤ εN (β, ρT )) ≥ 1 − β

holds, or, in other words, (15a).
Next, note that since K is compact, there is some ρ > 0 with

K ⊂ {ξ ∈ Rd : ‖ξ‖∞ ≤ ρ}. Thus, when (13a) is fulfilled, it
follows from Proposition 3.4 that

ρT ≤ M̄(1 + c̄T )
1

r(1−q) , (16)

where c̄ and M̄ are given by (12) with ‖ξ0‖ in the definition of
M̄ replaced by

√
dρ. Next, define i(T ) := bT/∆c+ 1, where

∆ is a common inter-trajectory sampling-time bound for each
horizon [0, T ]. Note that i(T ) ≤ N and T < ∆i(T ), implying
by (16) that

ρT < M̄(1 + c̄∆i(T ))
1

r(1−q) =: ρ̄T .

From the latter, (7), the fact that i(T ) ≤ N , and that εN (β, ρT )
decreases with N and increases with ρT , it follows that

εN (β, ρT ) < εi(T )(β, ρ̄T )

=



(
ln(Cβ−1)

c

) 1
2p M̄(1+c̄∆i(T ))

1
r(1−q)

i(T )
1
2p

, if p > d/2,

h−1
(

ln(Cβ−1)
ci(T )

) 1
p

M̄(1 + c̄∆i(T ))
1

r(1−q) , if p = d/2,(
ln(Cβ−1)

c

) 1
d M̄(1+c̄∆i(T ))

1
r(1−q)

i(T )
1
d

if p < d/2.

Thus, it suffices to show that limT→∞ εi(T )(β, ρ̄T ) = 0. In
particular, when p 6= d/2, by setting p̄ = max{2p, d}, we get

lim
T→∞

εi(T )(β, ρ̄T ) = lim
T→∞

C ′(1 + c̄∆i(T ))
1

r(1−q)

i(T )
1
p̄

≤ lim
T→∞

C ′′i(T )
p̄−r(1−q)
p̄r(1−q) = 0,

because of (13a) and the fact that i(T )→∞ when T →∞,
where the constants C ′ and C ′′ in the derivation are indepen-
dent of T . For the case where p = d/2, the result follows
analogously by exploiting the following technical fact whose
proof is given in the Appendix.
. Fact II. For any q̄ > 2 and a > 0, it holds that
limκ→∞ h−1(a/κ)κ

1
q̄ = 0, with h given in Corollary 3.3. /

Finally, when (13b) holds, we obtain form (9) that

‖ξ(t)‖ ≤ (a2/a1)
1
r ‖ξ0‖e

1
rq′ ln t

,

for all t ≥ t0, and thus, that there exists a constant M̄ ′ with
ρT ≤ M̄ ′(1 + T )

1
rq′ for all T > 0. Then, the result follows

by using precisely the same arguments as before.

IV. AMBIGUITY SETS UNDER PUSHFORWARD ERRORS
AND DISTURBANCES

In general, the dynamics (1) of the random variable cannot
be explicitly solved. The pushforward of full-state samples
hence requires the numerical integration of the system’s solu-
tions, which gives rise to an approximation Φnum of the exact
flow map. In addition, the dynamics of the process may be
subject to disturbances. Both scenarios suggest that the cumu-
lative empirical distribution P̄NξT in (4) no longer coincides
with the empirical distribution P̂NξT in (3). We proceed to
quantify this difference and characterize the relevant ambiguity
sets, focusing first on the case where the flow is numerically
integrated. Recall that the dynamics is continuous and locally
Lipschitz. It therefore follows from classical approaches to
bound the numerical integration error [32, Theorem 3.4.7],
that for any compact set K ⊂ Rn and finite time horizon
[0, T ], there exist positive constants K and L, such that

‖Φnum
t,s (ξ)− Φt,s(ξ)‖ ≤ K(eL(t−s) − 1), (17)

for all 0 ≤ s ≤ t ≤ T and ξ ∈ Φs(K). For the center
of the ambiguity ball containing PξT , we consider a variant
of the cumulative empirical distribution P̄NξT in (4), formed by
pushing forward the full-state samples by Φnum. The following
result, whose proof is in the Appendix, specifies the radius of
the ambiguity set at the end of the horizon.

Theorem 4.1: (Ambiguity radius with approximate push-
forward). Assume that the support of the initial condition of
system (1) is contained in the compact set K. Consider a
sampling sequence as in Assumption 2.1 with inter-trajectory
sampling-time bound ∆ > 0, and the cumulative empirical
distribution P̄NξT in (4), with ξ̄iT := Φnum

T,ti
(ξiti), i ∈ [N [ : N̄ ].

Then, for any confidence 1− β and p ≥ 1 it holds

P(Wp(P̄
N
ξT , PξT ) ≤ ψN (β,∆)) ≥ 1− β, (18a)

where

ψN (β,∆) : = εN (β, ρT ) + ε̄N (∆), (18b)

ε̄N (∆) : = K
( 1

N

∫ N

1

(eL∆s − 1)pds
) 1
p

, (18c)

with εN (β, ρT ) and ρT , as given in (7) and (14), respectively.
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According to this result, when the exact flow map is no
longer available, the ambiguity radius needs to be increased
with the additional term ε̄N to obtain the same high-confidence
guarantee. In the ideal case where K = 0 in (18c), we recover
the result of Corollary 3.3. The extra term ε̄N increases as we
consider more samples, since they are located farther back in
time and pushing them forward induces larger errors. Based on
Theorem 4.1, we quantify the effective sampling horizon size
in terms of guaranteed ambiguity reduction under numerical
errors.

Proposition 4.2: (Effective sampling horizon). Under the
hypotheses of Theorem 4.1, assume additionally that p 6=
d/2. Let p̄ := max{2p, d} and C̄ ≡ C̄(p̄, β, ρT ) :=(

ln(Cβ−1)
c

) 1
p̄

ρT , with C, c and ρT as in (7) and (14),
respectively. Then, there exists ∆∗ ≡ ∆∗(C̄, L,K) > 0 such
that for every ∆ ∈ (0,∆∗), the set

N (∆) := {N ∈ N | C̄(κ−
1
p̄ − (κ+ 1)−

1
p̄ )

> ε̄κ+1(∆)− ε̄κ(∆), ∀κ ∈ [1 : N ]},

with ε̄1, . . . , ε̄N+1 as given in (18c), is nonempty and bounded.
In addition, the ambiguity radius ψN (β,∆) in (18b) is strictly
decreasing with N , for N ∈ [1 : N∗(∆)], with N∗(∆) :=
max(N (∆)) + 1.

Proof: From (18c), we get that lim∆→0 ε̄N (∆) = 0 for
all N ∈ N. Thus, there exists ∆∗ > 0 such that ε̄2(∆) −
ε̄1(∆) < C̄(1 − 2−

1
p̄ ) for all ∆ < ∆∗, implying that 1 ∈

N (∆), and hence, that N (∆) is nonempty. In addition, we
have that limN→∞ ε̄N (∆) = ∞ for all p ≥ 1, which implies
that N (∆) is bounded. Indeed, otherwise it would hold that

ε̄N+1(∆)− ε̄1(∆) =

N∑
κ=1

(ε̄κ+1(∆)− ε̄κ(∆))

<

N∑
κ=1

C̄(κ−
1
p̄ − (κ+ 1)−

1
p̄ ) = C̄(1− (N + 1)−

1
p̄ ) < C̄

for all N ∈ N, leading to a contradiction. Thus N∗(∆) is
always finite. Furthermore, from (7), (18b), and the definition
of C̄, N∗(∆), and N (∆), we get ψN+1(β,∆) < ψN (β,∆)
for all N ∈ [1 : N∗(∆)− 1], as desired.

