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A Nonsmooth Approach to Controller Synthesis for
Boolean Specifications

Paul Glotfelter, Jorge Cortés, and Magnus Egerstedt

Abstract—Robotic systems have been proposed as a solution
to a wide array of problems, from autonomous warehousing
to precision agriculture. Yet these systems typically require
satisfaction of multiple constraints, such as collision avoidance
and connectivity maintenance, while completing their primary
objectives. Many such problems may be decomposed into sta-
bility and invariance criteria (e.g., monitor crop patches while
avoiding collisions), and this work utilizes Lyapunov and barrier
functions to encode stability and invariance, respectively. Barrier
functions provide constraint-satisfaction guarantees, and prior
results have established a Boolean composition and controller-
synthesis framework for these objects via nonsmooth analysis.
However, this past work has yet to address Boolean composition
of Lyapunov functions directly and does not apply to all Boolean
expressions. This paper resolves these issues by providing a
general method to encode Boolean expressions of Lyapunov or
barrier functions. Moreover, this work develops an associated
controller-synthesis algorithm that yields discontinuous yet val-
idating controllers with respect to these Boolean expressions.
Experimental results show the efficacy of this work in a precision-
agriculture scenario, where a robot swarm must visit crop patches
while avoiding collisions.

I. INTRODUCTION

Robotic systems are increasingly entering human-occupied
spaces, from factory floors to city highways. These systems
provide a number of benefits; however, they also introduce
interaction-based complexity in that they typically require sat-
isfaction of multiple constraints, such as speed limits, collision
avoidance, or staying in connectivity range. Moreover, such
systems may also have objectives that must be satisfied in
the context of these constraints, like completing a delivery or
monitoring a crop patch.

As an example, consider a precision-agriculture scenario
in which a series of robots must dynamically monitor crops
patches in a field (e.g., as in [1]). In this scenario, each patch
must be autonomously visited by a robot, and the robots must
avoid collisions with each other and potential obstacles in the
field. Moreover, the location or number of these patches may
change, altering the problem formulation. Thus, a framework
for this application must be able to synthesize an effective
control law without requiring vast theoretical modifications in
the face of such changes. That is, an applicable controller-
synthesis framework must address both objectives and con-
straints and be system agnostic, provably correct, and usable in
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real time. This paper develops such a framework and addresses
a similar precision-agriculture scenario in an experiment with
real robots.

For many systems, the above-mentioned constraints (e.g.,
collision avoidance, connectivity maintenance) and others can
be encoded as forward-set-invariance requirements, and recent
results have shown that barrier functions can guarantee this
property while remaining conducive to controller synthesis
[2], [3], [4], [5], [6]. These objects represent a valuable
theoretical and practical tool, seeing success in applications
ranging from teams of quadrotors to remote-access robotics
testbeds [7], [8]. The versatility of barrier functions stems from
the fact that they are not formulated with respect to particular
systems and provide a general methodology to formally
guarantee safety. Additionally, prior work demonstrates that
safe controllers may be quickly synthesized. For example,
the work in [8] synthesizes controllers at 100 Hz for an
80-dimensional ensemble system of differential-drive robots.
These observations justify the adoption of barrier functions to
encode constraints.

From a complementary perspective, Lyapunov functions
have long been used as a go-to method for stability, and the
prior work is ubiquitous in the literature. This paper uses
set-stable Nonsmooth Lyapunov Functions (NLFs) to encode
objectives, and the formulation is primarily based on [9],
[10], [11], [12]. Together, Lyapunov functions and barrier
functions encode stability and invariance criteria, respectively,
but crafting a single such function to encode a complex,
evolving robotics objective or constraint may be tedious.
In this context, logical composition provides a particularly
valuable tool, allowing complex behaviors to be created from
simple propositions, and Boolean logic represents one such
method. However, Boolean operations such as conjunction and
disjunction inevitably introduce nonsmoothness when encoded
with min and max operations. In our previous work, we have
introduced Nonsmooth Barrier Functions (NBFs), extending
barrier functions to the nonsmooth case [13] and introducing
controller-synthesis methods for them [14]. Section I-A com-
pares and contrasts related methods, outside the area of barrier
or Lyapunov functions, to this work.

This work’s first main result elucidates the calculation
of discontinuous but validating controllers for NBFs and
NLFs represented by piece-wise-smooth (PCr) functions [15].
These results involve discontinuous dynamical systems and
utilize nonsmooth analysis, as studied in [16], [17], [11],
[10], [18]. Specifically, this result establishes a link between
the PCr functions of [15] with the generalized gradient of
[17] to develop a new theory. To analyze PCr functions,
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one typically analyzes a set of continuously differentiable
functions, and certain types of index sets capture the behavior
of the generalized gradient. By extending these index functions
to capture the locality of PCr functions, this work derives a
general method for synthesizing discontinuous controllers for
PCr functions that represent an NBF or a NLF. Moreover, this
work shows that Boolean expressions on NBFs or NLFs fall
into the class of PCr functions and provides some preliminary
results on Boolean composition of NLFs.

The second contribution of this work is a controller-
synthesis framework that permits the combination of NBFs
and NLFs in an optimization program. The resulting (poten-
tially discontinuous) controller guarantees that the objective
is accomplished and the constraints are satisfied. This syn-
thesis procedure relies on using an appropriate index set for
the Boolean expressions, and this work provides a system-
independent algorithm to calculate such index sets. To show
the practicality of these results, a precision-agriculture-based
experiment showcases that the algorithm may be applied in
real time. In the considered scenario, a swarm of robots
must visit a series of crop patches in a simulated farming
environment while avoiding inter-robot collisions. Boolean
NLFs and NBFs capture the objectives and constraints for
the experiment, and the aforementioned algorithm produces
an online controller that accomplishes this objective while pre-
serving safety in the swarm. Section I-A includes a discussion
of related work in the context of these stated contributions.

The organization of this paper follows. Section II notes
background material required for this paper including the
system of interest, NBFs, nonsmooth analysis, PCr functions,
and discontinuous dynamical systems. Section III begins the
main contributions for this paper, providing results on a class
of index functions for PCr functions and extending the results
of [14]. Next, Section IV formulates Boolean expressions
of NBFs and NLFs and shows that they fall into a specific
class of PCr functions. Moreover, this section formulates an
optimization-based controller-synthesis framework for NBFs
and NLFs. Combining the prior two sections, Section V
demonstrates some recursive methods for calculating appropri-
ate index functions, applies these methods to Boolean expres-
sions, and provides a straightforward algorithm for recursively
calculating these index functions. To demonstrate the efficacy
of the theoretical results, Section VI showcases an experiment
that uses the controller-synthesis framework of Section IV and
the algorithm proposed in Section V to produce a safe and
effective controller in a precision-agriculture scenario.

A. Related Work

Related work to the contributions proposed by Section I lies
in two main areas: set invariance and logical composition of
functions, and nonsmooth-analysis techniques.

1) Set-Invariance Methods: Barrier functions are not the
only set-invariance method, and many other such methods
exist, such as [19], [20], [21], [22]. These approaches range
from potential functions to PDE-based approaches to compute
reachable sets. The work [19] formulates a modular obstacle-
avoidance framework for general dynamical systems, yet this

framework is limited to the particular application of obstacle
avoidance. The work [20] relies on the solution of PDEs to
guarantee set invariance, and in practice, these computations
can be prohibitively costly. Finally, potential functions [21] are
widely used, yet they are typically formulated with respect
to a specific system or constraint (i.e., obstacle avoidance)
and usually must be tuned for different objectives. As such,
the system’s objective and constraints may not be readily
interchanged. Similarly, [22] presents a variety of collision-
avoidance methods that do not generalize beyond solving
navigation for mobile robots in a cluttered environment.

In general, three facts separate barrier functions from other
methods in the context of this paper and prior efforts. The first
is that barrier functions are provably correct, as the constraint
satisfaction is based on forward-set invariance. Second, barrier
functions are mathematically agnostic in that they may be
formulated independently from a particular system. Third,
point-wise satisfying a particular inequality involving barrier
functions across the state space produces a global invariance
result. This quality allows barrier functions to be included
in optimization programs for controller-synthesis purposes
without requiring a look-ahead (e.g., as in model-predictive
control), significantly reducing the computational burden.

2) Logical Composition of Functions: It is worth noting
that prior work has considered Boolean logic for real-valued
functions [23], [24]. However, this literature mostly focuses
on smooth functions that capture conjunction and disjunction,
rather than the nonsmooth max/min. Such smooth analogs
are possible; however, they come at the expense of becoming
significantly more difficult to differentiate. Because controller
synthesis with respect to Boolean expressions inevitably in-
volves taking derivatives, this quality complicates the synthesis
process. Conversely, the approach of [13], [14] becomes
relatively straightforward from a synthesis perspective, at the
expense of requiring nonsmooth analysis. The major limita-
tions of [13], [14] are that they do not apply to general Boolean
expressions and do not consider NLFs in controller synthesis.
This work resolves both issues by extending the formulated
controller-synthesis framework to address inductive Boolean
compositions of NBFs and NLFs.

