
Approximating the Koopman Operator using Noisy Data:
Noise-Resilient Extended Dynamic Mode Decomposition

Masih Haseli and Jorge Cortés

Abstract— This paper presents a data-driven method to find
a finite-dimensional approximation for the Koopman operator
using noisy data. The proposed method is a modification
of Extended Dynamic Mode Decomposition which finds an
approximation for the projection of the Koopman operator on
a subspace spanned by a predefined dictionary of functions.
Unlike the Extended Dynamic Mode Decomposition which is
based on least squares method, the presented method is based
on element-wise weighted total least squares which enables one
to find a consistent approximation when the data come from a
static linear relationship and the noise at different times are not
identically distributed. Even though the aforementioned method
is consistent, it leads to a nonconvex optimization problem. To
alleviate this problem, we show that under some conditions the
nonconvex optimization problem has a common minimizer with
a different method based on total least squares for which one
can find the solution in closed form.

I. INTRODUCTION

In recent years, operator theoretic point of view regarding
dynamical systems has gained a widespread attention since
it enables researches to analyze high-dimensional nonlinear
systems with acceptable computational complexity. Koop-
man operator plays a crucial role in the aforementioned point
of view. Koopman operator is a linear infinite-dimensional
operator which represents a dynamical systems. Despite
the linearity of the operator, it cannot be implemented or
analyzed directly using digital computers due to its infinite-
dimensional nature. In order to alleviate this problem, one
can find a finite-dimensional approximation for the Koop-
man operator using data-driven methods such as dynamic
mode decomposition (DMD) and extended dynamic mode
decomposition (EDMD) and their variants.

Since DMD and EDMD are data-driven methods, one must
pay attention to the measurement noise. The noise problem in
DMD has been addressed using total least squares methods.
The measurement noise problem is much more complicated
in EDMD since the noisy data go through a dictionary of
nonlinear functions which distorts the noise distribution. This
paper addresses the noise problem in EDMD.

Literature Review. The Koopman operator was first intro-
duced in 1931 [1], [2]. Being a linear operator, it can be used
to analyze a nonlinear dynamical system via the spectral
properties of the operator [3]–[6]. This leads to a diverse
range of applications including system identification [7],
model validation [8], and control [9]–[12]. Even though
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the Koopman operator was introduced in 1931, its use has
only become common recently due to the lack of practical
ways to find representations for it. Two main numerical
methods to approximate finite-dimensional representations
for the Koopman operator are DMD and EDMD.

DMD was introduced to find coherent structures of non-
linear fluid flows from time-series data [13] originally. Later,
it was modified to work with snapshot data without any pre-
defined order [14]. DMD finds a linear relationship between
the data snapshots acquired from the system and it is in a
close relationship with the Koopman operator on one side
and with the least squares method on the other side. The
noise problem for DMD has been addressed in the case that
the noise has known mean and is additive to the data matrices
which are used directly in the DMD algorithm [15], [16].

EDMD is an extension of DMD such that the states
of the system go through a generally nonlinear dictionary
of functions to create dictionary snapshots, then a linear
relationship between the dictionary snapshots will be found
using least squares method [17]. The convergence of EDMD
to the Koopman operator has been investigated in [18]. It is
worth mentioning that to the best of the authors’ knowledge,
the measurement noise problem in the EDMD has not been
fully investigated in the literature. However, one can find a
case regarding random dynamical systems in [19].

Statement of Contributions: We consider the noise problem
in EDMD1. In the EDMD method, the noisy data first go
through a dictionary of nonlinear functions. This leads to
distortion of the noise, i.e., the perturbations in the rows
of data matrices will not remain identically distributed.
Consequently, we cannot use the standard total least squares
(TLS) methods used in [15], [16] to calculate a consistent
approximation. In order to find a consistent approximation
from noisy data, we propose a method based on element-
wise weighted total least squares (EWTLS) which can find

