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Abstract—This paper develops a distributed saddle-flow algo-
rithm to regulate the output of a networked system – modeled
as static linear map – to the solution of a constrained convex
optimization problem. The algorithm is “feedback-based,” in the
sense that measurements of the network output are leveraged
in the saddle-flow updates to avoid a complete (oracle-based)
knowledge of the network map. In the distributed architecture,
each actuator has access to only a subset of measurements;
nevertheless, supported by a connected communication graph,
a distributed protocol is implemented to achieve consensus on
pertinent dual variables associated with network-level output
constraints and, therefore, on the solution of the constrained
problem. Using a LaSalle argument, we show that under an
easily satisfiable Linear Matrix Inequality condition the proposed
algorithm converges to an optimal primal-dual solution. We
demonstrate the effectiveness of the proposed method in a voltage
regulation problem for power systems with high penetration of
renewable generation.

Index Terms—Distributed control, Optimization, Network
analysis and control

I. INTRODUCTION AND PROBLEM FORMULATION

THIS paper considers the optimal operation of a networked
physical system, and addresses the design of distributed

algorithmic solutions to drive the system’s outputs to the
solution of a constrained optimization problem [1]. A real-
time implementation of this task is challenging in many real-
istic applications – power grids, communication systems, and
transportation systems to mention a few – since saddle-flow
methods [2]–[4] and discrete-time gradient-based algorithmic
solutions [5] typically require an accurate knowledge of the
network input-output map. Take, for example, the following
linear map:

y = Ax+Bz, (1)

where x ∈ RN are the control inputs, y ∈ Rm are the
outputs, A ∈ Rm×N is, in general, a full (i.e., non-sparse)
matrix, B ∈ Rm×E , and z ∈ RE is a constant but unknown
vector of disturbances or exogenous inputs. Many large-scale
engineering systems with distributed sensing and decision
making can be modeled as (1) to a first approximation (e.g,

C-Y Chang and M. Colombino are with the National Renewable En-
ergy Laboratory (NREL), {ChinYao.Chang,Marcello.Colombino}@nrel.gov;
J. Cortés is with the Department of Mechanical and Aerospace Engineering
at UC San Diego, cortes@ucsd.edu; E. Dall’Anese is with the Department of
Electrical, Computer, and Energy Engineering at the University of Colorado
Boulder, emiliano.dallanese@colorado.edu. This work was authored in part
by NREL, operated by Alliance for Sustainable Energy, LLC, for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.
Funding provided by DOE Office of Electricity, Advanced Grid Modeling
Program, through agreement NO. 33652, and ARPA-e NODES program.

? The first two authors contributed equally.

power, traffic and water networks). Executing saddle-flow
or gradient-based algorithms to determine optimal inputs for
physical systems described by (1) requires one to estimate the
matrices A and B, and gather measurements of a possibly
high-dimensional vector z at a central location to evaluate the
map; this task might be, in fact, prohibitive in many real-world
networked systems. For example, if (1) represent a linearized
AC power flow model for power grids [6]–[8], z is a high-
dimensional vector (E � 1) collecting the non-controllable
powers at all the nodes of the grid; measuring all the entries
of z and estimating the matrix B is not practical or even not
feasible. This motivates the development of “feedback-based”
algorithmic solutions, where measurements of the network
output y are leveraged in the updates of the algorithm to avoid
a complete (oracle-based) knowledge of the network map. This
approach is aligned with the recent works on feedback-based
gradient methods [5], [6], [9], with successful application
domains ranging from communication networks [10] to power
systems [6]–[8], [11], [12] to transportation [13].

To outline the problem formulation concretely, let w := Bz
for brevity, with w constant but unknown and assume that the
vector x stacks n sub-vectors xi ∈ RNi , with

∑n
i=1Ni = N ,

where each sub-vector corresponds to the inputs applied by
an agent or “actuator.” Assume that m sensors are deployed
in the network, and let y(k) be a sub-vector of y collecting
measurements of the k-th sensor. The optimal steady-state
operation of such networks can be cast as an optimization
problem of the form:

min
x∈X

n∑
i=1

fi(xi),

s.t. y(k) ≤ b(k), k = 1, . . . ,m,

y = Ax+ w,

(2)

where fi : RNi → R is a convex objective function avail-
able at the actuator i, X =