Proposition 4.2 identifies the upper bound N∗(∆) on the
number of samples below which one can guarantee that the
more samples the better regarding the ambiguity radius. Fig-
ure 3 illustrates how the ambiguity radius ψN (β,∆) in (18b)
varies with respect to the sampling period and the number of
samples in the presence of numerical errors.

Theorem 4.1 and Proposition 4.2 are also applicable when
the sampled trajectories are subject to unknown disturbances d.
Formally, the dynamics in this case takes the form

ξ̇t = F (t, ξt, dt),

where d belongs to a class D of functions, which are uniformly
bounded for every finite time horizon, and with d ≡ 0 being an
element of D. Additionally, we assume that F is also locally
Lipschitz with respect to its d argument. For any constant
ε > 0 and horizon [0, T ], let B := {Φt(ξ) | ξ ∈ K, t ∈ [0, T ]}
and Bε := {ξ ∈ Rd | dist(ξ,B) ≤ ε}, where K is a compact

(a) (b)

Fig. 3. (a) shows how the ambiguity radius ψN (β,∆) in (18b) varies
with respect to ∆ and N for a fixed confidence 1 − β, and the parameter
values d = 1, p = 1, L = 0.1, K = 1, and ρT ∈ {1, 2, 3}. Given that
the component εN of the radius, which is strictly decreasing with N , is
proportional to the distributions’ support size and that the effect of numerical
errors is independent of ρT , the effective sampling horizon increases with
ρT , as shown in (b).

set containing the initial state ξ0. Using the local Lipschitzness
assumption, we can select a constant L > 0 so that

‖F (t, ξ, dt)− F (t, ξ′, d′t)‖ ≤ L‖(ξ, dt)− (ξ′, d′t)‖,

for all t ∈ [0, T ], ξ, ξ′ ∈ Bε and d, d′ ∈ D. Then,
from [21, Theorem 3.4], it follows that (17) holds with
Φnum
t,s replaced by the flow of ξ̇t = F (t, ξt, dt) and K :=

min{supt∈[0,T ],d∈D dt,
ε

eLT−1
}, for all disturbances d ∈ D

with maxt∈[0,T ] dt ≤ K. With this bound in place, the proofs
of Theorem 4.1 and Proposition 4.2 also hold for the case with
disturbances.

V. AMBIGUITY SETS FOR PARTIALLY OBSERVABLE
LINEAR SYSTEMS

Here we consider the case of partial measurements, where
multiple samples are collected from each independent trajec-
tory. We restrict our attention to linear time-varying systems
with linear outputs, i.e.,

ξ̇t = A(t)ξt, ζt = C(t)ξt, (19)

with A(t) ∈ Rd×d and C(t) ∈ Rm×d. In this case, the
full state of each trajectory ξi is no longer directly available
through the individual output samples. However, it is possible
to recover it when the system is sampled-data observable, and
combine this knowledge with our approach in the previous
sections to build the ambiguity sets. We therefore start by
examining observability conditions under which the state re-
construction is possible when a sufficient number of output
samples is collected.

A. Sampled data observability

For the linear time-varying system (19), let Φ(t, s) ∈
Rd×d, for t, s ≥ 0, denote its fundamental matrix, satisfying
Φt,s(ξ) = Φ(t, s)ξ for all ξ ∈ Rd. According to Assump-
tion 2.1, we have ` output samples from each trajectory ξi.
Each such sample can be evaluated as ζi

tli
= C(tli)Φ(tli, t

`
i)ξ

i
t`i

,
l ∈ [1 : `], by taking the state at t`i backward to time tli through
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the flow and computing its output value. Consequently, recov-
ering the unmeasured state ξi

t`i
at the last sampling instant is

equivalent to requiring that the sample-observability matrix

Oi ≡ Oexp−
t1i ···t`i

:=


C(t1i )Φ(t1i , t

`
i)

C(t2i )Φ(t2i , t
`
i)

...
C(t`i)

 , (20)

is left invertible. This turns out to hold when system (19) is
sampled data observable and the observation horizon length `
is sufficiently large. We next present such sampled-data ob-
servability results, starting with the case when the system is
(linear) time-invariant (LTI), i.e., A(t) ≡ A and C(t) ≡ C.

Assumption 5.1: The pair (A,C) is observable and the sam-
pling schedule satisfies either one of the following hypotheses:
H1 (Equidistant sampling). The sampling times are given by
tli = t1i + (l − 1)∆′, l ∈ [1 : `], i ∈ [1 : N̄ ], for some ∆′ > 0,
with ∆′(λ−λ′) 6= 2kπj for all k ∈ Z and distinct eigenvalues
λ, λ′ of A, and ` ≥ d (denoting j ≡

√
−1 ∈ C).

H2 (Periodic non-equidistant sampling). The sampling times
are given by the pattern

tli :=


t1i + (l − 1)∆′, l ∈ [1 : d̄+ 1],

t1i + d̄∆′ + ∆′′, l = d̄+ 2,

t
l−(d̄+1)
i + d̄∆′ + ∆′′, l ∈ [d̄+ 3 : `],

with ∆′,∆′′ > 0, ∆′/∆′′ /∈ Q, d̄ ≥ d, and ` ≥ (d̄+ 1)d.
H3 (Irregular sampling). The observation horizon length `
satisfies the lower bound

` > m− 1 + τδ/(2π),

where δ := max1≤j,j′≤q{=(λ′j − λj)}, m :=
∑q
j=1 mj ,

τ := max{t`i−t1i , i ∈ [1 : N̄ ]}, and m1, . . . ,mq are the indices
of A’s eigenvalues λ1, . . . , λq .

The first sampling hypothesis in Assumption 5.1 is a clas-
sical result, commonly known as the Kalman-Ho-Narendra
criterion (see e.g., [31]). The second hypothesis is given
in [23], whereas the last observability criterion under irregular
sampling was originally presented in [34]. Here, we provide
a slightly refined version of the latter from the more recent
work [38, Theorem 2]. We next state formally that under
either of the three cases for the sampling schedule, the sample
observability matrix Oi is left invertible. The proof of this
result invokes classical arguments from LTI system theory.
For completeness, since we found no verbatim statement in
the literature, we provide a brief proof in the Appendix.

Lemma 5.2: (Sampled-data observability for LTI systems).
Assume that system (19) is LTI and that samples are collected
according to Assumption 2.1. Then, under the observability
Assumption 5.1, each matrix Oi is left invertible.

Left invertibility of Oi is equivalent to the property that
its smallest singular value is strictly positive. However, the
result of Lemma 5.2 does not provide a bound on how far the
smallest singular value lies from zero, or in other words, on the
distance of the matrix from becoming singular. This distance
is of particular interest when the collected output samples are
perturbed.

We next provide conditions which guarantee robust invert-
ibility of the sample-observability matrix by deriving uniform
lower bounds for the smallest singular value of a weighted
variant of Oi. These constitute a robust observability cri-
terion under irregular sampling for the general time-varying
case (19). We make the following assumption:

Assumption 5.3: (Time-varying observability). System (19)
is observable on any interval [a, b] ⊂ [0, T ], t 7→ A(t) is
continuous, and t 7→ C(t) is continuously differentiable.