1Throughout the paper, we use the following notation: R and N denote
real and natural numbers, resp. For a matrix A ∈ Rm×n, we denote the
Frobenius norm, pseudo-inverse, and ith row of A by ‖A‖F , A†, and
Ai. When m = n, we denote the trace, inverse, and eigenvalues of A
by Tr(A), A−1, and λ(A), resp. Given matrices A1, . . . , An, we use
blkdiag(A1, . . . , An) to denote the block-diagonal matrix with diagonal
blocks A1, . . . , An. Given A ∈ Rm×n and B ∈ Rm×d, we denote by
[A,B] ∈ Rm×(n+d) the matrix created by concatenating A and B side
by side. We denote the real and imaginary parts of a complex number a
by Re(a) and Im(a), resp. For a random vector x ∈ Rn, we denote by
E [x] and Cov [x] its expected value and covariance matrix. We denote the
Euclidean norm by ‖ · ‖2. Given functions f :M→ K and g : K → F ,
we let g ◦ f :M→ F denote its composition. Given a positive measure µ
on M, we denote by L2(µ) the set of measurable functions f :M→ R
satisfying

∫
M |f(x)|

2 dµ(x) <∞.



consistent approximation in cases that the noise is not identi-
cally distributed. The proposed method leads to a nonconvex
optimization problem for which finding the global minimizer
is arduous if not impossible. To solve this problem, we
present an optimization method based on standard TLS for
which one can find the closed-form solution, and we show
that the solution of the two presented methods are the same
under some conditions. Due to lack of space, the proofs are
omitted and will appear elsewhere.

II. PRELIMINARIES

We present preliminaries on total least squares, the Koop-
man operator, and extended dynamic mode decomposition.

A. Total Least Squares Method

Given matrices Ã = A + ∆A ∈ Rm×n, B̃ = B + ∆B ∈
Rm×d are the data matrices where AX∗ = B and m > n,
one can use total least squares (TLS) to find approximate
solutions to the overdetermined system of linear equations
ÃX ≈ B̃ . Using variables ∆1 ∈ Rm×n, ∆2 ∈ Rm×d,
and X ∈ Rn×d, the TLS optimization problem is defined as
follows, see e.g. [20],

minimize
X,∆1,∆2

‖[∆1,∆2]‖2F

subject to (Ã+ ∆1)X = (B̃ + ∆2). (1)

Let U diag(σ1, . . . , σn+d)V T be the singular value decom-
position of [Ã, B̃], with σ1 ≥ · · · ≥ σn+d. For convenience,
we block-partition V as

V =

[
V11 V12

V21 V22

]
,

where V11 ∈ Rn×n, V12 ∈ Rn×d, V21 ∈ Rd×n, and
V22 ∈ Rd×d. The solution of (1) exists if and only if V22 is
nonsingular. Additionally, the solution is unique if and only
if σn 6= σn+1. The unique solution is given by

X̄ = −V12V
−1
22 ,[

∆̄1, ∆̄2

]
= −U diag(0, . . . , 0, σn+1, . . . , σn+d)V T .

An appealing feature [21] of the TLS method is that the
matrix X̄ approximates X∗ consistently when the rows
of [∆A,∆B] are zero-mean, independent and identically
distributed (i.i.d.) measurement noise.

In the case that the noise is zero-mean but not identically
distributed, one can use instead the element-wise weighted
total least squares (EWTLS) method to find a consistent
approximation [22], [23]. For general true data matrices
A ∈ Rm×n, B ∈ Rm×d with AX∗ = B, and noisy data
matrices Ã = A+ ∆A, B̃ = B+ ∆B, the EWTLS problem
is defined as follows

minimize
X,∆1,∆2

N∑
i=1

∥∥∥[∆1,∆2]i C
−1/2
i

∥∥∥2

2

subject to (Ã+ ∆1)X = (B̃ + ∆2),

where Ci = Cov ([∆A,∆B]i). The EWTLS cost function,
scales the rows of the variables in order to account for the

difference in the covariance of the rows of [∆A,∆B]. The
EWTLS method provides a weakly consistent approximation
for X∗ [22]. It is important to note that unlike TLS, the
EWTLS problem does not have a closed-form solution.

B. The Koopman Operator

We start by introducing the Koopman operator [5]. Con-
sider a discrete-time autonomous dynamical system over the
state space M⊆ Rns

x+ = T (x), (2)

where T : M→M. Let F be a vector space of functions
(also called observables) defined on M such that f ◦T ∈ F
for every f ∈ F . One standard choice of F is F = L2(µ),
where µ is a given positive measure on M. The Koopman
operator K : F → F associated with the dynamical
system (2) is defined as K(f) = f ◦ T .