∏n
i=1 Xi, and the convex sets

{Xi ∈ RNi}ni=1 represent ‘hard constraints’ for each actuator
that cannot be violated during the execution of the algorithm.
The solution of (2) depends on the unknown disturbance w.
Notice that, given problem (2), even gradient-free methods
(see, e.g., [14]), would require knowledge of the input-output
map appearing in the constraint. Our goal here is to design a
distributed algorithm that, without knowledge of w and in the
face of the non-sparsity of the input-output map, can leverage
the measurements {y(k)}mk=1 and a communication network
to drive x and y to the solution of the convex problem (2) as
illustrated in Figure 1. This is possible because the effect of
w is reflected on the output y. Based on (2), the design of the
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Fig. 1. Proposed distributed optimization scheme: The control framework is
composed of cyber and physical layers. The cyber layer includes computation
and communication that maps output measurements y to the input decisions
x; the physical layer corresponds to a system that maps the inputs x and
disturbances w to outputs y. The actuators communicate to each other through
an undirected graph in the cyber layer and they locally update the value of
their input x in real time based information received from a subset of the
sensors and from other actuators. In the physical layer, the input x affects the
output y which is measured by the sensors and communicated to a subset of
actuators, thus closing the feedback loop.

algorithm is grounded on a saddle-flow-based approach (see
e.g., [2]–[4], [15] and pertinent references therein). To address
the fact that w is unknown, the standard saddle-flow dynam-
ics [2] are appropriately modified to read the measurements
{y(k)}mk=1 collected by the sensors rather than using the full
system model. Existing feedback-based optimization methods,
however, rely either on a centralized [8], [12] or on a star (i.e.,
“gather and broadcast”) [5] communication structures. Excep-
tions are, for example, the works [6], [16] (specific to voltage
regulation tasks in power systems), where the communication
graph matches the physical network but benefit from a reduced
communication burden. In this work, we obtain a distributed
architecture (Fig 1) using a consensus-enforcing term based on
the vector of dual variables. Each sensor k transmits y(k) only
to a subsets of actuators, which dynamically seek consensus
on the dual variables to ensure that the constraints in (2) are
satisfied. Relative to existing distributed saddle-flow methods
(see e.g., [4], [15]) the proposed algorithm makes use of real-
time measurements instead of the system model to distribute
non-sparse constraints.

II. PRELIMINARIES

This section presents the notation used throughout the paper
and basic preliminary results. Let R and R+ denote the set
of real and nonnegative reals, resp. Given a matrix A, A>

denotes its transpose, A � (≺) 0 denotes that A is symmetric
and positive (negative) definite. The matrix In ∈ Rn×n is the
identity matrix. For x ∈ Rn, ‖x‖ denotes its Euclidean norm
and diag{x} a diagonal matrix with the elements of x on the
main diagonal. Given vectors x1, . . . , xn, diag{xi}ni=1 denotes
a block-diagonal matrix with the vectors xi as diagonal blocks.

The vector 1n is the vector of all 1s in Rn. Given a set X and
a point x0 ∈ X , we denote ΠX (x0) = argminx∈X ‖x− x0‖.
Given a convex cone K, the polar cone K∗ is defined as K∗ :=
{y : y>x ≤ 0, ∀x ∈ K}.

Lemma II.1. Given a convex cone K ⊂ Rn and a vector
a ∈ Rn, if b = ΠK(a), then a− b ∈ K∗.

Proof: We reason by contradiction. If a − b 6∈ K∗, then
there exists x ∈ K such that (a− b)>x > 0. By the optimality
conditions of the projection operator, (a− b)>(y− b) ≤ 0 for
all y ∈ K. Since K is a cone, λx ∈ K for λ ≥ 0. Choosing
y = λx with λ large enough leads to contradiction.

Given a nonempty convex set X ⊂ Rn, the tangent cone of
X at x ∈ X is a convex cone defined as

T xX := cl
(
{d ∈ Rn : ∃ ε > 0, x+ εd ∈ X}

)
.

The normal cone of X at x is a convex cone defined as

N x
X := {d ∈ Rn : d>(y − x) ≤ 0, ∀ y ∈ X}.

According to [17, Theorem 6.9], N x
X = (T xX )∗.