With respect to barrier functions, recent work [25] uses
Lyapunov-like Barrier Functions (LBFs) in the context of
multi-agent control, which are noticeably different in formu-
lation to the barrier functions here. Moreover, their method
of Boolean composition is a norm-like function similar to the
approaches described above. In comparison to this work, the
results in [25] do not apply to differential inclusions and es-
tablish only weak forward invariance, meaning that in the case
of multiple solutions, only one is guaranteed to remain in the
considered set. By contrast, the guarantees of this work apply
to all solutions. Furthermore, this paper provides a generic
set of novel mathematical objects for synthesizing controllers
with respect to Boolean compositions of functions, whereas
the approach in [25] is tailored to a particular application.

3) Analysis of Solutions Along Nonsmooth Functions:
Some of the new theory developed in this paper aids in
the analysis of PCr functions along solutions to differen-
tial inclusions, particularly those resulting from the Filip-
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pov regularization. Usually, when considering this branch of
nonsmooth analysis, one must typically use different (though
analogous) tools than in the smooth case, such as so-called
set-valued Lie derivatives [16]. However, many of these tech-
niques require explicit computation of the Filippov operator
or exact calculation of the generalized gradient [10], yet
exact calculation of these objects can be tedious due to their
limit-point representation. That is, the behavior of the system
must be considered in a neighborhood around each point
rather than just pointwise. This calculation presents an even
larger burden in the case of optimization-based controller
synthesis, as these objects cannot be calculated and held in
memory, at least according to their definitions. The generalized
gradient admits a convenient calculus; however, with respect
to the dynamics, a calculus for the Filippov operator is less
useful because it depends heavily on the particular dynamical
system. Moreover, as the generalized-gradient calculus yields
a superset of the generalized gradient, certain simplifying set-
valued Lie derivatives cannot be applied [16].

Exacerbating the issue, one typically creates the controller
(analytically or numerically) as a function of the generalized
gradient, much like when creating a controller via the usual
gradient of a Lyapunov function in the smooth sense, compli-
cating the instantiation of the Filippov operator. Accordingly,
there is a need for analysis techniques that allow one to
circumvent the explicit calculation of these objects while
retaining their nice provable guarantees. Some techniques exist
for simplifying the calculus of Filippov regularizations, such
as assuming a piecewise-smooth vector field [16], but this
assumption is quite restrictive at large and introduces the trade
off of proving that each particular vector field satisfies this
property.

Toward this end, [14] proposes a mathematical object
representing the generalized gradient by a finite set of known,
readily computed points for a certain class of functions.
Moreover, it also provides a method by which controllers
synthesized with respect to this new object do not need to
be Filippov regularized explicitly, a major leap forward from
existing methods. The application of this technique requires no
additional assumptions on the dynamics. Unfortunately, this
new object applies to a restrictive class of functions along
which trajectories are being considered (e.g., the Lyapunov
or barrier function). Similarly, [26] considers a comparable
problem to [14], avoiding the calculation of the Filippov
regularization; however, as in [14], [26] applies to a restrictive
class of functions and, differently from [14], requires the
assumption of a piecewise-defined vector field.

This paper extends [14], providing new nonsmooth-analysis
techniques and constructive controller-synthesis results for a
useful class of NLFs and NBFs that is closed under Boolean
composition. Moreover, the resulting closed-loop systems need
not be explicitly Filippov regularized, which significantly
simplifies their practical application, and this circumvention
of Filippov regularization requires no restrictive assumptions
on the dynamics.

II. BACKGROUND MATERIAL

This section contains background material, introducing the
system of interest, nonsmooth analysis, and Nonsmooth Bar-
rier Functions (NBFs). We consider control-affine systems
with potentially discontinuous control inputs and, as a result,
introduce the theory of discontinuous dynamical systems.
We also present nonsmooth analysis techniques necessary to
formulate and validate NBFs.

A. Notation

The symbol × denotes the Cartesian product. For k > 0,
the symbol [k] indicates the set {1, . . . , k}. The notation
R≥0 represents the set of nonnegative real numbers; a.e.
symbolizes almost everywhere in the sense of Lebesgue mea-
sure. The operation co corresponds to the convex hull of a
set. A function α : R → R is extended class-K if α is
continuous, strictly increasing, and α(0) = 0. An extended
class-K function is class-K when restricted to R≥0. A function
β : R≥0 × R≥0 → R≥0 is class-KL if it is class-K in its
first argument and, for each fixed r, β(r, ·) is continuous,
decreasing, and lims→∞ β(r, s) = 0. For a set A, |A| means
its cardinality, and 2A indicates its powerset.

B. System of Interest

This work considers control-affine systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0, (1)

where f : Rn → Rn, g : Rn → Rn×m are continuous
and u : Rn → Rm is measurable and locally bounded.
This assumption covers a wide class of systems, as most
robotic systems (e.g., differential-drive robots, quadcopters)
are control affine. An important point is that we avoid the
assumption that u is continuous, which becomes relevant for
controller synthesis with respect to NBFs. That is, the synthe-
sized controller may contain discontinuities, which is allowed
for by the measurability and locally bounded assumptions.

Theoretically speaking, f and g may also be discontinuous,
in the same sense as u; however, as this paper pertains to
controller synthesis, it assumes continuity of f and g. Because
u is potentially discontinuous, solutions to (1) may not exist.
Fortunately, Filippov’s operator maps (1) into a differential
inclusion to which solutions exist.

Definition II.1 ([11, Theorem 1]). The Filippov operator
K[f + gu] : Rn → 2R

n

with respect to (1) at x′ ∈ Rn is

K[f + gu](x′) =

co{ lim
i→∞

f(xi) + g(xi)u(xi) : xi → x′, xi /∈ S̄ ∪ S},

where S̄ is a fixed zero-Lebesgue-measure set and S is any
set of zero Lebesgue measure.

Remark II.2. The map of limit points L : Rn → 2R
n

defined
by

L[f + gu](x′) =

{ lim
i→∞

f(xi) + g(xi)u(xi) : xi → x′, xi /∈ S̄ ∪ S}.
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becomes useful later in this paper. Note that for every x′ ∈ Rn,
K[f + gu](x′) = coL[f + gu](x′). •

A general differential inclusion is formulated as

ẋ(t) ∈ F (x(t)), x(0) = x0, (2)

where F : Rn → 2R
n

is a nonempty, compact-, convex-
valued map that is upper semi-continuous. A set-valued map
F : Rn → 2R

n

is upper semi-continuous if for every x′ ∈ Rn,
ε > 0 there exists δ > 0 such that

y ∈ B(x′, δ) =⇒ F (y) ⊂ F (x′) +B(0, ε).

Sometimes, set-valued maps are written F : Rn ⇒ Rn, which
has the same meaning as in this work.

These conditions ensure that Carathéodory solutions to (2)
exist. A Carathéodory solution is an absolutely continuous
function x : [0, t1]→ Rn such that

ẋ(t) ∈ F (x(t)), x(0) = x0, (3)

almost everywhere on [0, t1] 3 t, and x(0) = x0. Note that
t1 > 0 and that t1 may depend on each particular solution.
In general, Carathéodory solutions to (2) exist, under these
regularity conditions, but are not unique. For this work, an
important fact is that Filippov’s operator K[f+gu] satisfies the
aforementioned conditions. That is, the differential inclusion

ẋ(t) ∈ K[f + gu](x(t)), x(0) = x0 (4)

has Carathéodory solutions [16], [9]. Such solutions are some-
times referred to as Filippov solutions to (1). For extensive
coverage of discontinuous dynamical systems, see [16].

The usage of Filippov regularization, rather than the similar
Krasovskii regularization (e.g., see [9]), is motivated by prior
work as well as the result in Definition II.1. Indeed, within the
entirety of this paper, one may immediately replace the us-
age of Filippov regularization with Krasovskii regularization.
Sometimes Filippov regularization is denoted by F [f + gu];
however, to avoid confusion with (3), this work utilizes the
notation in [11].

C. Nonsmooth Analysis

Previous work provides a plethora of methods for analyzing
nonsmooth functions. In the case that the given nonsmooth
function is at least locally Lipschitz, the generalized gradient is
a well-understood object with an extensive calculus. Moreover,
in the case of Boolean composition (i.e., composition with
min and max operators), one can readily find a superset of
the generalized gradient in terms of the component functions.
The formal definition of the generalized gradient is as follows.

Definition II.3 ([17, Theorem 2.5.1]). Let h : Rn → R be
Lipschitz near x′, and suppose S is any set of Lebesgue-
measure zero in Rn. Then, the generalized gradient of the
function ∂ch(x′) is

∂ch(x′) = co{ lim
i→∞

∇h(xi) : xi → x′, xi /∈ Ωh ∪ S},

where Ωh is the Lebesgue-zero-measure set where h is
nondifferentiable.