For each trajectory ξi, let τ(i) := t`i − t1i denote the length
of the time interval during which output samples are collected.
It holds that

0 < τ low := min
i∈[1:N̄ ]

τ(i) ≤ τ(i) ≤ τ up := max
i∈[1:N̄ ]

τ(i) ≤ T,

for all i ∈ [1 : N̄ ]. Next, define

K(s, t) := Φ(s, t)>C(s)>C(s)Φ(s, t) (21)

and

Wς(t) :=

∫ t+ς

t

K(s, t+ ς)ds, (22)

for s, t, ς ≥ 0. Then, Wς(t) = Φ(t, t+ ς)>W̃ς(t)Φ(t, t+ ς),
where W̃ς(t) :=

∫ t+ς
t

K(s, t)ds is the observability Gramian
of (19) on [t, t+ ς], which is continuous with respect to t. By
Assumption 5.3, the observability Gramian W̃τ low(t) is also
positive definite for all t ∈ [0, T−τ low] (see e.g., [31, Exercise
6.3.2]). Thus, the same properties hold for Wτ low(t), implying

λmin

(
Wτ low(t)|T−τ

low

0

)
:= min

t∈[0,T−τ low]
λmin(Wτ low(t)) > 0,

(23)

where λmin denotes smallest eigenvalue. Next, fix any i ∈ [1 :
N̄ ] and let

τl(i) := tl+1
i − tli, l ∈ [1 : `− 1], (24)

be the lengths of the inter-sampling time intervals. Define the
weight matrix

Wi := diag(w1(i), . . . , w`(i))⊗ Im, (25)

w2
1(i) =

τ1(i)

2
, w2

l (i) =
τl−1(i) + τl(i)

2
,

l ∈ [2 : `− 1], w2
` (i) =

τ`−1(i)

2
.

Next, we find a positive lower bound for the smallest eigen-
value of O>i WiWiOi. This fact implies the left invertibility
of Oi. The proof of the result is given in the Appendix.

Proposition 5.4: (Robust sampled-data observability). Un-
der Assumption 5.3, for a ∈ (0, 1), assume the intra-trajectory
inter-sampling-time bound ∆′ satisfies

∆′ ≤
4(1− a)λmin

(
Wτ low(t)|T−τ

low

0

)
τ up maxτ low≤t≤T,max{0,t−τ up}≤s≤t ‖Ks(s, t)‖

, (26)

where Ks(s, t) := ∂
∂sK(s, t). Then, the system is sampled-

data observable, i.e., for any i ∈ [1 : N̄ ] the matrix Oi is
invertible. In addition,

λmin(O>i WiWiOi) ≥ aλmin

(
Wτ low(t)|T−τ

low

0

)
. (27)
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We employ this result to quantify the state reconstruction
error under perturbed measurements in the next section. The
result of Proposition 5.4 takes a more explicit form for LTI
systems. In this case, note that K(s, t) = K̂(s− t), with

K̂(t) := eA
>tC>CeAt. (28)

Hence, Ŵς := Wς(t) =
∫ ς

0
K̂(s − ς)ds is independent of t,

and λmin

(
Wτ low(t)|T−τ

low

0

)
= λmin(Ŵτ low).

Corollary 5.5: (Robust sampled-data observability for LTI
systems). Under the assumptions of Proposition 5.4, when (19)
is time-invariant and the intra-trajectory inter-sampling-time
bound ∆′ satisfies

∆′ ≤ 2(1− a)λmin(Ŵτ low)

τ up maxs∈[0,τ up] ‖K̂(s− τ up)A‖
, (29)

the system is sampled-data observable and (27) holds.

B. Ambiguity sets under exact and inexact observations

Here we exploit the sampled observability results to char-
acterize dynamic ambiguity sets under progressively collected
output measurements. The next result is the analogue of
Lemma 3.1 when (19) is sampled data observable and mea-
surements are exact.

Lemma 5.6: (Ideal pushforward of output-sample recon-
structed states). Consider a sequence of trajectories ξi as in
Assumption 2.1, the empirical distribution P̂NξT in (3), and the
cumulative empirical distribution P̄NξT given by (4), with

ξ̄iT := Φ(T, t`i)O
†
iζ
i, (30)

for i ∈ [N [ : N̄ ], where ζi := (ζi
t1i
, . . . , ζi

t`i
). Assume

that either (19) is time-invariant and Assumption 5.1 or the
hypotheses of Corollary 5.5 hold, or that it is time-varying and
the assumptions of Proposition 5.4 hold. Then, P̄NξT = P̂NξT .

Proof: From the definition of P̂NξT and P̄NξT , the result
follows if we establish that ξ̄iT = ξiT for all i ∈ [N [ : N̄ ]. For
each of the possible cases, we get from either Lemma 5.2,
Proposition 5.4, or Corollary 5.5, that the matrices Oi are left
invertible, and hence, that O†iζi = ξi

ti`
. Thus, we deduce that

ξ̄iT := Φ(T, t`i)ξ
i
ti`

= ξiT , as desired.
It is also worth noting that the result of Lemma 5.6

generalizes to the nonlinear case under the same arguments,
provided that the map associating the system’s initial states to
the output samples is invertible.

Corollary 5.7: (Nonlinear pushforward of output-sample
reconstructed states). Consider the nonlinear system (1)-(2)
and a sequence of trajectories ξi as in Assumption 2.1, Assume
that for each i ∈ [N [ : N̄ ], the map Hi : Φt`i (K)→ R`m,

Hi(ξ) := (H(t1i ,Φt1i ,t`i (ξ)), H(t2i ,Φt2i ,t`i (ξ)), . . . ,H(t`i , ξ))

is invertible on its image, where Φt`i (K) ⊂ Rd and K contains
the support of the initial conditions’ distribution. Then, the re-
sult of Lemma 5.6 remains valid with ξ̄iT := ΦT,t`i (H

−1
i (ζi)).

Using Lemma 5.6, we obtain the analogue of Proposi-
tion 3.5 for system (19) when exact output samples are
assimilated.

Corollary 5.8: (Output-sample based ambiguity radius
convergence). Under Assumption 5.3, further assume that the
intra-trajectory inter-sampling-time bound ∆′ satisfies (26) and
consider the cumulative empirical distribution in (4), where ξ̄iT
is given by (30) with N [ = 1. Then, under the hypotheses of
Proposition 3.5, for any confidence 1−β, the ambiguity radius
εN (β, ρT ) satisfies limT→∞ εN (β, ρT ) = 0.

Based on the derived observability results, we also obtain
bounds for the discrepancy between the estimated state from
the measurements and the true state, when the output samples
are subject to bounded observation errors.

Proposition 5.9: (State estimation error under bounded
observation errors). Under Assumption 5.3, further assume
that, for each state trajectory ξi, instead of the exact output
samples ζi in (30), we measure

ζ̂i = ζi + δi, (31)

for some δi = (δi1, . . . , δ
i
`), with ‖δil‖ ≤ δ∗, for l ∈ [1 :

`]. Also, assume that the intra-trajectory inter-sampling-time
bound ∆′ satisfies (26), or (29) if the system is time-invariant.
Then, the estimated state ξ̂i

t`i
:= (WiOi)

†Wiζ̂
i satisfies

‖ξ̂it`i − ξ
i
t`i
‖ ≤ ε∗ :=

√
τ up

aλmin

(
Wτ low(t)|T−τ low

0

)δ∗. (32)

The proof of Proposition 5.9 is given in the Appendix.
We next provide the analogue to Theorem 4.1, i.e., we de-
termine the ambiguity radius obtained through the cumulative
empirical distribution P̄NξT , by pushing forward the estimated
states from the perturbed measurements through the numer-
ical approximation of the flow. Note that since according
to Assumption 5.3 the map t 7→ A(t) is continuous, Φnum

satisfies (17) for all 0 ≤ s ≤ t ≤ T , for some K > 0, and
L := maxt∈[0,T ] ‖A(t)‖.