It is important to note that, unlike the dynamical descrip-
tion (2) which defines the evolution of states in M, the
Koopman operator acts on functions in F . The Koopman
operator is linear even if the underlying dynamics (2) is
nonlinear. Moreover, it is infinite-dimensional. The Koopman
operator approach allows us to analyze nonlinear dynamical
systems using the spectral properties of the operator while
preserving the global features of the system. The viewpoint,
centered around observables, is inherently global, whereas
that of the traditional dynamics (2) is local, which has
important consequences for assimilation.

The fact that Koopman operator is generally infinite di-
mensional makes it difficult to apply conventional linear
methods to compute or analyze it. One efficient way to
overcome this problem is by finding a finite-dimensional ap-
proximation using data-driven methods such as Extended Dy-
namic Mode Decomposition (EDMD) [17]. In this method,
a dictionary of functions, typically nonlinear, is used to
lift the states to a higher-dimensional space and then a
linear relationship among the values of the lifted states for
consecutive time steps is found. Formally, let the matrices
X,Y ∈ RN×ns encode N snapshots of data obtained from
the system (2), meaning that yi = T (xi) for i ∈ {1, . . . , N}.
Where xTi and yTi denote the ith rows of X and Y , resp. Let
D : Rns → R1×Nd with D(x) = [d1(x), d2(x), . . . , dNd

(x)]
be a dictionary of Nd functions taken from the space F .
For convenience, we define DN : RN×ns → RN×Nd by
DN (X) = [D(x1)T , . . . , D(xN )T ]T .

The EDMD algorithm computes an approximation to the
Koopman operator by solving the least squares optimization
problem minK ‖DN (Y ) − DN (X)K‖2F . The closed-form
solution takes the form

KApprox = DN (X)†DN (Y ). (3)

Given the presence of the pseudo-inverse of DN (X) ∈
RN×Nd in (3), the computational cost of the EDMD algo-
rithm grows rapidly as Nd increases. One can address this
problem by using kernel methods [24]. Equation (3) also
shows that KApprox depends on the choice of dictionary,



which raises the possibility of optimizing this choice. Gen-
erally, if the dictionary does not span a subspace invariant
under the Koopman operator, we loose some information
about it (and consequently the system) by finding a finite-
dimensional approximation. However, choosing an appro-
priate dictionary still results in capturing the important
characteristics of the operator.

III. PROBLEM STATEMENT

In this paper, we are inspired by the observations that noise
is always present when collecting data and that the EDMD
algorithm does not explicitly account for this fact. EDMD
relies on least squares optimization which, in case of noisy
measurements, leads to inconsistent approximations when
all data matrices are perturbed, see e.g. [20], [21]. Another
point to keep in mind is that attempts to find an appropriate
finite-dimensional approximation of the Koopman operator
may not be successful using arbitrary dictionaries. Our aim
here is to develop a computational procedure to construct
approximations of the Koopman operator that takes measure-
ment noise into consideration. Formally, let the measurement
noise be a random vector in R1×ns with arbitrary but known
distribution. Consequently, the measured data takes the form

X̃ = X + ∆X, (4a)

Ỹ = Y + ∆Y, (4b)

where the rows of X̃, Ỹ ∈ RN×ns are N measured data
snapshots, X,Y ∈ RN×ns represent the corresponding true
states of the system, and ∆X,∆Y ∈ RN×ns are matrices
comprised of measurement noise realizations.

The objective of this paper is design an algorithm to
find an approximate static relationship between dictionary
snapshots in the form DN (Y ) ≈ DN (X)KN using the
noisy dictionary snapshots DN (X̃), DN (Ỹ ). Moreover, if
the dictionary spans an invariant Koopman subspace, i.e.,
if DN (Y ) = DN (X)K̄ for some K̄ ∈ RNd×Nd and all
N ∈ N, then the solution provided by the algorithm must
satisfy KN → K̄.

Our strategy to tackle this starts with a discussion in
Section IV of the limitations of EDMD in the presence
of noisy data, which leads us to propose a method based
on element-wise weighted total least squares (EWTLS). To
circumvent the fact that EWTLS does not have a closed-
form solution, we propose an alternative method based on
standard total least squares (TLS) in Section V and show that,
under reasonable assumptions, both methods have a common
solution.

IV. NOISE-RESILIENT EXTENDED DYNAMIC MODE
DECOMPOSITION

In this section, we start by analyzing the behavior of
EDMD when employing noisy data. We rely on this analysis
to propose an alternative algorithm based on total least
squares optimization to overcome the limitations of EDMD.