Note that, per Definition II.3, the generalized gradient ∂ch :
Rn → 2R

n

is a set-valued map. Another useful result relates
to a chain rule for compositions of locally Lipschitz functions.
Note that the closure operation from [17, Theorem 2.3.9] may
be omitted (see the proof of the referenced theorem) for finite-
dimensional spaces. Moreover, for two sets A ⊂ Rn×m, B ⊂
Rm×p, the set-valued multiplication is

AB = {ab : a ∈ A, b ∈ B}.

Theorem II.4 ([17, Theorem 2.3.9]). Let h = f ◦g, where g :
Rn → Rm and f : Rm → R are locally Lipschitz functions,
and let x′ ∈ Rn. Then,

∂ch(x′) ⊂ co

(
m×

k=1

∂cg
k(x′)

)
∂cf(g(x′)),

where gk denotes the kth component function of g.

Proposition II.5 ([17, Proposition 2.3.1]). Let h : Rn → R
be a locally Lipschitz function. For any scalar s one has

∂c(sh)(x′) = s∂ch(x′),∀x′ ∈ Rn.

The main advantage of the generalized gradient is that it
permits analysis along Carathéodory solutions. In particular,
given a locally Lipschitz function h : Rn → R and a
Carathédory solution x : [0, t1]→ Rn to (2), we have

d

dt

(
h(x(t))

)
≥ min ∂ch(x(t))>F (x(t)) (5)

almost everywhere on [0, t1] 3 t. The map ∂ch(·)>F (·) is
sometimes referred to as a set-valued Lie derivative (e.g., see
[16]). Explicitly, the set-valued product is the set

∂ch(·)>F (·) = {a>b : a ∈ ∂ch(·), b ∈ F (·)},

but, for brevity, we use the relaxed notation in (5).

D. Nonsmooth Barrier Functions

This section contains background material on NBFs. For
brevity, NBFs are formulated with respect to the general
differential inclusion in (3) with the understanding that these
results also apply to the controlled system in (1) via Filippov’s
operator (4).

The formulation of barrier functions is as follows. Given a
function h : Rn → R, the safe set is defined as

C = {x′ ∈ Rn : h(x′) ≥ 0}.

That is, C is the super-zero level set to h. The goal becomes
to ensure forward invariance of C with respect to (3). This
work considers a set C to be forward invariant with respect to
a differential inclusion (3) if

x0 ∈ C =⇒ x(t) ∈ C,∀t ∈ [0, t1],

for every Carathéodory solution x : [0, t1] → Rn. A valid
NBF is defined as follows.
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Definition II.6. A locally Lipschitz function h : Rn → R is a
valid NBF for (3) if, for each x0 ∈ C, there exists a class-KL
function β : R≥0 × R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x0), t),

for every t ∈ [0, t1] and every Carathéodory solution x :
[0, t1]→ Rn.

The above definition ensures that h(x(t)) ≥ 0, ∀t ∈ [0, t1].
Thus, x0 ∈ C implies that x(t) ∈ C for all t ∈ [0, t1], for every
Carathéodory solution, meaning that C is forward invariant.
Note that, cf. [13], satisfying the differential inequality

ḣ(x(t)) ≥ −α(h(x(t))), a.e. t ∈ [0, t1], (6)

for every Carathéodory solution and for some locally Lipschitz
extended class-K function α : R→ R, ensures that h is a valid
NBF.

Toward controller synthesis, we should be able to verify
(6) without explicitly calculating the time derivative of h ◦ x
for every Carathéodory solution. This is precisely the strength
of (5), as it allows one to check the validity of the NBF
spatially (i.e., over Rn), rather than computing the time
derivative explicitly. Combining (5) and (6), the next results
follow.

Theorem II.7. [13, Theorem 2] Let h : Rn → R be a locally
Lipschitz function. If there exists a locally Lipschitz extended
class-K function α : R→ R such that

min ∂ch(x′)>F (x′) ≥ −α(h(x′)),∀x′ ∈ Rn,

then h is a valid NBF for (3).

Definition II.8 ([14, Definition 4]). Let h : Rn → R be a
locally Lipschitz function. The function h is a valid Closed-
loop Nonsmooth Barrier Function (CNBF) for (1) if and only
if there exists a locally Lipschitz extended class-K function
α : R → R and a measurable and locally bounded function
u : Rn → Rm such that

min ∂ch(x′)>K[f + gu](x′) ≥ −α(h(x′)),∀x′ ∈ Rn.

Note that Definition II.8 differs in terminology from [14],
which is for symmetry with upcoming definitions; the math-
ematical relationship is equivalent. A CNBF automatically
satisfies the requirements for a valid NBF via Theorem II.7
in the sense that C is forward invariant with respect to (4),
but some difficulty arises in actually finding such a controller,
as the Filippov operator must be applied to it. This situation
creates issues for controller synthesis, because the Filippov
operator cannot feasibly be calculated in real time. Moreover,
for a controlled system,

min ∂ch(x′)>(f(x′) + g(x′)u) ≥ −α(h(x′)),∀x′ ∈ Rn,

does not imply that

min ∂ch(x′)>K[f + gu](x′) ≥ −α(h(x′)),∀x′ ∈ Rn,

so the generalized gradient cannot be directly used for con-
troller synthesis. This implication does not hold because, at
any point, ∂ch(x′) and K[f + gu](x′) are collections of
limit points. Because h is nonsmooth and the dynamics are

discontinuous, the behavior of these objects along sequences
is potentially different. The work in [14] shows that, for certain
well-behaved Boolean CNBFs, controller synthesis is possible
by using an extended version of the generalized gradient called
the almost-active gradient. However, this object is limited, as
it only applies to Boolean CNBFs consisting of exclusively ∧
or ∨ operations. Section II-E lifts this restriction.

E. Piece-wise-Differentiable Functions

This work extends the results in [14] by formulating
Boolean NBFs as piece-wise differentiable (PCr) functions
as in [15], and one of the main results of this paper, in
Section III, utilizes this theory to formulate controller synthesis
for general Boolean expressions. Accordingly, PCr functions
represent an important class of nonsmooth functions, and this
section discusses relevant background material. Formally, a
PCr function is defined as follows.

Definition II.9 ([15, p. 91]). A function h : Rn → R is Piece-
Wise Differentiable (PCr) if for every x′ ∈ Rn there exists
an open neighborhood N of x′ and a set of Cr functions
{hi : i ∈ Kh}, with Kh a finite index set, such that h is
a continuous selection of the functions hi on N . That is, h
is continuous and h(y) ∈ {hi(y) : i ∈ Kh}, ∀y ∈ N . The
function h is Piece-Wise Linear (PL) if this definition holds
with linear functions hi(y) = a>i y.

Note that, in Definition II.9, the finite set of component
functions may vary based on the particular point in the domain.
Here we only consider PCr functions whose component
functions are defined over the entire domain. That is,

h(y) ∈ {hi(y) : i ∈ Kh},∀y ∈ Rn,

for some finite set of functions denoted by Kh, which is fixed.
In the context of this paper, this assumption is not restrictive
and does not inhibit the generality of the proposed results
for controller synthesis. Throughout this work, we make the
assumption that r > 0 (i.e., that all the component functions
are at least C1).

We next relate PCr functions to the generalized gradient
defined in Section II-C. In this case, the active index set, Iah :
Rn → 2Kh , for a PCr function h : Rn → R defined as

Iah(x′) = {i ∈ Kh : hi(x
′) = h(x′)}, (7)

plays a role. However, it may be that the active set captures
irrelevant functions. As such, the essentially active set, Ieh :
Rn → 2Kh , defined by

Ieh(x′) = {i ∈ Kh : x′ ∈ cl(int({y : hi(y) = h(y)}))} (8)

can be alternatively used. The essentially active index function,
Ieh, contains only functions that lie in the closure of the interior
of the active set, ignoring lower-dimensional sets. To be in
Ieh, a function must be active on a sequence that converges
in the interior of the active set. As a consequence, Ieh(·) ⊂
Iah(·) always. However, Ieh may be more difficult to calculate,
whereas Iah(·) remains straightforward to calculate, assuming
the component functions are known.
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Tying these theories together, the following result links the
essentially active set Ieh to the generalized gradient, and this
relationship is critical for the forthcoming results.

Proposition II.10 ([15, Proposition 4.3.1]). If U is an open
subset of Rn and h : U ⊂ Rn → R is a PC1-function with
C1 selection functions hi : N → R, i ∈ Kh, at x′ ∈ N ⊂ U ,
where N is a neighborhood of x′, then

∂ch(x′) = co{∇hi(x′) : i ∈ Ieh(x′)}.

III. EVALUATING SET-VALUED LIE DERIVATIVES WITH
ENCAPSULATING INDEX FUNCTIONS

This section begins the main results of this work, which
relate to extending the work in [14] to PCr functions through
particular index sets. In turn, this development extends the
controller-synthesis framework for Boolean CNBFs to general
Boolean expressions.