Theorem 5.10: (Ambiguity radius with approximate push-
forward and observation errors). Under Assumption 5.3, let
the initial condition of (19) be supported on the compact
set K. Consider a sampling sequence as in Assumption 2.1,
with inter-trajectory sampling-time bound ∆ > 0, and intra-
trajectory inter-sampling-time bound ∆′ > 0. For each ef-
fective trajectory ξi, i ∈ [N [ : N̄ ], we measure the inexact
samples ζ̂i in (31), and we consider the cumulative empirical
distribution P̄NξT in (4), with

ξ̄iT := Φnum
T,t`i

((WiOi)
†Wiζ̂

i),

and Oi given by (20) for all i. Then, for any confidence 1−β
and p ≥ 1, (18a) holds, with ψN as in (18b), ε̄N given by

ε̄N (∆) :=
(2p−1

N

( (ε∗)p

pL∆
(epL∆N − 1)

+ Kp
∫ N

1

(eL∆s − 1)pds
)) 1

p

, (33)

instead of (18c), and ε∗ given by (32).
The proof of this result is given in the Appendix. Note

that Theorem 5.10 generalizes Theorem 4.1 to the case of
partially observable linear systems. Under the hypothesis of
Theorem 5.10, the result of Proposition 4.2 remains valid with
ε̄N as given by (33).
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Remark 5.11: (Factors affecting ambiguity radius). The
ambiguity radius of Theorem 5.10 is based on bounds for
all factors contributing to the mismatch between the true
and cumulative empirical distribution. These comprise of 1)
the lower probability bounds for the true distribution being
within the Wasserstein distance from the empirical distribution
(already present in Corollary 3.3), 2) the upper bounds on the
error between the actual and numerical pushforward of the
flow (already present in Theorem 4.1), and 3) the upper bounds
on the accuracy of state reconstruction under observation
errors (this is particular to the setup of partially observable
systems considered in Theorem 5.10). The ambiguity radius
can be refined by incorporating additional information to ob-
tain sharper bounds for each of these factors. Specifically in 1),
by incorporating knowledge about the compactly supported
distribution class that the true distribution belongs to –if for
example the true distribution is concentrated in approximately
lower dimensional sets within its support [35, Section 5.3];
in 2), by employing smaller Lipschitz constants which take
into account the worst-case exponential numerical integration
errors of unstable dynamics over specific regions of the state
space; and in 3), by incorporating information about the
precise sampling times given a fixed intra-trajectory inter-
sampling-time bound. �

VI. APPLICATION TO UAV DETECTION

Here we illustrate our results in an application scenario
involving a blue UAV that seeks to avoid detection while
passing through an area surveilled by a team of red UAVs,
cf. Figure 4. The red team has split the area into squares

𝐿1 𝐿2
𝐴1

𝐵

𝐴𝑖

𝑎 𝐴𝑖+1

(a)

3

5

(b)

Fig. 4. (a) Red stars depict the location of red UAVs A1, . . . , Ai, Ai+1, . . .
at a specific time instant and the filled blue star depicts the location of the
blue UAV B. Red circles represent the trajectories tracked by the red UAVs.
The non-filled blue star represents the goal position of the blue UAV at the
end of the optimization horizon, and the non-filled stars/dashed trajectories
of the red UAVs with index i+ 1 and beyond signify that they have not been
yet observed by the blue UAV. (b) shows the phase angle distribution of the
reference trajectory tracked by red UAVs, which is unknown to the blue UAV.

of identical size and assigned one UAV per square. With
the vehicle’s coordinate system centered at the middle of
the square, each red UAV tracks a circular orbit χ(t, θ) :=
r(cos(θ+ t), sin(θ+ t)) of radius r according to the dynamics

ξ̇1(t) = ξ2(t)

ξ̇2(t) = κ2(χ(t, θ)− ξ1(t)). (34)

Here, the phase angle θ is a parameter not known to the
blue UAV that the red team selects randomly according to
some distribution to make things hard to predict for potential

intruders (note that this fits into the model (1) by setting
θ̇(t) = 0). The state of each UAV is ξ = (ξ1, ξ2, θ) ∈ R5.
The purpose of the blue UAV is to traverse the area along
the straight path from location L1 to location L2 in Figure 4
while minimizing the possibility of being detected. The blue
UAV is kinematic, actuating the magnitude of its velocity
vector, which points from L1 to L2 and is upper bounded
by vmax and lower bounded by vmin > 0 (it cannot hover).
The blue UAV is also capable of measuring the position
H(t, ξ) ≡ H(ξ) := ξ1 of a red UAV when it reaches
its monitoring region. Therefore, the map H provides an
observation model of the form (2) for the red UAVs’ dynamics.
The initial conditions of the red UAVs, i.e., initial position,
velocity, and phase angle are independently sampled from a
compactly supported distribution which is unknown to the blue
UAV, except from its support. Thus, the blue UAV B has no
information about the state of the red UAV Ai before reaching
region i.

DRO formulation: While traversing the corresponding
square, the blue vehicle collects ` ≥ 3 exact position mea-
surements ζ1

t1i
, . . . , ζ`

t`i
from Ai before reaching the center of

the square. At the middle of each square i, the blue UAV
solves an optimization problem to tune its velocity up to the
center of the next region i + 1 in order to simultaneously
maximize the worst-case distance from UAV Ai, which has
already been observed, and the worst-case expected distance
from UAV Ai+1, based on the collected data of the preceding
UAVs’ locations. This maximization is carried out during the
traversal between the centers of squares i and i+1, which are
at a distance a apart, and must be performed in 2π time units
(the surveillance period of the red UAVs). For the purpose of
the optimization, we divide [0, 2π] into n equal subintervals so
that, at time Ti = i · 2π, the blue UAV seeks to determine its
velocity profile x = (x1, . . . , xn) for the next 2π seconds as

v(Ti + t, x) := xn · (1, 0), t ∈
[
(n− 1)

2π

n
, n

2π

n

]
,

for n = 1, . . . , n. Here, the velocity profile must belong to

X := {x ∈ Rn | 0 < vmin ≤ xn ≤ vmax, n = 1, . . . , n,

x1 + · · ·+ xn = an/(2π)}.

Since the blue UAV has no knowledge of the location of
UAV Ai+1, it uses the previously collected data to solve
a DRO formulation that robustifies its decision against said
uncertainty. Assuming measurements are exact, it exploits
sampled-data observability of the UAVs’ dynamics to recover
the states ξ1

Ti
, . . . , ξiTi of the observed red vehicles, and

construct an ambiguity set containing the true distribution of ξ
at Ti with confidence 1− β. Specifically, with the notation of
Corollary 5.7, we reconstruct the state value of each observed
trajectory ξk, k ∈ [1 : i] as ξiT = ξ̄iT := ΦT,t`i (H

−1
i (ζi)),

where ζi = (ζ1
t1i
, . . . , ζ`

t`i
) and Φ is the flow map of the red

UAVs’ dynamics. Using these values we build the cumulative
empirical distribution 1

i

∑i
k=1 ξ̄

k
Ti

, which coincides with the
empirical distribution P iξTi

= 1
i

∑i
k=1 ξ

k
Ti

formed by the
state values of the i first trajectories at Ti. Then, we build
an ambiguity ball P̂iTi centered at P iξTi and determine its
radius εi(β) ≡ εi(β, ρTi) from (7) in Corollary 3.3 (with ρTi
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denoting half the diameter of the state distribution’s support
at Ti). For each i = 1, 2, . . . and associated time Ti = i · 2π,
we solve the DRO problem

sup
x∈X

inf
P∈P̂iTi

EP [fi(x, ξ)],

where the objective function fi is given by

fi(x, ξ) := min
t∈[Ti,Ti+2π]

{
min

{∥∥∥ξi1t − ∫ t

Ti

v(s, x)ds
∥∥∥2

,∥∥∥Φpos+
t (ξ)−

∫ t

Ti

v(s, x)ds
∥∥∥2}}

,

with ξi the known trajectory of UAV Ai, Φpos+
t (ξ) :=

prpos(Φt(ξ)) + (a, 0), and prpos(ξ1, ξ2, θ) := ξ1. Note that the
value of fi is the minimum between the worst-case distance
to the known UAV Ai’s trajectory and the worst-case distance
to the unknown UAV Ai+1’s trajectory.