A differentiable function f is r-strongly convex if (∇f(x)−
∇f(y))T (x − y) ≥ r‖x − y‖22 holds for all x, y in its
domain. We let G = (V, E , {ωjk}(j,k)∈E) denote a connected,
undirected graph, without self-loops or multiple edges. Here,
V = {1, . . . , N} is the set of nodes, E ⊂ (V ×V)\∪i∈V(i, i),
with |E| = M , is the set of edges, and {ωjk}(j,k)∈E are the
edge weights, with ωjk corresponding to (j, k). The graph
Laplacian L ∈ R|V|×|V| is uniquely defined by (Lx)i =∑
j:(i,j)∈E wij(xj − xi), for all i = 1, . . . , |V| and x ∈ R|V|.

The Laplacian L is positive semi-definite and its null-space is
spanned by 1|V|. We refer the reader to [18] for a comprehen-
sive review of algebraic graph theory.

We consider projected dynamical systems of the form

ẋ = ΠT xX (g(x)). (3)

Since the dynamics is discontinuous, the standard notion of
solution for ordinary differential equations does not apply.
Throughout the paper, x : [0, t] → Rn is a (Caratheodory)
solution on the interval [0, t] if it is absolutely continuous
on [0, t] and satisfies (3) almost everywhere in [0, t]. For all
the systems considered in this paper existence and uniqueness
of Caratheodory solutions is guaranteed. We refer the reader
to [19], [20] for in-depth discussions on projected dynami-
cal systems and conditions for existence and uniqueness of
different notions of solutions.

III. DISTRIBUTED OPTIMIZATION WITH FEEDBACK

In this section we describe the proposed algorithmic solution
to the problem outlined in Section I. Consider the optimization
problem (2) over the setting illustrated in Fig. 1. We make the
following assumptions.

Assumption 1. (Optimization problem). The functions fi :
Xi → R are continuously differentiable and r-strongly convex,
and the sets Xi ∈ RNi are nonempty, compact, and convex.
The problem (2) is feasible and the Slater condition is satisfied.

Assumption 2. (Sensing and communication requirements).
For each sensor k = 1, . . . ,m, A(k) ⊂ {1, . . . , n}, with



cardinality q(k) ≤ n is the set of actuators that have access
to its measurement. The actuators communicate through a
connected, undirected graph G.

Under Assumption 1, the set of primal-dual optimizer of (2)
is given by those pairs (x?, λ?) satisfying the KKT conditions

−∇xf(x?)−A>λ? ∈ N x?

X , x? ∈ X ,
Ax? + w − b ∈ N λ?

Rm+ , λ? ∈ Rm+ .
(4)

Given the strong convexity of the cost function f(x) :=∑n
i=1 fi(xi), the problem (2) has a unique optimal solution

x? satisfying (4). The dual optimizer λ?, however, need not
be unique. We define the set of optimal dual variables

Λ = {λ? | (4) are satisfied for the unique optimal x? } . (5)

Uniqueness of the optimal dual variables is not immediate
when only a subset of the constraints is dualized. We refer the
reader to [21] for conditions that imply uniqueness.

For ease of presentation, our treatment begins considering
a simplified instance of (2) with only one constraint (and thus
one sensor). The extension to the general case is straightfor-
ward but notation-heavy and is presented later.

A. Case with one constraint and one sensor

Consider the following simplified version of problem (2):

min
x∈X

n∑
i=1

fi(xi), s.t. a>x+ w ≤ b, (6)

where x = [x>1 , . . . , x
>
n ]> ∈ RN , a = [a>1 , . . . , a

>
n ]> ∈ RN

and w, b ∈ R. Let y = a>x + w be the measured data
at the sensor. A projected primal-dual dynamics feedback
optimization of (6) can be written as [5],

ẋi = ΠT xXi
(−∇fi(xi)− aiλ) , ∀i = 1, . . . , n (7a)

λ̇ = ΠT λR+
(y − b) , (7b)

where λ ∈ R+ is the dual variable for the constraint. Algo-
rithm (7) cannot be directly executed under the communication
restrictions of Assumption 2 (except in the special case q = n),
because not every agent can access y to compute λ. The
standard approach to implement (7) is a “gather and broadcast”
strategy where sensor measurements are gathered by a central
operator that performs (7b) and broadcasts λ to all actuators.