A. Encapsulating Index Functions

As seen in Proposition II.10, index functions unite PCr

functions with the generalized gradient. This section presents
a class of index functions that are eventually useful for
validating NBFs and NLFs in the presence of discontinuities in
the control input. The following definition describes the index
functions that capture the generalized gradient.

Definition III.1. Let h : Rn → R be a PCr function, and let
Ih : Rn → 2Kh be an index function for h. Then, Ih is an
encapsulating index function for h if and only if

∂ch(x′) ⊂ co{∇hi(x′) : i ∈ Ih(x′)}

and hi(x′) = h(x′) for all i ∈ Ih(x′) and all x′ ∈ Rn.

Note that, by Proposition II.10, encapsulating index func-
tions always exist. Moreover, the requirement that hi(x′) =
h(x′) for all i ∈ Ih(x′) is nonrestrictive, because indices
outside this index set are superfluous. The goal then becomes
to find index functions that are relatively easy to calculate and
satisfy this definition. Because this work studies these index
functions extensively, the following notation

{∇hi(·) : i ∈ I(·)} = {∇hi}
i∈I

(·)

becomes useful for brevity in later results. The following
example illustrates Definition III.1.

Example III.1. Let h : R → R be defined as h(x′) = |x′|,
which is equivalent to max{−x′, x′}. As such, h is a PCr

function with component functions h1, h2 : R→ R defined as
h1(x′) = −x′, h2(x′) = x′. Accordingly, Kh = {1, 2}. Note
that the generalized gradient for h is

∂ch(x′) = {−1}, x′ ∈ (−∞, 0)

∂ch(x′) = [−1, 1], x′ = 0

∂ch(x′) = {1}, x′ ∈ (0,∞).

Then, an encapsulating index function for h is Ih : R→ 2Kh

defined as

Ih(x′) = {1}, x′ ∈ (−∞, 0)

Ih(x′) = {1, 2}, x′ = 0

Ih(x′) = {2}, x′ ∈ (0,∞).

•

Recall the problem discussed in Section II-D in relation to
synthesizing controllers via the generalized gradient. In this
case, encapsulating index functions, as in Definition III.1, still
encounter this fundamental limitation, because encapsulating
index functions only capture indices that create the generalized
gradient. As such, it becomes necessary to further extend
the index-function developments to make sure that we can
rely on the indices uniformly around any particular point.
Resolving this limitation, this section shows that capturing the
locality of encapsulating index functions creates an object that
is sufficient for controller-synthesis purposes. Toward this end,
the following defines locality-capturing index functions.

Definition III.2. Let h : Rn → R be a PCr function and
I lh : Rn → 2Kh an index function for h. Then, I lh is a locally
encapsulating index function for h if and only if there exists
an encapsulating index function for h, Ih : Rn → 2Kh , such
that, for every x′ ∈ Rn, there exists δ > 0 such that

Ih(x′) ⊂ I lh(y), ∀y ∈ B(x′, δ).

A locally encapsulating index function maintains the indices
of an encapsulating index function in a neighborhood of each
point. Later, this section shows that this regularity is enough
to circumvent the calculation of the Filippov operator. The
following example demonstrates a locally encapsulating index
function.

Example III.2. Let Ih : R → 2Kh be defined as in
Example III.1. Then, a locally encapsulating index function
I lh : R→ 2Kh for Ih is

I lh(x′) = {1}, x′ ∈ (∞,−ε)
I lh(x′) = {1, 2}, x′ ∈ [−ε, ε]
I lh(x′) = {2}, x′ ∈ (ε,∞),

for any fixed ε > 0. •

An important point is that PCr functions admit locally
encapsulating index functions, as we establish next. As with
encapsulating index functions, the primary consideration for
picking a specific locally encapsulating index function depends
on use-specific circumstances (e.g., Ie versus Ia).

Proposition III.3. If h : Rn → R is a PCr function, then
there exists a locally encapsulating index function I lh : Rn →
2Kh for h.

Proof: Consider the index function I lh : Rn → 2Kh ,

I lh(x′) = {i ∈ Kh : |hi(x′)− h(x′)| ≤ ε},∀x′ ∈ Rn,

for some fixed ε > 0 independent of x′. Let Ieh : Rn → 2Kh

be the essentially active index function for h as in (8).
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Now, take x′ ∈ Rn and assume that i ∈ Ie(x′). Since
i ∈ Ieh(x′), hi(x′) = h(x′). Moreover, by continuity of hi and
h, there exists a δ1 and δ2 such that

y ∈ B(x′, δ1) =⇒ |hi(y)− hi(x′)| ≤ ε/2

and
y ∈ B(x′, δ2) =⇒ |h(y)− h(x′)| ≤ ε/2.

Let δ = min{δ1, δ2}. It remains to be shown that i ∈ I lh(y)
for all y ∈ B(x′, δ). Let y ∈ B(x′, δ). Then,

|hi(y)− h(y)| = |hi(y)− hi(x′) + h(x′)− h(y)|
≤ |hi(y)− hi(x′)|+ |h(x′)− h(y)| ≤ ε,

implying that i ∈ I lh(y). Thus, I lh is a locally encapsulating
index function for h via Ieh.

Remark III.4. Note that the proof of Proposition III.3 also
shows that I lh is a locally encapsulating index function for h
with respect to the active index function Iah defined in (7). •

B. Evaluation of Set-Valued Lie Derivatives

The next theorem represents the first main result of this
paper, demonstrating that locally encapsulating index functions
are indeed the correct type of index function to navigate the
issues caused by employing Filippov’s operator.

Theorem III.5. Let f̂ : Rn → Rn be measurable and locally
bounded and α : R → R continuous. Let h : Rn → R
be a PCr function, and let I lh : Rn → 2Kh be a locally
encapsulating index function for h. If

min {∇hi}
i∈Il

h

(x′)>f̂(x′) ≥ −α(h(x′)),∀x′ ∈ Rn,

then
min ∂ch(x′)>K[f̂ ](x′) ≥ −α(h(x′)),

for all x′ ∈ Rn.

Proof: Let x′ ∈ Rn. It must be shown that

min ∂ch(x′)>K[f̂ ](x′) ≥ −α(h(x′)),

and by application of [13, Lemma 3], it suffices to show that

min {∇hi}
i∈Ih

(x′)>L[f̂ ](x′) ≥ −α(h(x′)),

for any encapsulating index function Ih. As such, take l ∈
L[f ](x′). Then, there exists xj → x′ such that

l = lim
j→∞

f̂(xj).

Since I lh is a locally encapsulating index function for h,
there exists an encapsulating index function Ih : Rn → 2Kh

for h such that, at x′,

Ih(x′) ⊂ I lh(y),∀y ∈ B(x′, δ),

for some δ > 0. Moreover, there exists an N such that for all
j ≥ N , ‖xj − x′‖ ≤ δ. Thus, reusing notation and without
loss of generality, consider only xj such that j ≥ N .

Now, take i ∈ Ih(x′). It remains to be shown that

∇hi(x′)>l ≥ −α(h(x′)).

Accordingly,

∇hi(x′)>l+α(h(x′))

= ∇hi(x′)> lim
j→∞

f̂(xj)+α(h(x′))

= lim
j→∞

∇hi(xj)> lim
j→∞

f̂(xj)+ lim
j→∞

α(h(xj))

= lim
j→∞

∇hi(xj)>f̂(xj)+ lim
j→∞

α(h(xj))

= lim
j→∞

[
∇hi(xj)>f̂(xj)+α(h(xj))

]
Moreover, ‖xj − x′‖ ≤ δ, ∀j, meaning that i ∈ I lh(xj), ∀j.

Thus,
∇hi(xj)>f̂(xj)+α(h(xj)) ≥ 0,∀j,

so
lim
j→∞

[
∇hi(xj)>f̂(xj)+α(h(xj))

]
≥ 0

as well, implying that

min ∂ch(x′)>K[f̂ ](x′) ≥ −α(h(x′))

and yielding the desired result.
Theorem III.5 becomes particularly useful in the context

of controller synthesis. Specifically, including a locally en-
capsulating index function as a constraint in an optimization
program yields a validating but potentially discontinuous con-
troller. The proof of Proposition III.6 is omitted, as it follows
directly from Theorem III.5.

Proposition III.6. Let h : Rn → R be a candidate NBF, and
let f , g be as in (1). If there exists a locally encapsulating index
function I lh : Rn → 2Kh for h; a locally Lipschitz extended
class-K function α : R → R; and a measurable and locally
bounded function u : Rm → Rn such that

min {∇hi}
i∈Il

h

(x′)>(f(x′)+g(x′)u(x′)) ≥ −α(h(x′)),∀x′ ∈ Rn,

then h is a valid CNBF for (1).

IV. BOOLEAN COMPOSITION FOR LYAPUNOV AND
BARRIER FUNCTIONS

This section builds on the concept of locally encapsulating
index functions to formulate the Boolean composition syntax
and the class of Boolean expressions considered in this work.
The first results pertain to formulating Nonsmooth Lyapunov
Functions (NLFs) in the present context and some conditions
under which they may be composed with Boolean operators.
Then, we discuss the syntax and semantics of Boolean com-
position for NLFs and NBFs.