Simulation results: For the simulation results we select
the radius r = 1 for the tracked trajectories, the square side
length a = 2.5, and set the velocity bounds for UAV B to
vmin = 0.3a/(2π) and vmax = 1.5a/(2π), respectively. The
tracking (angular) frequency in their dynamics (34) is κ =
4, implying that their trajectory is periodic with period 2π.
Thus, any set of states is invariant under the flow ΦTi , for
all Ti = i · 2π. The random values of the phase angle θ are
sampled from the finite set {2.8π/4, 3.5π/4, 4.6π/4}, with the
associated probabilities depicted in Figure 4(b), and each UAV
is initiated from the corresponding position (cos(θ), sin(θ))
with zero velocity, inducing the compact set of initial states
K := {(cos(θ), sin(θ), 0, 0, θ)}θ∈{2.8π/4,3.5π/4,4.6π/4} ⊂ R5.
Due to invariance of the flow maps ΦTi , the corresponding
half diameters ρTi of the sets ΦTi(K) do not change with i.
The velocity profile of the blue UAV has n = 4 subintervals.

We compare the approach of the paper, i.e., the sequence
of DRO problems formulated above for the blue UAV, where
the ambiguity sets are constructed exploiting all progressively
collected samples using Corollaries 3.3 and 5.7, with the static
DRO approach, where each ambiguity set is built exclusively
based on the last trajectory’s state. We perform 10 indepen-
dent realizations of the detection scenario to illustrate the
consistency of the dynamic DRO benefits throughout each of
these independent experiments. In each one, we take randomly
up to 160 samples from the probability distribution of θ to
determine the dynamics of the corresponding red UAVs. For
each realization, we solved the dynamic DRO using all the
samples of the first 10, 40, and 160 red UAVs, respectively,
with the optimal value depicted with cyan in Figure 5. The
static DRO is also solved using only the single sample of
the 10-th, 40-th, and 160-th trajectory (depicted in blue in
Figure 5). It is clear that the statistical average of the DRO
values obtained through the cumulative empirical distribution
outperforms significantly its single-state-sample counterpart.
Furthermore, the performance of the suggested DRO scheme
improves as the number of samples increases. We consider a
confidence 1 − β such that the ambiguity radius for i = 10
trajectory samples is εi(β) = 0.17. From Corollary 3.3, the
corresponding radius for i = 40, i = 160, and i = 1 (static

DRO), is εi(β) = 0.1201, εi(β) = 0.085, and εi(β) = 0.3023,
respectively.

Fig. 5. This plot illustrates the solution of the DRO problem from 10
independent realizations of the whole detection scenario, when the blue UAV
crosses the area monitored by the 10th, 40th, and 160th red UAV, depicted at
the left, center, and right region, respectively. For each of the 10 realizations
the solutions of the dynamic and static DRO are illustrated with the cyan and
blue circles, respectively, and the number of each realization is inscribed in
the circle. The superiority of the dynamic DRO can be seen in the higher
optimal values, which statistically increase with the number of samples. The
fluctuations in the individual differences occur due to randomness of the
realizations.

Figure 6 shows snapshots from the blue UAV traversing
the area monitored by the 151 to 159th red UAVs in one of
the realizations. The radius of the circle moving with vehicle
B represents the root of the minimum squared distance from
the red UAVs as obtained from the solution of the DRO. The
dynamic DRO circle is larger than the static one since a better
optimum is obtained in this case due to the ambiguity set being
considerably smaller.

(a)

(b) (c)

Fig. 6. The plot depicts three snapshots of the blue UAV at (a) Ti =
151.6 · 2π, (b) Ti = 154.4 · 2π, and (c) Ti = 157.6 · 2π. The upper and
lower row of vehicle trajectories in each picture shows the outcome of the
dynamic and static DRO, respectively. The circles’ radius is the square root
of the DRO value, given also in the corresponding piecewise constant plots
that are shown below. We additionally plotted the evolution of the minimum
distance between the blue UAV and the red UAVs during the traversal, in
cyan and blue, for the dynamic and the static DRO, respectively. The part
of the snapshots with faded color includes the red UAVs that have not been
observed by the blue one.
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VII. CONCLUSIONS

We have developed a framework to compute ambiguity
sets of unknown probability distributions using data collected
from dynamically varying processes that retain the same
probabilistic guarantees as their static counterparts. Under
exact knowledge of the dynamic evolution of the data and
full-state measurements, we have identified conditions on its
growth rate and the sampling rate that ensure the ambiguity
sets shrink with time. In the presence of numerical errors
and/or disturbances in the dynamics, we have also quantified
the number of exploitable past samples necessary to establish
the reduction of the ambiguity sets. We have generalized these
results to the case of partial-state measurements of linear time-
varying systems building on their sample-data observability
properties. Future work will exploit the construction of time-
varying ambiguity sets in receding horizon DRO problems
and explore the extension of the results to consider data
storage limitations, stochastic descriptions of the disturbances,
measurement noise in the observations, measurement and
computation delays, and multi-agent strategic scenarios where
the dynamic evolution of the data is only partially known (e.g.,
intruder detection, seach and rescue, and monitoring).

APPENDIX

Here we provide proofs of various results of the paper.

A. Proofs from Section III

Proof of Lemma 3.1: Part (i) follows directly from
the fact that {ξi0}i∈[N[:N̄ ] are i.i.d. and ΦT is measurable,
implying that all ξiT = ΦT ◦ξi0 are also i.i.d. (see [22, Remark
2.15(iii)]). For part (ii), note that P̄NξT = 1

N

∑N̄
i=N[ δξ̄iT =

1
N

∑N̄
i=N[ δΦT,ti (ξ

i
ti

) = 1
N

∑N̄
i=N[ δξiT = P̂NξT , as desired,

where we have exploited the fact that ΦT,ti(ξ
i
ti) = ΦT,ti ◦

Φti(ξ
i
0) = ΦT (ξi0) in the second to last equality.

The proof of Proposition 3.4 is based on the following
comparison lemma.