B. Distributed algorithm design

In this section, we modify the algorithm (7) to account for
the restrictions imposed by the sensing and communication
requirements (cf. Assumption 2). To do so, we have actuators
maintain estimates {λ̂i}ni=1 of the dual variable λ, which
are continuously updated through peer-to-peer communication.
Those that have access to the sensor data update their estimate
based on the output y and local communications along the
graph G, the others based on communication alone. Without
loss of generality, we order the actuators so that the first
q receive sensor data and the others do not. We define
λ̂ = [λ̂>1 , . . . , λ̂

>
n ]> = [λ̂>a , λ̂

>
b ]> ∈ Rn+, where λ̂a ∈ Rq+

collects the estimates of λ by the actuators that have access
to sensor data and λ̂b ∈ Rn−q+ collects the estimates of λ by
the actuators that do not. The proposed algorithm is

ẋi = ΠT xXi

(
−∇xifi(xi)− aiλ̂i

)
, i = 1, . . . , n (8a)

˙̂
λ =

[
ΠT λ̂a

Rq
+

((y − b)1q)

0

]
− Lλ̂, (8b)

where λ̂i is a local copy of λ and L ∈ Rn×n is the graph
Laplacian of G. Note that, thanks to the projections onto
T xXi and T λ̂aRq+

, together with the fact that −L is a Metzler
matrix, the sets Xi and Rn+ are invariant under (8a) and (8b),
resp. Furthermore, both the primal update (8a) and the dual
update (8b) are distributed, as those actuators that do not have
access to the sensor measurement update their copy λ̂i from
communication with neighbors.

C. Convergence analysis

Here we analyze the convergence of the distributed algo-
rithm (8). To ease the treatment, we write (8a) compactly as

ẋ = ΠT xX

(
−∇xf(x)− diag{ai}ni=1λ̂

)
,

where λ̂ ∈ Rn = [λ̂1, . . . λ̂n]>. Note that diag{ai}ni=11n = a.
Next, we show that, under a mild condition on the com-
munication graph, (8) converges to the optimal point of the
optimization problem (6). We make the following simplifying
assumption

Assumption 3. (Uniqueness of the optimal dual variables).
The optimal Lagrange multiplier λ? is unique for problem (6).

This assumption makes the treatment easier but it is not
necessary (in fact, we drop it later in the general case).

Theorem III.1. (Convergence of (8)). Under Assumptions 1,
2, and 3, if the Linear Matrix Inequality (LMI)

P =

[
−rIN Mξ

M>ξ − 1
qL− γ1n1

>
n

]
≺ 0, (9)

where

Mξ =
1

2

(
diag{ai}ni=1 −

1

q
(a1>n )

[
Iq 0
0 0n−q

]
+ ξ1>n

)
,

γ > 0, and ξ ∈ RN is satisfied, then the trajectories of the
online distributed algorithm (8) converge to [x?>, λ?1>n ]>,
where [x?, λ?]> is the unique primal-dual optimum of (6).

Proof: Let us consider the following positive-definite
function

V (x, λ̂) =
1

2

(
1

q
‖λ̂− λ̂?‖2 + ‖x− x?‖2

)
. (10)

The time derivative of V along the trajectories of (8) is

V̇ =
1

q
(λ̂− λ̂?)> ˙̂

λ+ (x− x?)>ẋ. (11)

Using Lemma II.1 and the fact that N x
X = (T xX )∗, we deduce

−∇xf(x)− diag{ai}ni=1λ̂− ẋ ∈ N x
X .



By definition of normal cone and x? ∈ X ,

(x− x?)>(−∇xf(x)− diag{ai}ni=1λ̂− ẋ) ≥ 0. (12)

With analogous reasoning we conclude that
1

q
(λ̂− λ̂?)>

([
(y − b)1q

0

]
− Lλ̂− ˙̂

λ

)
≥ 0. (13)

By adding the non-negative quantities (12) and (13) to (11)
and expanding ˙̂

λ we obtain

V̇ ≤ 1

q
(λ̂a − λ?a)>(y − b)1q

− 1

q
(λ̂− λ̂?)>L(λ̂− λ̂?)

− (x− x?)>∇xf(x)− (x− x?)> diag{ai}ni=1λ̂.

(14)

We next add the following terms to (14).

− 1

q
(λ̂a − λ?a)>1q(y

? − b), (15a)

(x− x?)>(∇xf(x?) + diag{ai}ni=1λ̂
?), (15b)

which are non-negative due to the KKT stationary condition.
Adding (15) to the r.h.s of (14) yields

V̇ ≤− (x− x?)>
(
∇xf(x)−∇xf(x?)

)
−(x− x?)>

(
diag{ai}ni=1(λ̂− λ̂?)