A. Closed-Loop Nonsmooth Lyapunov Functions

NLFs have been studied in great detail, including [10],
[11], [9]. However, they have not been previously extended to
the particular case of Boolean composition. There are many
different formulations for Lyapunov functions; in this case, we
use the following formulation, as it is amenable to Boolean
composition.
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Definition IV.1. A locally Lipschitz function V : Rn → R is
a candidate Nonsmooth Lyapunov Function (NLF) if and only
if, with

A = {x′ ∈ Rn : V (x′) = 0},

V (x′) > 0, for all x′ /∈ A, A is nonempty, and

{x′ ∈ Rn : V (x′) ≤ a}

is bounded for every a ∈ R≥0.

Remark IV.2. For a candidate NLF V , we always use A to
denote the zero level set. Moreover, note that A is compact,
because it is assumed to be bounded and is closed via
continuity of V . •

Definition IV.3. A candidate NLF V : Rn → R is a valid
Closed-loop Nonsmooth Lyapunov Function (CNLF) for (1) if
and only if there exists a continuous, positive-definite function
p : R≥0 → R≥0, and a measurable and locally bounded
function u : Rn → Rm such that

max ∂cV (x′)>K[f + gu](x′) ≤ −p(V (x′)),∀x′ ∈ Rn.

Note that Definition IV.3 creates some mathematical dif-
ferences from similar existing literature (e.g., that of control
Lyapunov functions). For example, Definition IV.3 assumes
the existence of a measurable and locally bounded controller;
whereas, in the literature, one typically assumes a pointwise
decrease condition. That is, pointwise, there is some value
of u ∈ Rm that generates a decrease. Then, one must
prove that a stabilizing controller exists. This work focuses
on constructively synthesizing validating controllers with re-
spect to index sets, as previously seen for CNBFs. As such,
Definition IV.3 strives to indicate this pursuit. Moreover, the
pointwise condition makes a statement about a fixed value
u ∈ Rm, complicating application of the Filippov operator,
which requires a function. Accordingly, one may think of
Definition IV.3 as assuming the existence of controller such
that the candidate NLF is a valid NLF for the closed-loop
system. Some future work lies in the investigation of a
pointwise condition for Definition IV.3 with respect to an
appropriate index set.

As shown by Definitions IV.1 and IV.3, this work focuses
on set stability for NLFs. The reason for this is as follows:
Boolean composition of NLFs entails intersections and unions
of the zero level set. As such, restricting NLFs to a point
limits the generality of Boolean composition, because union
and intersection would only be able to generate NLFs for a
point.

Theorem IV.4. Let V : Rn → R≥0 be a candidate NLF. If V
is a valid CNLF for (1), then the set A is uniformly globally
asymptotically stable with respect to (4).

We omit the proof of Theorem IV.4 for brevity, as it is
similar to many prior proofs of similar results; however, we
do provide a discussion of the required tools. The existence of
a controller such that A is (uniformly globally) asymptotically
stable is also referred to as stabilizability (though, typically,
stabilizability refers to the ability to find such a controller).
In this work, a valid CNLF explicitly requires the existence

of such a controller. Accordingly, as a stabilizing controller
immediately exists, one may consider the closed-loop system
with respect to this particular controller.

Remark IV.5. In the case that the boundedness of level sets
in Definition IV.1 does not hold, then this definition may be
modified to require an open set D ⊂ Rn containing A where
the above inequality holds. In this case, a local stability result
follows. •

Definitions IV.1 and IV.3 ensure uniform global asymptotic
stability to the set A in the sense that

‖x(t)‖A ≤ β(‖x0‖A, t), (9)

for every Carathéodory solution x : [0, t1] → Rn to K[f +
gu](·), where

‖x′‖A = inf
a∈A
‖x′ − a‖

is the usual point-to-set distance and β : R≥0 × R≥0 → R≥0
is a class-KL function. Note that, for this discussion, we
assume that the system has been equipped with the validating
controller and consider the closed-loop system. This result of
asymptotic stability follows from [9], [10], [27], [12] by noting
that one can obtain (cf. [9, Lemma 2.5] or [27, Lemma 4.3]),
class-K∞ functions α1, α2 : R≥0 → R such that

α1(‖x‖A) ≤ V (x) ≤ α2(‖x‖A). (10)

From Definition IV.3, every Carathéodory solution to K[f +
gu](·) satisfies

V (x(t)) ≤ β(V (x0), t),

where β : R≥0 × R≥0 → R≥0 is a class-KL function [12,
Lemma 4.2]. Then, applying (10) yields (9).

The next result studies how candidate NLFs can be formed
through max and min operations, a fact that becomes partic-
ularly useful when discussing Boolean composition of NLFs
later. Its proof is straightforward, and we omit it for brevity.

Proposition IV.6. Let V1, V2 : Rn → R≥0 be candidate NLFs.
Then, Vmin : Rn → R≥0 defined as

Vmin(x′) = min{V1(x′), V2(x′)},∀x′ ∈ Rn,

is a candidate NLF. If, in addition, A1 ∩A2 6= ∅, then Vmax :
Rn → R≥0 defined as

Vmax(x′) = max{V1(x′), V2(x′)},∀x′ ∈ Rn,

is a candidate NLF.

Remark IV.7. The assumption that A1 ∩ A2 is nonempty is
necessary in the case of max, as the zero level set of V must be
nonempty, and this property cannot be otherwise guaranteed.
The same assumption is not true for min, as A = A1 ∪ A2

and is nonempty by candidacy of V1 and V2. •

In a parallel fashion to Proposition III.6, the next result
utilizes Theorem III.5 to address controller synthesis for NLFs
via locally encapsulating index functions.

Proposition IV.8. Let V : Rn → R be a candidate NLF, and
let f , g be as in (1). If there exists a locally encapsulating
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index function I lV : Rn → 2KV for V ; a positive-definite,
continuous function p : R≥0 → R≥0; and a measurable and
locally bounded function u : Rm → Rn such that

max {∇Vi}
i∈Il

V

(x′)>(f(x′)+g(x′)u(x′)) ≤ −p(V (x′)),∀x′ ∈ Rn,

then V is a valid CNLF for (1).

B. Composition Syntax

This section details the Boolean composition syntax and
resulting expressions considered in this work. Formally, a
Boolean expression on a finite number of Cr component
functions f1, . . . , fk : Rn → R is symbolically defined as

B[f1, . . . , fk]. (11)

The component functions may be NBFs or NLFs, and the
given expressions are comprised of min, max, and − oper-
ators. Specifically, this work considers Boolean NBFs induc-
tively defined with the following syntax:

B := hi | ¬B1 | B1 ∧B2 | B1 ∨B2, (12)

where the logical operators are defined as

¬B1 = −B1

B1 ∧B2 = min{B1, B2}
B1 ∨B2 = max{B1, b2}.

The syntax for Boolean NLFs is given as follows:

B := Vi | B1 ∧B2 | B1 ∨B2,

where the logical operators are defined as

B1 ∧B2 = max{B1, B2}
B1 ∨B2 = min{B1, B2}.

For NLFs, note that the above syntax omits the negation
operator ¬ and that the roles of min and max are swapped with
respect to NBFs. We omit this operator due to the requirements
of Definition IV.1 (i.e., positivity of the candidate NLF).

For NLFs or NBFs, the component functions disambiguate
the Boolean expression. For a Boolean composition B of NLFs
or NBFs, the atomic component functions are denoted Vi or hi,
respectively. The notation Bi refers to the inductive component
expressions, as in (12). The following example demonstrates
this property.

Example IV.1. An example of a Boolean NBF is as follows.
Let h : Rn → R be point-wise defined as

h(x′) = max{min{h1(x′), h2(x′)}, h3(x′)},

where each hi : Rn → R, i ∈ [3], is locally Lipschitz. Then,
h is a Boolean NBF. The above expression is equivalent to

h = (h1 ∧ h2) ∨ h3.

Set B1 = h1, B2 = h2, B3 = h3. Now, define B4 = B1∧B2,
which follows (12). Finally, set

h = B4 ∨B3.

In this example, the component function for h are h1, h2, and
h3. For h, the component expressions are B4 and B3. For
B4 the component functions are h1 and h2; the component
expressions are B1 and B2. •

As expected, the following result shows that Boolean ex-
pressions are indeed PCr. Note that the result may be applied
to Boolean NBFs or NLFs.

Proposition IV.9. If B[f1, . . . , fk] : Rn → R is a Boolean
expression with Cr component functions fi : Rn → R, i ∈ [k],
then B[f1, . . . , fk] is a PCr function.

Proof: Since B[f1, . . . , fk] is a Boolean expression, it
is an inductive composition of the fi using min, max or −
operators. As such, B[f1, . . . , fk] is continuous, and at any
x′ ∈ Rn, B[f1, . . . , fk](x′) = fi(x

′) or B[f1, . . . , fk](x′) =
−fi(x′), for some i ∈ [k]. As such,

B[f1, . . . , fk](x′)

∈ {−fi(x′) : i ∈ [k]} ∪ {fi(x′) : i ∈ [k]},∀x′ ∈ Rn.