Lemma A.1: (Polynomial growth). Consider a locally ab-
solutely continuous function θ : R≥0 → R≥0 which satisfies
for almost all t ≥ 0

θ(t) > 0⇒ θ̇(t) ≤ α(t)θ(t) +M1θ(t)
q, (35)

for certain q ∈ (−∞, 1) and M1 > 0, where the function α is
locally integrable and satisfies (10) for certain M2 > 0. Then,

θ(t) ≤ eM2(1 +M1(1− q)t)
1

1−q (1 + θ0), (36)

where θ0 = θ(0).
Proof: Let A(t) =

∫ t
0
α(s)ds and Ā(t) :=

min0≤s≤tA(s). Since A(0) = 0, also Ā(0) = 0. Furthermore,
Ā is locally absolutely continuous due to the fact that the same
property holds for A. From the latter, combined with the fact
that Ā is nonincreasing and satisfies Ā(0) = 0, it follows
that there exists a nonnegative locally integrable function ᾱ
with Ā(t) = −

∫ t
0
ᾱ(s)ds, for all t ≥ 0. Then, if we define

α̂(t) := α(t) + ᾱ(t), t ≥ 0, we obtain for all t ≥ 0,

α̂(t) ≥ α(t), (37a)

∫ t

0

α̂(s)ds ≥ 0, (37b)∫ t

0

α̂(s)ds ≤M2, (37c)

Indeed, (37a) follows directly from the fact that ᾱ is non-
negative. In addition, we have that

∫ t
0
α̂(s)ds =

∫ t
0
α(s)ds +∫ t

0
ᾱ(s)ds = A(t)−Ā(t) = A(t)−min0≤s≤tA(s) ≥ 0, which

establishes (37b). Finally, given that Ā(t) = min0≤s≤tA(s) =∫ τ
0
α(s)ds for some τ ∈ [0, t], we get that

∫ t
0
α̂(s)ds =∫ t

0
α(s)ds − Ā(t) =

∫ t
0
α(s)ds −

∫ τ
0
α(s)ds =

∫ t
τ
α(s)ds ≤

M2, because of (10). From (35) and (37a), we obtain for
almost all t ≥ 0, θ(t) > 0 ⇒ θ̇(t) ≤ α̂(t)θ(t) + M1θ(t)

q .
Hence, by defining

σ(t) := θ(t/M1), t ≥ 0, (38)

it follows that for almost all t ≥ 0,

σ(t) > 0⇒ σ̇(t) =
1

M1
θ̇(t/M1) ≤ γ(t)σ(t) + σ(t)q, (39)

with γ(t) := 1/M1α̂(t/M1). Then, we get from (37b) that∫ t

0

γ(s)ds ≥ 0, ∀t ≥ 0, (40)

and from (37c) that∫ t

0

γ(s)ds =

∫ t

0

1

M1
α̂
( s

M1

)
ds =

∫ t/M1

0

α̂(τ)dτ ≤M2, (41)

for all t ≥ 0. Now, let λ be the solution of

λ̇(t) = γ(t)λ(t) + λ(t)q, λ(0) = σ(0) + 1, (42)

which is defined for all t ≥ 0 and is nondecreasing. We claim

λ(t) ≥ σ(t), for all t ≥ 0. (43)

Indeed, suppose on the contrary that σ(T ) > λ(T ) for certain
T > 0. Define τ := inf{t̄ ≥ 0 |σ(t) > λ(t),∀t ∈ (t̄, T ]}.
Then,

σ(t) > λ(t), ∀t ∈ (τ, T ], (44a)
σ(τ) = λ(τ). (44b)

By (39), (42), (44b), and the comparison lemma [21, Lemma
3.4], we get that σ(t) ≤ λ(t) for all t ∈ (τ, T ], contradicting
(44a). We next show that the absolutely continuous function

η(t) := e
∫ t
0
γ(s)ds(1 + t(1− q))

1
1−q (1 + θ0), t ≥ 0, (45)

satisfies

η̇(t) ≥ γ(t)η(t) + η(t)q (46)

for almost all t ≥ 0. Indeed, note that η̇(t) = γ(t)η(t) +
e
∫ t
0
γ(s)ds(1+θ0)(1+t(1−q))

q
1−q for almost all t ≥ 0. Solving

with respect to 1 + t(1− q) in (45), we deduce

η̇(t) = γ(t)η(t) + e
∫ t
0
γ(s)ds(1 + θ0)

(
η(t)

e
∫ t
0
γ(s)ds(1 + θ0)

)q
= γ(t)η(t) +

(
e
∫ t
0
γ(s)ds(1 + θ0)

)1−q
η(t)q,

which implies (46), due to (40) and the fact that 1 − q > 0.
Thus, since by (38) and (42) it holds that η(0) = 1 + θ(0) =
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1 + σ(0) = λ(0), we get from (42), (46), and the comparison
lemma [21, Lemma 3.4], that η(t) ≥ λ(t) for all t ≥ 0. Hence,
from (43) and the definition of σ, we have that η(t) ≥ θ( t

M1
)

for all t ≥ 0. From the latter, (41), and (45), we deduce (36),
which completes the proof.

We are ready to prove Proposition 3.4.
Proof of Proposition 3.4: Consider an initial condition

ξ0 ∈ Rd and let ξ denote the solution of (1) defined for all
t ≥ 0. Then, t 7→ V (ξ(t)) is differentiable, and from (8b),

V (ξ(t)) > 0⇒ d

dt
V (ξ(t)) = DV (ξ(t))F (t, ξ(t))

≤ α(t)V (ξ(t)) +M1V (ξ(t))q.

Then, if M1 = 0, we obtain by the comparison lemma [21,
Lemma 3.4] that V (ξ(t)) ≤ V (ξ0)e

∫ t
0
α(s)ds for all t ≥ 0,

and thus, by (8a), that (9) holds. If M1 > 0, then, by using
Lemma A.1 with θ(t) := V (ξ(t)), we have from (36) that
V (ξ(t)) ≤ eM2(1 +M1(1− q)t)

1
1−q (1 +V (ξ0)) for all t ≥ 0.

Consequently, it follows from (8a) that

‖ξ(t)‖ ≤ (eM2(1 + a2‖ξ0‖r)/a1)
1
r (1 +M1(1− q)t)

1
r(1−q)

for all t ≥ 0, which establishes (11) with M̄ and c̄ as given
by (12). The proof is complete.

Proof of Fact II in Proposition 3.5: It suffices to show
that limx→0 h

−1(ax)/x
1
q̄ = 0, or equivalently, that

h−1(ax)
q̄+2

2 /(x
1
q̄ )

q̄+2
2 → 0.

Using L’Hôpital’s rule and q̄ > 2, it follows that there exists
ȳ > 0 with h(y) > y

q̄+2
2 for all 0 < y ≤ ȳ. Thus,

h−1(ax)
q̄+2

2 /(x
1
q̄ )

q̄+2
2 < h(h−1(ax))/(x

1
q̄ )

q̄+2
2

= ax/x
q̄+2
2q̄ = ax

q̄−2
2q̄ → 0,

since q̄ > 2, and we get the result.

B. Proofs from Section IV

The proof of Theorem 4.1 relies on the following elemen-
tary result on the Wasserstein distance between two discrete
distributions with the same number of elements.

Lemma A.2: (Wasserstein distance of discrete distribu-
tions). Consider the finite sequences (Xi)

N
i=1, (Yi)

N
i=1 in

Rd and the corresponding discrete distributions µ̂NX =
1
N

∑N
i=1 δXi , µ̂NY = 1

N

∑N
i=1 δYi . Then, it holds that

Wp(µ̂
N
X , µ̂

N
Y ) ≤ ( 1

N

∑N
i=1 ‖Xi − Yi‖p)

1
p .