)
+

(λ̂a − λ?a)>1q(y − y?)− (λ̂− λ̂?)>L(λ̂− λ̂?)
q

.

(16)

Note that
1

q
λ?>a 1q(y − y?) =

1

q
λ?1>q 1qa

>(x− x?)

= λ?a>(x− x?)
= λ?1>n diag{a>i }ni=1(x− x?)
= λ̂?> diag{a>i }ni=1(x− x?).

(17)

We define λ̃a := 1
q1
>
q λ̂a ∈ R+. Using (17) and the r-strong

convexity of f , (16) becomes

V̇ ≤ −r‖x− x?‖2

− (x− x?)>
(

diag{ai}ni=1(λ̂− 1nλ̃a)
)

− 1

q
(λ̂− λ̂?)>L(λ̂− λ̂?).

(18)

Let us rewrite λ̂ = λ̂‖+ λ̂⊥, where 1>n λ̂⊥ = 0 and λ̂>⊥λ̂‖ = 0.
Next, we denote

λa,‖ =

[
Iq 0
0 0n−q

]
λ̂‖, λa,⊥ =

[
Iq 0
0 0n−q

]
λ̂⊥.

Since all components of λ̂‖ are equal, we derive

λ̂‖ =
1

q
1n1

>
q λa,‖. (19)

Using (19) and the definition of λ̃a, we conclude that

diag{ai}ni=1(λ̂− 1nλ̃a)

= diag{ai}ni=1

(
λ̂⊥ + λ̂‖ −

1

q
1n1

>
q (λa,⊥ + λa,‖)

)
=

(
diag{ai}ni=1 −

1

q
(a1>n )

[
Iq 0
0 0n−q

]
+ ξ1>n

)
λ̂⊥,

(20)

for any ξ ∈ RN . Finally, we note that
1

q
(λ̂− λ̂?)>L(λ̂− λ̂?) =

1

q
λ̂>⊥Lλ̂⊥. (21)

Using (20) and (21) into (18), we conclude that

V̇ ≤ −r‖x− x?‖2 − 2(x− x?)>Mξλ̂⊥

− 1

q
λ̂>⊥(L− γ1n1>n )λ̂⊥ ≤ 0,

(22)

for any γ ∈ R and ξ ∈ RN . We therefore have V̇ ≤ z>Pz ≤
0, where z = [(x−x?)>, λ̂>⊥]> and the last inequality follows
from (9). The level sets of V are compact and positively
invariant. The application of the LaSalle’s invariance princi-
ple [22] ensures that the trajectories of (8) converge to the
largest invariant set M ⊂ Ω, where Ω = {[x>, λ̂>]>|V̇ = 0}.
If V̇ = 0, then z>Pz = 0, which is equivalent to x = x?,
λ̂⊥ = 0. Since λ̂ = λ?1 is a necessary condition for invariance
of M (since ẋ 6= 0 otherwise), the result is proven.

The following result shows that the LMI condition (9) in
Theorem III.1 is always satisfied when the coupling in the
communication graph is strong enough.

Proposition III.2. Let µ be the second smallest eigenvalue of
L. If µ ≥ q

r minξ ‖Mξ‖2, then the LMI (9) is satisfied.

Proof: Note that for any y ∈ Rn, for γ ≥ µ/(qn)
y>Ly+qγy>1n1

>
n y ≥ µ‖y‖2. To see this, it suffices to write

y = (I − 1
n1n1

>
n )y + 1

n1n1
>
n y and follow simple algebraic

manipulations noting that L1n = 0. Let us fix ξ ∈ RN .
Using the Schur complement, (9) is satisfied if and only if
−L− qγ1n1>n + q

rM
>
ξ Mξ is negative definite, which is true

when −µ+ q
r‖Mξ‖2 < 0, completing the proof.