Because each fi and −fi is Cr, B[f1, . . . , fk] is a continuous
selection of Cr component functions, making it PCr.

From this result, note that the Boolean composition of
Boolean expressions is also PCr, since the composite ex-
pression is a selection of the component functions of the
component expressions. The next result describes a controller-
synthesis method using locally encapsulating index functions.

Proposition IV.10. Let h : Rn → R be a locally Lipschitz
Boolean NBF and V : Rn → R≥0 be a candidate Boolean
NLF. Let I lh : Rn → 2Kh be a locally encapsulating index
function for h, and let I lV : Rn → 2KV be a locally encap-
sulating index function for V . Let α : R → R be a locally
Lipschitz extended class-K function and p : R≥0 → R≥0 be
a continuous, positive-definite function. If u∗ : Rn → Rm

defined as

u∗(x′) ∈ arg min
u∈Rm

u>A(x′)u+ u>b(x′)

s.t. min {∇hi}
i∈Il

h

(x′)>(f(x′) + g(x′)u) ≥ −α(h(x′))

max {∇Vi}
i∈Il

V

(x′)>(f(x′) + g(x′)u) ≤ −p(V (x′))

with A : Rn → Rm×m continuous, point-wise positive-
definite, symmetric and b : Rn → Rm continuous, exists for
every x′ ∈ Rn and is measurable and locally bounded, then
h is a valid CNBF, and V is a valid CNLF.

This result is a direct consequence of Propositions III.6-IV.9,
and its proof is omitted for brevity. In Proposition IV.10, the
optimization program is a Quadratic Program (QP) due to the
control-affine system. As such, assuming standard solvers, the
runtime for solving such a program at a point is typically on
the order of O((|I lh(·)|+ |I lV (·)|+m)3) (i.e., cubic complexity
in the number of constraints and decision variables). As such,
it can typically be solved in real time, even for relatively large
problems (e.g., [8]). The existence of solutions to this QP is
predicated on the dynamics as well as the candidate NLF and
NBF. In this case, uniqueness is guaranteed by the convexity of
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the constraint set and strict convexity of the objective function;
though, existence is the key concern for this work.

Since Boolean NLFs or NBFs fall into the class of PCr

functions, controller-synthesis algorithms for Boolean expres-
sions focus on finding an appropriate locally encapsulating
index function. However, many such index functions exist
for any given PCr function, and not all such functions are,
practically speaking, conducive to synthesis. For instance,
given a Boolean NBF, h, Proposition IV.9 shows that h is
PCr with component functions hi and −hi with i ∈ [k] for
some finite k. As such,

h(x′) ∈ {−hi(x′) : i ∈ [k]} ∪ {hi(x′) : i ∈ [k]}.

We temporarily use −i to refer to −hi. Accordingly, by Propo-
sition III.3, a suitable locally encapsulating index function for
Ieh is

I lh(·) ={i ∈ [k] : |hi(·)− h(·)| ≤ ε}
∪ {−i ∈ [k] : | − hi(·)− h(·)| ≤ ε}.

However, I lh(·) may capture too many component functions.
The following example illustrates this point.

Example IV.2. Consider the Boolean NBF give in Exam-
ple IV.1. Assume that, for a particular x′, h1(x′) is within
ε > 0 of h3(x′) but h2(x′) is much smaller than h3(x′). Then,
(h1∧h2)(x′) = min{h1(x′), h2(x′)} is also much smaller than
h3(x′). Thus, intuitively, only 3 should be included in I lh(x′).
However, using the previously noted I lh, both 1 and 3 would
be included in I lh(x′). As such, choosing I lh in this manner
may be too conservative. •

Given the point illustrated in Example IV.2, the next section
explores recursive methods to calculate an appropriate locally
encapsulating index functions for Boolean expressions.

V. RECURSIVE COMPUTATION OF LOCALLY
ENCAPSULATING INDEX FUNCTIONS FOR BOOLEAN

EXPRESSIONS

Given the results in Sections III-IV, the goal becomes
to calculate efficient and manageable locally encapsulating
index functions. As such, this section presents a method for
recursively calculating a locally encapsulating index function
for an arbitrary composition of PCr functions. Then, the
method is specialized to the case of a Boolean NBF or NLF.

A. Locally Encapsulating Index Functions for Compositions
of PCr Functions

We start this section by considering the composition of PCr

functions. If g : Rn → Rm and f : Rm → R are PCr

functions and h = f ◦ g, then h is also a PCr function. This
result follows from the fact that h is a continuous selection of
the functions hi = fj ◦ gk, where i ∈ Kf × Kg . In this
case, the component functions of h may be denoted by i
or, equivalently, by the tuple (j, k) corresponding to fj ◦ gk.
Moreover, the gradients of each hi at x′ ∈ Rn are given by
∇gk(x′)∇fj(gk(x′)).

One additional notational issue remains. In the case of
Proposition II.10, the PCr function in question maps from

Rn to R; instead, here, g : Rn → Rm. As such, we consider g
to be a continuous selection of PCr functions gjij : Rn → R
such that

g(x′) ∈ {
[
g1i1(x′) . . . gmim(x′)

]>
: ij ∈ Kgj ,∀j ∈ [m]}.

For a given gjij , the subscript ij represents a particular choice
of a function for that component, and the superscript j
represents the component of the vector-valued function g. The
distinction is necessary because each component j could have
a different set of selection functions. From this perspective, a
particular vector-valued component function gi : Rn → Rm

may be viewed as i ∈ Kg1 × . . . × Kgm = Kg . As such,
gjij refers to a selection of the jth component function gj ,
whereas gi refers to a selection of a vector-valued component
function for g.

Since h is a PCr function, it always has an encapsulating
index function; however, in the case that the component
functions are known, it may be more desirable to compute
this index function for h in terms of f and g. The following
result provides one of the main results of the paper, demon-
strating a recursive method for calculating encapsulating index
functions.

Theorem V.1. Let g : Rn → Rm, f : Rm → R be PCr

functions, with g =
[
g1, . . . , gm

]>
, and let h : Rn → R be

defined as h = f ◦ g. If If : Rm → 2Kf , Igk : Rn → 2Kgk

are encapsulating index functions for f and each gk, k ∈ [m],
respectively, then Ih : Rn → 2Kf×Kg defined as

Ih(x′) = If (g(x′))×
m×

k=1

Igk(x′), ∀x′ ∈ Rn,

is an encapsulating index function for h.

Proof: Let If , Igk , k ∈ [m], be encapsulating index func-
tions for f and each gk, k ∈ [m]; and let Ih : Rn → 2Kf×Kg

be defined as the point-wise Cartesian product

Ih(·) = If (g(·))×
m×

k=1

Igk(·).

The above index function Ih is an acceptable index function
for h, since

h(·) ∈ {fi(gj(·)) : i ∈ Kf , j ∈ Kg},

where by prior discussion, Kg =×m

k=1
Kgk .

It remains to be shown that Ih is an encapsulating index
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function for h. Let x′ ∈ Rn. Then,

∂ch(x′) ⊂ co

(
m×

k=1

∂cg
k(x′)

)
∂cf(g(x′))

⊂ co

 m×
k=1

co
{
∇gkjk

}
jk∈Igk

(x′)

(co {∇fi}
i∈If

(g(x′))

)

= co

co
m×

k=1

{
∇gkjk

}
jk∈Igk

(x′)

(co {∇fi}
i∈If

(g(x′))

)

= co

 m×
k=1

{
∇gkjk

}
jk∈Igk

(x′)

 {∇fi}
i∈If

(g(x′))

= co{

(
m×

k=1

∇gkjk(x′)

)
∇fi(g(x′)) : i ∈ If (g(x′)), jk ∈ Igk(x′)}

= co{∇gj(x′)∇fi(gj(x′)) : (i, j) ∈ If (g(x′))×
m×

k=1

Igk(x′)},

since, for every j ∈ ×m

k=1
Igk(x′), gj(x′) = g(x′) by

Definition III.1. Thus, Ih is an encapsulating index function
for h.

To separate the index sets in the proof of Theorem V.1,
the fact that g(x′) = gj(x

′) for every j ∈×m

k=1
Igk(x′)

must be utilized. When formulating a similar result for locally
encapsulating index functions, special assumptions must be
made to ensure that this decomposition is possible: namely,
that the outermost function in the composition is PL.

Theorem V.2. Let f : Rm → R be a PL function, g : Rn →
Rm be a PCr function, with g = [g1, . . . , gm]>. If I lf : Rm →
2Kf , I lgk : Rn → 2Kg , k ∈ [m], are locally encapsulating
index functions for f and each gk, k ∈ [m], then there exists
a locally encapsulating index function I lh : Rn → 2Kf×Kg for
h such that, for all x′ ∈ Rn,

{∇hi}
i∈Il

h

(x′) =

 m×
k=1

{
∇gkjk

}
jk∈Il

gk

(x′)

 {ai}
i∈Il

f

(g(x′)),

where, for each i ∈ Kf , ai = ∇fi.