Proof: Consider the probability measure
π = 1

N

∑N
i=1 δ(Xi,Yi) on Rd × Rd. Then, it follows

that µ̂NX , µ̂NY are marginals of π and that Wp(µ̂
N
X , µ̂

N
Y ) ≤

(
∫
Rd×Rd ‖x − y‖

pπ(dx, dy))
1
p = ( 1

N

∑N
i=1 ‖Xi − Yi‖p)

1
p , as

claimed.
Proof of Theorem 4.1: Notice that the true distribution

PξT of the system state at T will be supported in the compact
set ΦT (K). Thus, we get from (14) and Corollary 3.3 that for
the given confidence 1− β, the Wasserstein distance between
the ideal empirical distribution P̂NξT in (3) and PξT will satisfy
P(Wp(P̂

N
ξT
, PξT ) ≤ εN (β, ρT )) ≥ 1− β. Based on the latter,

to establish (18a), it suffices to show that

Wp(P̄
N
ξT , P̂

N
ξT ) ≤ ε̄N (∆), (47)

and take into account (18b) and the triangle inequality for Wp.
To show (47), recall that P̂NξT = 1

N

∑N̄
i=N[ δξiT and that

ξiT = ΦT,ti(ξ
i
ti) for each i. Then, given that ti+1 − ti ≤ ∆

for each i and taking into account (17), and that tN̄ = T , we
get from Lemma A.2 that

Wp(P̄
N
ξT , P̂

N
ξT ) ≤

( 1

N

N̄∑
i=N[

‖ξiT − ξ̄iT ‖p
) 1
p

=
( 1

N

N̄∑
i=N[

‖ΦT,ti(ξiti)− Φnum
T,ti(ξ

i
ti)‖

p
) 1
p

≤
( 1

N

N̄∑
i=N[

Kp(eL(T−ti) − 1)p
) 1
p

≤ K
( 1

N

N∑
i=1

(eL∆(N−i) − 1)p
) 1
p

= K
( 1

N

N−1∑
i=1

(eL∆i − 1)p
) 1
p

.

Then, the result is a consequence of the derived bound and
the fact that for any a > 0, p ≥ 1, and N ∈ N, it holds that∑N−1
i=1 (eai − 1)p ≤

∫ N
1

(eas − 1)pds.

C. Proofs from Section V
Proof of Lemma 5.2: Under H1 in Assumption 5.1,

Oie
A(t`i−t

1
i ) = O`(e

A∆′ , C) :=


C

CeA∆′

...
C
(
eA∆′

)`−1

 . (48)

In addition, due to H1, it follows that system (19) is ∆′-
sampled observable [31, Proposition 6.2.11], namely, the
pair (eA∆′ , C) is observable. Thus, the observability matrix
Od(e

A∆′ , C) corresponding to this pair has full rank d. Since
` ≥ d, O`(e

A∆′ , C) is also of full rank d, which by (48),
establishes left invertibility of Oi. When H2 holds, the result
follows analogously from the Corollary in Section IV of [23],
which implies that

rank(Oi) ≡ rank
(
Oexp−
t1i ···t

(d̄+1)d
i

)
= d.

Thus, since ` ≥ (d̄ + 1)d, we also obtain that Oi is of full
rank, and hence, left invertible. Finally, the same approach can
be followed under H3, with left invertibility of Oi guaranteed
by [38, Theorem 2].

Before proceeding with the proof of Proposition 5.4, we
state some intermediate results to ensure robust invertibility
of the sample-observability matrix Oi. Given i ∈ [1 : N̄ ], let

Wτ(i)(t
1
i )
∣∣
[tli,t

l+1
i ]

:=

∫ tli+τl(i)

tli

K(s, t1i + τ(i))ds, (49)

for each l ∈ [1 : `−1], with the intra-trajectory inter-sampling-
time lengths τl(i) = tl+1

i − tli as in (24), and τ(i) = t`i − t1i .
Also, recall that Ks(s, t) = ∂

∂sK(s, t), which is continuous
because of the regularity hypotheses of Assumption 5.3.

Lemma A.3: (Integral-limits inequalities). For each l ∈ [1 :
`− 1], the integral Wτ(i)(t

1
i )
∣∣
[tli,t

l+1
i ]

satisfies∥∥∥Wτ(i)(t
1
i )
∣∣
[tli,t

l+1
i ]
− τl(i)

2
(K(tli, t

1
i + τ(i))
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+K(tl+1
i , t1i + τ(i)))

∥∥∥
≤τ

2
l (i)

4
max

s∈[tli,t
l+1
i ]
‖Ks(s, t

1
i + τ(i))‖.

Proof: From the mean value inequality,∥∥∥Wτ(i)(t
1
i )
∣∣
[tli,t

l+1
i ]
− τl(i)

2
(K(tli, t

1
i + τ(i))

+K(tl+1
i , t1i + τ(i)))

∥∥∥
=

∥∥∥∥ ∫ tli+
τl(i)

2

tli

(K(s, t1i + τ(i))−K(tli, t
1
i + τ(i)))ds

+

∫ tli+τl(i)

tli+
τl(i)

2

(K(s, t1i + τ(i))−K(tl+1
i , t1i + τ(i)))ds

∥∥∥∥
≤
∫ tli+

τl(i)

2

tli

(s− tli)ds max
s∈[tli,t

l
i+

τl(i)

2 ]

‖Ks(s, t
1
i + τ(i))‖

+

∫ tli+τl(i)

tli+
τl(i)

2

(
s− tli −

τl(i)

2

)
ds

× max
s∈[tli+

τl(i)

2 ,tl+1
i ]

‖Ks(s, t
1
i + τ(i))‖

≤ τ2
l (i)

4
max

s∈[tli,t
l+1
i ]
‖Ks(s, t

1
i + τ(i))‖,

establishing the result.
The following result provides an upper bound for the

distance between the matrices O>i WiWiOi and Wτ(i)(t
1
i )

in the induced Euclidean norm.
Lemma A.4: (Distance between O>i WiWiOi and

Wτ(i)(t
1
i )). Let Wτ(i)(t

1
i ) and Wi as given by (22) and (25),

and consider the sample-observability matrix Oi in (20) and
an intra-trajectory inter-sampling-time bound ∆′ > 0. Then,

‖O>i WiWiOi −Wτ(i)(t
1
i )‖

≤τ(i)∆′

4
max

s∈[t1i ,t
1
i+τ(i)]

‖Ks(s, t
1
i + τ(i))‖. (50)

Proof: From the definitions of Oi in (20), K(s, t) in (21),
Wτ(i)(t

1
i ) in (22), the τl(i)’s in (24), the matrix Wi in (25),

and the matrices Wτ(i)(t
1
i )
∣∣
[tli,t

l+1
i ]

in (49), we have

‖O>i WiWiOi −Wτ(i)(t
1
i )‖

= ‖
(
w1(i)Φ(t1i , t

`
i)
>C(t1i )

> · · · w`(i)Φ(t`i , t
`
i)
>C(t`i)

>)
×

w1(i)C(t1i )Φ(t1i , t
`
i)

...
w`(i)C(t`i)Φ(t`i , t

`
i)

−Wτ(i)(t
1
i )

∥∥∥∥∥∥∥
=

∥∥∥∥∑̀
l=1

w2
l (i)K(tli, t

1
i + τ(i))−Wτ(i)(t

1
i )

∥∥∥∥
=

∥∥∥∥ `−1∑
l=1

τl(i)

2
(K(tli, t

1
i + τ(i)) +K(tl+1

i , t1i + τ(i)))

−Wτ(i)(t
1
i )

∥∥∥∥
≤

`−1∑
l=1

∥∥∥τl(i)
2

(K(tli, t
1
i + τ(i)) +K(tl+1

i , t1i + τ(i)))

−Wτ(i)(t
1
i )
∣∣
[tli,t

l+1
i ]

∥∥∥
≤

`−1∑
l=1

τ2
l (i)

4
max

s∈[tli,t
l+1
i ]
‖Ks(s, t

1
i + τ(i))‖, (51)

where we have used Lemma A.3 in the last inequality. Thus,
from the bound on the maximum inter-sampling time, we get
(50), which establishes the result.