D. General case: multiple constraints, multiple sensors and
non-unique multipliers

In this section, we extend the results above on problem (2)
for the case of one constraint and one sensor to the general
case with multiple constraints and multiple sensors. For each
k = 1, . . . ,m, we let a(k) denote the corresponding column
of A> and B(k) :=

∑
i∈A(k) eie

>
i ∈ Rn×n, where ei is the

ith canonical basis vector. Consider the dynamics

ẋ = ΠT xX

(
−∇xf(x)−

m∑
k=1

diag{a(k)
i }

n
i=1λ̂

(k)

)
, (23a)

˙̂
λ(k) = B(k)ΠT λ̂(k)Rn

+

(
(y(k) − b(k))1n

)
− L(k)λ̂(k), (23b)

where A(k) is defined in Assumption 2, λ̂(k) ∈ Rn+ is the
vector of estimates of the multiplier for the kth constraint and
L(k) is the Laplacian of the graph associated to the commu-
nication network used by the actuator to reach consensus on
λ̂(k) (in the simplest case all L(k) are identical, but this is not
necessary). Since the term

ΠT λ̂(k)Rn
+

(
(y(k) − b(k))1n

)
in (23b) is pre-multiplied by B(k), it needs to be computed
only by those actuators that have access to the kth sensor. This
means that the algorithm is fully distributed, i.e., only relies



on neighbor to neighbor communication. In the following we
prove the convergence of (23) to the set of primal-dual optimal
solutions of (2).

Theorem III.3. (Convergence of (23)). Under Assumptions 1
and 2, let

P :=


−rIN M

(1)

ξ(1)
··· M

(m)

ξ(m)

M
(1)>

ξ(1)
− 1

q(1)
L(1)−γ(1)1n1

>
n

...
. . .

M
(m)>

ξ(m)
− 1

q(m)
L(m)−γ(m)1n1

>
n

 ,
with M (k)

ξ(k)
defined as

M
(k)

ξ(k)
:=

1

2

(
diag{a(k)

i }
n
i=1 −

1

q(k)
(a(k)1>n )B(k) + ξ(k)1>n

)
,

and γ(k) > 0, and ξ(k) ∈ RN arbitrary. If P ≺ 0, then the
trajectories of the online distributed algorithm (23) converge
to [x?>, λ?(1)1>n , . . . , λ

?(m)1>n ]>, where x? is the unique
solution of (2) and [λ?(1), . . . , λ?(m)]> ∈ Λ is an optimal
dual variable.

Proof: We first note that the primal optimum is unique
under Assumption 1, but there could be multiple dual op-
tima. Let us define the set Λ̂ := {[λ?(1)1>n , . . . , λ

?(m)1>n :
[λ?(1), . . . , λ?(m)]> ∈ Λ} and λ̂?(k)(λ̂(k)) := ΠΛ̂(λ̂(k)).
Consider the following positive-definite function

V (x, λ̂)=
1

2

(
‖x− x?‖2+

m∑
k=1

‖λ̂(k)−λ̂?(k)(λ̂(k))‖2

q(k)

)
. (24)

By Danskin’s Theorem [23], the time derivative of (24) along
the trajectories of (23) is given by

V̇ =

m∑
k=1

(
λ̂(k) − λ̂?(k)(λ̂(k))

)
˙̂
λ(k)

q(k)
+ (x− x?)>ẋ (25)

Let us rewrite λ̂(k) = λ̂
(k)
‖ + λ̂

(k)
⊥ , where 1>n λ̂

(k)
⊥ = 0 and

λ̂
(k)>
⊥ λ̂

(k)
‖ = 0. Using the same arguments that lead to (20) in

the proof of Theorem III.1, we conclude that

V̇ ≤ −r‖x− x?‖2 − 2(x− x?)>
m∑
k=1

M
(k)

ξ(k)
λ̂

(k)
⊥

−
m∑
k=1

λ̂
(k)>
⊥

(
1

q(k)
L(k) − γ1n1>n

)
λ̂

(k)
⊥ = z>Pz.

(26)

where z = [(x − x?)>, λ̂
(1)>
⊥ , . . . , λ̂

(m)>
⊥ ]>. The level sets

of V are compact and positively invariant. Therefore, by
LaSalle’s invariance principle [22], the trajectories of (23)
converge to the largest invariant set M ⊂ Ω, where
Ω = {[x>, λ̂(1)>, . . . , λ̂(m)>]> | V̇ = 0}. If V̇ = 0 then
z>Pz = 0, and the latter is equivalent to x = x? and
[λ̂

(1)>
⊥ , . . . , λ̂

(m)>
⊥ ]> = 0. Since λ̂(k) = λ?(k)1n with λ? =

[λ?(1), . . . , λ?(m)]> ∈ Λ is necessary for invariance of M
(ẋ 6= 0 otherwise) the result is proven.

The next result shows that the matrix P in the statement
of Theorem III.3 can always be made negative definite by
strengthening the coupling in the communication graph.