Proof: Let x′ ∈ Rn. Because I lf is a locally encapsulating
index function for f , there exists an encapsulating index
function If : Rm → 2Kf for f such that at g(x′) there exists
δ1 > 0 satisfying

If (g(x′)) ⊂ I lf (y),∀y ∈ B(g(x′), δ1).

By continuity of g, let δ2 be such that

y ∈ B(x′, δ2) =⇒ ‖g(y)− g(x′)‖ ≤ δ1.

Similarly, let δk3 be such that

Igk(x′) ⊂ I lgk(y),∀y ∈ B(x′, δk3 ),

for each k ∈ [m]. Then, define δ3 = mink∈[m] δ
k
3 , and set

δ = min{δ1, δ2, δ3}.

By Theorem V.1, Ih : Rn → 2Kf×Kg defined as

Ih(·) = If (g(·))× Ig(·)

is an encapsulating index function for h, where Kg =

×m

k=1
Kgk and Ig(·) =×m

k=1
Igk(·), and by the particular

selection of δ, for every y ∈ B(x′, δ),

If (g(x′)) ⊂ I lf (g(y)), Igk(x′) ⊂ I lgk(y),∀k ∈ [m].

As such,

Ih(x′) = If (g(x′))× Ig(x′)

⊂ I lf (g(y))× I lg(y),∀y ∈ B(x′, δ),

so I lf ◦ g × I lg is a locally encapsulating index function for
Ih. Moreover,

{∇gj(x′)∇fi(gj(x′))) : (i, j) ∈ I lf (g(x′))× I lg(x′)}
= {∇gj(x′)ai : (i, j) ∈ I lf (g(x′))× I lg(x′)}
= {∇gj}

j∈Il
g

(x′){ai}
i∈Il

f

(g(x′))

=

 m×
k=1

{
∇gkjk

}
jk∈Il

gk

(x′)

 {ai}
i∈Il

f

(g(x′)),

showing the desired relation.

B. Locally Encapsulating Index Functions for Boolean Ex-
pressions

Here, we discuss the computation of locally encapsulating
index functions for Boolean expressions. To apply Theo-
rem V.2 to Boolean composition, we start by addressing the
particular case of min and max operations. In fact, the next
result shows that calculating a locally encapsulating index set
for a Boolean expression admits a convenient format.

Proposition V.3. Let g : Rn → Rm be a PCr function, with
each component gi : Rn → R, i ∈ [m], and let f : Rm → R
be a PL function with component functions ei, i ∈ [m], where
each ei is the ith standard basis vector. Let h : Rn → R be a
PCr function satisfying

h(x′) ∈ {e>i g(x′) : i ∈ [m]},∀x′ ∈ Rn.

If I lgi , i ∈ [m], are locally encapsulating index functions for
each gi and I lf is a locally encapsulating index function for
f . Then, there exists a locally encapsulating index function
I lh : Rn → 2Kf×Kg for h such that

{∇hi}
i∈Il

h

(x′) =

{∇giji}
ji∈Il

gi

(x′) : i ∈ I lf (g(x′))

 .

Proof: Let x′ ∈ Rn, and let each I lgj and I lf be as
assumed. Consequently, by application of Theorem V.2, there
exists a locally encapsulating index function I lh such that

{∇hi}
i∈Il

h

(x′) =

 m×
k=1

{
∇gkjk

}
jk∈Il

gk

(x′)

 {ei}
i∈Il

f

(g(x′))

=

{∇giji}
ji∈Il

gi

(x′) : i ∈ I lf (g(x′))

 ,
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which follows because multiplication by any ei leaves only
the ith component function.

Remark V.4. Proposition V.3 applies to Boolean expressions
including ∨ and ∧, as in (12), because max or min may be
written as a multiplication with a standard basis vector ei. For
example, the function max is a PL function, with component
functions ei, where ei is the ith standard basis vector. Because
at any x′ ∈ Rn, max may be written as

max
i∈[m]
{Bi(x

′)} = e>i [B1(x′), . . . , Bm(x′)]
>
,

for some i ∈ [m]. •

The next result deals with the case of negation. The proof
follows directly from Proposition II.5.

Proposition V.5. Let h : Rn → R be a PCr function. If
I lh : Rn → 2Kh is a locally encapsulating index function for
h, then, for any scalar s, I lh is a locally encapsulating index
function for h̄ : Rn → R defined as

h̄(x′) = sh(x′),∀x′ ∈ Rn.

Remark V.6. Proposition V.5 may be used to calculate the
negation of Boolean expressions B as in (12) by calculating
a locally encapsulating index function for the negated ex-
pression. That is, if B = ¬B1, then I lB1

is also a locally
encapsulating index function for B. However, each index
i ∈ I lB1

now refers to a negated component function. For
convenience, the notation −I lB1

refers to negated component
functions but only for Boolean expressions. •

Algorithm 1 δ_ENCAPSULATING
Input: Boolean expression: B[f1, . . . , fk]

locally encapsulating index function for ∧/∨: I l∧/∨
Argument: x′ ∈ Rn

Output: Evaluated locally encapsulating index function for B:
I lB(x′)

I lB(x′)← ∅
if B is fi, for i ∈ [k] then

I lB(x′) ∪ {i}
return I lB(x′)

if B is ¬B1 then
I lB(x′) ∪ −δ_ENCAPSULATING(B1, x

′)
return I lB(x′)

for i ∈ I l∧/∨(B(x′)) do
I lB ∪ δ_ENCAPSULATING(Bi, x

′)
return I lB(x′)

Using Theorem V.2 and Propositions V.3 and V.5, Algo-
rithm 1 calculates a locally encapsulating index function for
a Boolean composition as in (11). Importantly, Algorithm 1
does not change based on the particular Boolean expression or
system under consideration. Note that, due to Remark V.4, for
Boolean expressions only, the index calculation can be signif-
icantly simplified. In particular, given a Boolean expression
B[f1, . . . , fk] with component expressions B1[f1, . . . , fk],
B2[f1, . . . , fk], B, B1, and B2 are PCr functions which all

have component functions fi, i ∈ [k]. As such, the interme-
diate indices do not have to be preserved when calculating
a locally encapsulating index function for B, because all of
the Boolean expressions have the same component functions.
Another noteworthy point is that Algorithm 1 requires a locally
encapsulating index function for ∧/∨ functions, which is pro-
vided by Proposition III.3. The following example explicitly
shows this calculation.

Example V.1. This example demonstrates a calculation of
I l∧/∨(B(x′)) in Algorithm 1. Let B : Rn → R be a Boolean
expression with component expressions Bi : Rn → R, i ∈ [k],
be defined as

B =

k∧
i=1

Bi = min
i∈[k]

Bi

or

B =

k∨
i=1

Bi = max
i∈[k]

Bi

Then, with a slight abuse of notation, a locally encapsulating
index function I l∧/∨ : Rn → 2KB for the ∧ or ∨ operation,
according to Proposition III.3, evaluated at B(x′) is

I l∧/∨(B(x′)) = {i ∈ [k] : ‖Bi(x
′)−B(x′)‖ ≤ ε},∀x′ ∈ Rn,

for any fixed ε > 0. •

VI. EXPERIMENTAL RESULTS

This section presents experimental results for the framework
developed in this paper. Our experiment is inspired by a
precision-agriculture scenario, wherein a team of robots must
visit a series of crop patches in a field while avoiding colli-
sions with neighboring agents. The objectives and constraints
are encoded using the methods discussed in Section IV.
The optimization program noted in Section IV synthesizes
a controller that satisfies the objectives and the constraints,
where the locally encapsulating index function is provided via
Algorithm 1. For brevity, throughout the section, we drop the
explicit dependence on time.

A. Experiment Formulation and Results

The formulation of the experiment is as follows. Consider
an even number N of differential-drive robots in R2, which
represents the field. For simplicity, assume that the robots have
state xi ∈ R2, i ∈ [N ], and dynamics ẋi = ui (later, we utilize
the method in [28] to map the single-integrator input onto the
full nonlinear differential-drive dynamics). The ensemble state
and input is written as x ∈ R2N and u ∈ R2N , respectively.

This experiment requires that all robots avoid collisions, and
this constraint may be encoded via the C1 pair-wise collision-
avoidance constraint

hij(xi, xj) = ‖xi − xj‖2 − d2,

where d > 0 indicates the diameter of the robot. As such,
the ensemble collision-avoidance constraint is given by the
Boolean NBF

h =

N−1∧
i=1

N∧
j=i+1

hij ,
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Fig. 1. This figure shows the completion of the precision-agriculture experiment described in Section VI (initial position displayed on the left, final positions
on the right). Each pair of robots (e.g., 1 and 2) must visit a pair of crop patches, which are labeled accordingly, while avoiding collisions. This figure shows
that the robots successfully visit each crop patch and avoid collisions, completing the objectives and satisfying the constraints.
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Fig. 2. Value of the NBF that encodes the collision-avoidance constraints
for the experiment described in Section VI. The value of the NBF remains
positive over the course of the experiment, showing that all of the constraints
are satisfied, i.e., no robots collide.

where the large ∧ symbol represents conjunction. Note that

∇xi
hij(xi, xj) = 2(xi−xj), ∇xj

hij(xi, xj) = 2(xj−xi),

and ∇xhij may be calculated by substituting ∇xi
hij and

∇xj
hij into the ith and jth indices.