When the system is time invariant, i.e., A(t) ≡ A and
C(t) ≡ C, we obtain the following corollary to Lemma A.4,
with a more explicit bound for ‖O>i WiWiOi −Wτ(i)(t

1
i )‖.

Corollary A.5: (Distance between O>i WiWiOi and
Wτ(i)(t

1
i ) for LTI systems). Under the assumptions of

Lemma A.4, when (19) is time invariant,

‖O>i WiWiOi−Wτ(i)(t
1
i )‖

≤ τ(i)∆′

2
max

s∈[0,τ(i)]
‖K̂(s− τ(i))A‖.

Proof: From (28), note that ˙̂
K(s) =

d
ds (eA

>sC>CeAs) = A>eA
>sC>CeAs + eA

>sC>CeAsA.
Since the spectral norm of a matrix equals that of its
transpose, it follows that ‖ ˙̂

K(s)‖ ≤ 2‖K̂(s)A‖. Combining
this with the bound for ‖O>i WiWiOi − Wτ(i)(t

1
i )‖ in

Lemma A.4, and the fact that K(s, t) = K̂(s− t),

τ(i)∆′

4
max

s∈[t1i ,t
1
i+τ(i)]

‖Ks(s, t
1
i + τ(i))‖

=
τ(i)∆′

4
max

s∈[t1i ,t
1
i+τ(i)]

‖ ˙̂
K(s− (t1i + τ(i)))‖

=
τ(i)∆′

4
max

s∈[0,τ(i)]
‖ ˙̂
K(s− τ(i))‖

≤ τ(i)∆′

2
max

s∈[0,τ(i)]
‖K̂(s− τ(i))A‖,

which completes the proof.
Based on the obtained results, we prove Proposition 5.4.

Proof of Proposition 5.4: Let i ∈ [1 : N̄ ] and note that
for any pair of symmetric matrices P and Q,

λmin(P ) = min
‖x‖=1

x>Px = min
‖x‖=1

x>(Q+ P −Q)x

≤ min
‖x‖=1

x>Qx+ max
‖x‖=1

x>(P −Q)x

= λmin(Q) + ‖P −Q‖.

Combining this observation with the result of Lemma A.4,

λmin(Wτ(i)(t
1
i )) ≤ λmin(O>i WiWiOi)

+ ‖O>i WiWiOi −Wτ(i)(t
1
i )‖

≤ λmin(O>i WiWiOi)

+
τ(i)∆′

4
max

s∈[t1i ,t
1
i+τ(i)]

‖Ks(s, t
1
i + τ(i))‖.

Thus, we get from (23) and by plugging in (26) that

λmin(O>i WiWiOi)

≥ λmin(Wτ(i)(t
1
i ))−

τ(i)∆′

4
max

s∈[t1i ,t
1
i+τ(i)]

‖Ks(s, t
1
i + τ(i))‖
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≥ λmin(Wτ(i)(t
1
i ))−

τ(i)(1− a)λmin

(
Wτ low(t)|T−τ

low

0

)
τ up

×
maxs∈[t1i ,t

1
i+τ(i)] ‖Ks(s, t

1
i + τ(i))‖

maxτ low≤t≤T,max{0,t−τ up}≤s≤t ‖Ks(s, t)‖

≥ λmin(Wτ(i)(t
1
i ))−

τ(i)

τ up (1− a)λmin

(
Wτ low(t)|T−τ

low

0

)
≥ λmin(Wτ(i)(t

1
i ))− (1− a)λmin

(
Wτ low(t)|T−τ

low

0

)
≥ aλmin

(
Wτ low(t)|T−τ

low

0

)
,

which concludes the proof.
The result of Corollary 5.5 is obtained by the same ar-

guments by using the bound from Corollary A.5 instead of
that given in Lemma A.4. We are now in position to prove
Proposition 5.9.

Proof of Proposition 5.9: To show the result, note that
ζi = Oiξ

i
ti+`

, or equivalently, Wiζ
i = WiOiξ

i
ti+`

, and
consequently ξiti+` = (WiOi)

†Wiζ
i, since WiOi is of full

rank. Thus, we obtain

‖ξ̂iti+` − ξ
i
ti+`
‖ = ‖(WiOi)

†Wi(ζ̂
i − ζi)‖

= ‖(WiOi)
†Wiδ

i‖ ≤ ‖(WiOi)
†‖‖Wiδ

i‖. (52)

We upper bound the first term on the right hand side of the
above inequality as

‖Wiδ
i‖ =

(∑̀
l=1

w2
l (i)‖δil‖2

) 1
2

≤ δ∗
(τ1(i)

2
+

`−1∑
l=2

τl−1(i) + τl(i)

2
+
τ`−1(i)

2

) 1
2

= δ∗
√
τ(i) ≤ δ∗

√
τ up,

where we have use the definition of wl(i) from (25) and the
bound δ∗ on each δil . While the second term satisfies

‖(WiOi)
†‖ = σmax((WiOi)

†) =
1

σmin(WiOi)
,

with σmax and σmin denoting the largest and smallest nonzero
singular value of the corresponding non-degenerate matrix,
respectively. The second equality follows from the fact that
WiOi is of full rank (see [24, Page 435, Proposition 4]). Thus,
by taking into account (27) and that λmin(O>i WiWiOi) =
σmin(WiOi)

2, it follows from (52) that (32) is fulfilled.
Finally, we give the proof of Theorem 5.10.

Proof of Theorem 5.10: The proof is analogous to that of
Theorem 4.1, with the key modification being establishment
of (47) with ε̄N as in (33). By taking into account (17), (32),
the elementary inequality (a + b)p ≤ 2p−1(ap + bp), which
holds for any a, b ≥ 0 and p ≥ 1 [4, Lemma 2.4.6], and that
the flow Φ is linear, as in the proof of Theorem 4.1, we obtain

Wp(P̄
N
ξT , P̂

N
ξT ) ≤

( 1

N

N̄∑
i=N[

‖ξiT − ξ̄iT ‖p
) 1
p

=
( 1

N

N̄∑
i=N[

‖ΦT,t`i (ξ
i
t`i

)− Φnum
T,t`i

(ξ̂it`i
)‖p
) 1
p

≤
(2p−1

N

N̄∑
i=N[

(
‖ΦT,t`i (ξ

i
t`i
− ξ̂it`i )‖

p

+ ‖ΦT,t`i (ξ̂
i
t`i

)− Φnum
T,t`i

(ξ̂it`i
)‖p
)) 1

p

≤
(2p−1

N

N̄∑
i=N[

(
(ε∗)pepL(T−t`i) + Kp(eL(T−t`i) − 1)p

)) 1
p

≤
(2p−1

N

N∑
i=1

(
(ε∗)pepL∆(N−i) + Kp(eL∆(N−i) − 1)p

)) 1
p

=
(2p−1

N

[
(ε∗)p

N−1∑
i=0

epL∆i + Kp
N−1∑
i=1

(eL∆i − 1)p
]) 1

p

≤
(2p−1

N

[
(ε∗)p

∫ N

0

epL∆sds+ Kp
∫ N

1

(eL∆s − 1)pds
]) 1

p

.

By evaluating the first integral in the latter expression we
obtain the desired result.
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