Proposition III.4. Let µ(k) be the second
smallest eigenvalue of L(k). If mink µ

(k) ≥
maxk q

(k)

r minξ(k) ‖[M
(1)

ξ(1)
, . . . ,M

(k)

ξ(k)
]‖2, the matrix P in

the statement of Theorem III.3 is negative definite.

The proof is analogous to that of Proposition III.2 and we
omit it for space reasons. Theorem III.3 and Proposition III.4
show that the distributed algorithm (23) converges to a primal-
dual optimal point of (2) for any connected communication
graph with strong enough coupling.

Remark III.5. Nonlinear notwork maps of the form y =
g(x,w) would make problem (2) nonconvex; we do not
cover this case formally in this work. In practice, the method
proposed here can be employed using local linear approxi-
mations. Preliminary results for power systems [7], [12] and
the simulation results below suggest that the use of feedback
in the algorithm (23) through sensor measurements improves
robustness to model mismatch and the quality of the solution.

IV. NUMERICAL EXAMPLE IN POWER SYSTEMS

In this section we illustrate how the distributed feedback-
based optimization algorithm (23) can be used as a distributed
controller to optimally manage the operation of a distribution
feeder with high renewable penetration. We consider the
modified IEEE 37-node feeder with high penetration of Photo-
Voltaic (PV) generation illustrated in Figure 2. We simulate
the feeder using real data from Anatolia, CA, USA, for solar
irradiance and load consumption for 10 hours with granularity
of one second. We assume that the feeder is divided in three
areas, each of which has access to the voltage measurements
within the area and can decide to curtail the PV active power
production to avoid over-voltage.
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Fig. 2. IEEE 37-node feeder. Node 1 is the Point of Common Coupling
(PCC). All other nodes are connected to a load and a voltage sensor. The
square nodes are equipped with PV systems. The grid has been divided
into three “areas” each of which contains an “actuator”. Each actuator is
responsible for computing the necessary curtailment of the PV systems in
the pertinent area based on local (within the area) voltage measurements and
communication to the other two actuators over the ring graph.

Following [7], we approximate the voltage magnitude by
linearizing the AC power-flow equations around the zero-load
operating point and we obtain a linear model of the form
y ≈ Ax + w, where y is a vector collecting the voltage
magnitude at each bus, x is a vector collecting the decision
variables (PV curtailment and reactive power injections) and w
is a (time-varying) term that depends on the non-controllable



loads (active and reactive) and the solar irradiance. We formu-
late a problem of the form (2) with upper and lower bounds
on the voltages y, local constraint sets Xi on the decision
variables and quadratic functions xi 7→ fi(xi) that penalize
active power curtailment and reactive power injections at the
PVs. With one actuator per area, we use the ring graph with
uniform unit weights for communication (instead, the LMI in
Theorem III.3, which is conservative, would require a gain
of 17.25). To demonstrate the robustness of the proposed
feedback-based optimization algorithm, cf. Remark III.5, we
use Matpower as a nonlinear AC power-flow solver (and
not the linearized model) to simulate the feeder and obtain
the data. Figure 3 shows the effectiveness of the distributed
feedback-based method in avoiding over-voltages. Figure 4
shows a close-up of the Lagrange multipliers at node 35. We
note that consensus is maintained during execution despite the
time-varying nature of the problem.

Fig. 3. Voltage magnitudes, the PVs are curtailed using the distributed
feedback optimization scheme (23) is compared with the voltage magnitude
without any control. We observe a significant improvement in avoiding over-
voltage situations.

Fig. 4. A close-up of the time evolution of the Lagrange multipliers estimates
{λ̂(35)i }3i=1. Note that only the actuator in Area 3 has access to the voltage
measurement at bus 35 to compute λ̂(35)3 . The other estimates are maintained
using consensus alone.

V. CONCLUSIONS AND OUTLOOK

We have proposed a feedback-based, distributed, saddle-
flow algorithm that, relying on sparse measurements and peer-
to-peer communication, provably steers the output of a static
linear system to the solution of a convex optimization problem.
We have demonstrated its efficacy on a distributed voltage reg-
ulation problem. Interesting future research directions include
tightening the stability conditions, extending the current results
to time-varying and non-convex optimization problems, ex-
ploring the effect on algorithm performance of non-negligible

dynamics in the physical system, and studying the robustness
of the feedback-based algorithm to model mismatches and
time-varying disturbances.
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