The objectives for the robots are as follows. A pre-existing
planner has determined that robots i and i+ 1 must visit crop
patches pi ∈ R2 and pi+1 ∈ R2, for i = 1, 3, . . . , N−1, where
the specific robot-to-patch assignment is unspecified for each
pair. As such, this specification holds for each consecutive pair
of robots. For example, robots 1 and 2 must visit patches p1
and p2 while robots 3 and 4 must visit p3 and p4.

Now, we formulate the corresponding objectives. Note that
the parameterized function

Vi,p(xi) = (xi − p)>(xi − p),

yields a candidate NLF for robot i for the patch p ∈ R2. Then,

∇xi
Vi,p(xi) = 2(xi − p),

and ∇xVi,p may be calculated by substituting ∇xiVi,p into the
ith component. For robots i and i + 1 the objective that the
robots visit pi and pi+1 may be captured as

(Vi,pi ∧ Vi+1,pi+1) ∨ (Vi,pi+1 ∧ Vi+1,pi). (13)

The above expression captures the specification that the robots
must be at both points, but the order does not matter. The
above expression is a candidate NLF; however, Proposi-
tion IV.6 cannot be directly applied as Vi,pi

is not a candidate

NLF for the subsystem containing xi and xi+1 (Vi,pi does not
have bounded level sets with respect to xi+1). That is,

{(xi, xi+1) : Vi,pi
(xi) ≤ a} = Ai,pi

× R2

is unbounded. However, the conjunction operation resolves
this issue. Thus,

(Vi,pi
∧ Vi+1,pi+1

) (14)

is a candidate NLF, and by Proposition IV.6, (13) is a candidate
NLF.

As such, the overall objective for the system may be
encoded as the candidate NLF

V =

N/2∧
i=1

(V2i−1,p2i−1
∧ V2i,p2i

) ∨ (V2i−1,p2i
∧ V2i,p2i−1

),

and for the same reason as (14), V is also a candidate NLF.
Now that the system’s constraints and objectives have been

formulated, the locally encapsulating index functions for use
with Algorithm 1 must be specified. This experiment utilizes
the index function discussed in Proposition III.3, that is,

I l∧/∨ = {i ∈ KB : |Bi(·)−B(·)| ≤ ε},

for some fixed ε > 0. The function I l∧/∨ is used as a locally
encapsulating for every Boolean expression.

In the spirit of Proposition IV.10, the QP for this experiment
is given by

u∗(x) ∈ arg min
u∈Rm

u>u (15)

s.t. ∇hi(x)>(f(x) + g(x)u) ≥ −γh(x)3,∀i ∈ I lh(x)

∇Vi(x)>(f(x) + g(x)u) ≤ −min{c, V (x)},∀i ∈ I lV (x),

where γ, c > 0. Note that V (x) 7→ min{c, V (x)} is the
selected positive-definite function, as in Definition IV.3, and
h(x) 7→ γh(x)3 is the selected extended class-K function, as
in Definition II.8.

For the experiment, we utilize Algorithm 1 to calculate a
locally encapsulating index set for h and V . Then, combining
h and V with these index functions into a QP, as in Proposi-
tion IV.10, yields a controller that ensures the robots visit the
required locations and avoid collisions. For this experiment,
we assume that the remaining hypotheses of Proposition IV.10
hold. Namely, that u? exists and is measurable and locally
bounded (we believe this property holds in general, albeit it has
not been formally established). At each point, applications of
Algorithm 1 calculate I lh and I lV , and MATLAB’s optimization
toolbox is utilized to solve the QP.
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It is by no means guaranteed that, for any objective and
constraint, h and V may be simultaneously solved in the QP.
In this case, the compatibility is shown experimentally. In
general, techniques exist to ensure that this solution exists,
such as the inclusion of slack variables (e.g., [3], [6]). For
example, one may treat the safety constraints (i.e., those
generated by barrier functions) as usual and associate slack
variables with the objective constraints (i.e., those generated
by Lyapunov functions). Note that this procedure increases
feasibility of the QP at the cost of relaxing the satisfaction of
the objective.
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Fig. 3. Value of objective-encoding NLF in Section VI. The value of the
NLF goes to zero as time increases, indicating that the objective has been
completed for all robots, that is, all crop patches have been visited.

To show the efficacy of these results on a real system, the
controller u? from (15) is deployed onto N = 12 differential
drive robots in the Robotarium, a remotely accessible swarm-
robotics testbed [8]. Figure 1 shows the robots over the course
of the experiment. The projected pictures of corn and numbers
on the testbed mark the assigned crop patches for each pair
of robots as well as the robots’ identifiers. Figure 1 shows
that all robots reach their designated locations while avoiding
collisions. Specifically, Figure 2 shows the value of h over
the course of the experiment. The Boolean NBF h remains
positive, indicating that all constraints are satisfied. Figure 3
shows the value of V during the experiment. The value of V
decreases to 0, ensuring that each location is visited, which
completes the objective. Note that, during the experiment, V
increases marginally at a few times. These slight increases are
due to disturbances present in real-world experiments, such
as network latency or wheel slip. Both simulation and theory
confirm that the value is strictly decreasing over time (simula-
tion results are not given here for brevity). Over the course of
the experiment, determining the locally encapsulating index
functions was nearly instantaneous while solving the QP in
(15) was on the order of milliseconds.

Regarding the assumed single-integrator dynamics, the
robots presented in Figure 1 show that the utilized robots are
differential-drive, a nonlinear system. Within the Robotarium,
these robots are feedback linearized, meaning that they may be
abstracted as single integrators. This paper treats these systems
as such for brevity, but note that these results are practically
applied to a nonlinear system.

For brevity, this paper does not model disturbances during

controller synthesis, as their inclusion is not explicitly related
to the results of this paper. However, given the set-valued
nature of differential inclusions, it falls within the same
mathematical framework to model disturbances. Indeed, recent
work [29] has considered similar scenarios.

B. Discussion of Parameters

Here we discuss the role of the parameters in the experiment
of Section VI-A. The values that we have employed are

d = 0.15, γ = 10000, c = 0.3, ε = 0.05,

The number d denotes the diameter of the Robotarium’s
differential-drive robots. The parameter γ controls the flat-
ness (around the origin) of the extended class-K function
h(x) 7→ γh(x)3. This function is flat around 0, attentuating
the rate at which the system can approach the boundary of
the safe set. The parameter γ adjusts this rate: the larger γ is,
the quicker robots can approach each other. For V , c controls
how quickly the system must reduce the NLF. As such, c is
chosen to ensure that the magnitude of u? remains within the
physical limits of the robots.

The parameter ε pertains to the locally encapsulating index
function and controls how many indices are included at each
point. For example, for h, the locally encapsulating index
function is

I lh(x) = {i : |hi(x)− h(x)| ≤ ε},

where each i corresponds to a collision constraint between
a pair of robots. In effect, h represents the pair(s) of robots
which are the closest, and ε controls how close other robots
must be before being included in the QP (see (15)). Intuitively,
making ε smaller reduces the number of constraints that must
be included in the QP. Conversely, larger values of ε increase
the number of constraints (i.e., nearby robots) that are included
in the QP. A similar line of reasoning holds for V and I lV .

Theoretically speaking, as long as ε > 0, I lh is indeed
a locally encapsulating index function. Though, practically
speaking, since this implementation is inherently digital, in-
creasing the value of ε can increase the robustness of the
actual implementation by ensuring the constraints are included
in the QP early enough. A similar line of reasoning holds for
V and I lV .

VII. CONCLUSIONS

This paper has built on the current capabilities of barrier
and Lyapunov functions to represent constraints and stability
objectives for controlled dynamical systems, respectively. We
have presented a new class of nonsmooth barrier functions and
nonsmooth Lyapunov functions using the theory of piece-wise
smooth (PCr) functions, and we have shown that Boolean
combinations of barrier and Lyapunov functions fall into the
class of PCr functions. The notion of PCr function depends
heavily on its corresponding index functions, and by utilizing
a particular class of them, we have proved that one may
efficiently synthesize controllers that are discontinuous yet,
nonetheless, provably guarantee the validity of the barrier and
Lyapunov functions. The experimental results have illustrated
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how our theoretical contributions can be used to generate
safe controllers that also accomplish an objective for a swarm
of physical robots in a precision-agriculture scenario. Future
work would explore the expansion of the proposed Boolean-
composition framework for NLFs and the generalization of the
controller-synthesis procedure beyond quadratic programs.
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