A. Limitations of Extended Dynamic Mode Decomposition

Suppose that we feed noisy data X̃, Ỹ directly to the
EDMD algorithm in order to find matrix Knoisy as the
minimizer of the following optimization problem

minimize
K

∥∥DN (Ỹ )−DN (X̃)K
∥∥2

F
. (5)

In order to determine if Knoisy is close to KApprox =
argmin ‖DN (Y )−DN (X)K‖2F , we examine the cost func-
tion in (5) acting on exact and noisy data.

Lemma 4.1: (Cost Functions of EDMD Acting on Ex-
act and Noisy Data): Let J(K;X,Y ) = ‖DN (Y ) −
DN (X)K‖2F be the cost function of EDMD, where K ∈
RNd×Nd and X,Y,∆X,∆Y ∈ RN×ns . Then,

J(K;X + ∆X,Y + ∆Y )

= J(K;X,Y ) + J(K; ∆DN (X,∆X),∆DN (Y,∆Y ))

+ 2 Tr
[
(∆DN (Y,∆Y )−∆DN (X,∆X)K)T

(DN (Y )−DN (X)K)
]
, (6)

where ∆DN (X,∆X) and ∆DN (Y,∆Y ) are given by

∆DN (X,∆X) = DN (X + ∆X)−DN (X), (7a)
∆DN (Y,∆Y ) = DN (Y + ∆Y )−DN (Y ). (7b)

�

Equation (6) clearly shows that applying the EDMD on the
data while ignoring the measurement noise, i.e., minimizing
the left-hand side of (6), does not lead to the correct answer,
which would correspond to minimizing the first term on the
right-hand side of (6).

Note that the EDMD optimization problem can be written
in the following form

minimize
K,∆

‖∆‖2F

subject to DN (Y ) + ∆ = DN (X)K. (8)

The optimization (8) makes it clear that the least squares
algorithm employed in EDMD finds the smallest correction
for DN (Y ) to satisfy the constraint, assuming there is
no error in DN (X). The asymmetry created by correcting
DN (Y ) while keeping DN (X) intact is responsible for the
inconsistent answers obtained by least squares when X is
noisy, see e.g. [15], [16], [21].

In addition, since in EDMD data go through a non-
linear dictionary, the error matrix is not generally zero
mean and i.i.d. In order to resolve this issue, one needs to
investigate the statistical properties of ∆DN (X,∆X) and
∆DN (Y,∆Y ). Considering the rows of these matrices as
functions of measurement noise, we define for convenience,

Xbias = E[∆DN (X,∆X)], (9a)
Ybias = E[∆DN (Y,∆Y )], (9b)

CX
i = E

[
[∆DN (X,∆X)−Xbias]

T
i

[∆DN (X,∆X)−Xbias]i

]
, (9c)



CY
i = E

[
[∆DN (Y,∆Y )− Ybias]

T
i

[∆DN (Y,∆Y )− Ybias]i

]
, (9d)

for each i ∈ {1, . . . , N}.

B. A Method Inspired by Element-Wise Weighted Total Least
Squares

We propose here a method to incorporate measurement
noise based on EWTLS. Formally, the noise-resilient ex-
tended dynamic mode decomposition (NREDMD) consists
of solving the following optimization problem

min
K,∆1,∆2

N∑
i=1

∥∥[∆1,∆2]i blkdiag(CX
i , C

Y
i )−1/2

∥∥2

2
(10a)

subject to DN (Ỹ )− Ybias + ∆2

= (DN (X̃)−Xbias + ∆1)K. (10b)

We investigate the consistency of NREDMD as N → ∞
under the following assumptions.

Assumption 4.2: The rows of measurement noise matrix
[∆X,∆Y ] are independent.

Assumption 4.3: There exist κ, µ, η > 0 such that κ ≤
λ(blkdiag(CX

i , C
Y
i )) ≤ µ and ‖[Xbias, Ybias]i‖22 ≤ η.

Assumption 4.4: There exists r > N2
d/2 such that

supi∈N,j∈{1,2,...,2Nd} E
[
[∆DN (X,∆X),∆DN (Y,∆Y )]2rij

]
<

∞.
Assumption 4.5: limN→∞

1
NDN (X)TDN (X) exists and

is positive definite.

Assumptions 4.2-4.4 hold for typical choices of noise
distribution and dictionary such as Gaussian noise with pos-
itive definite covariance matrix and polynomial or sinusoidal
dictionaries. Assumption 4.5 is only about the dictionary
and the initial conditions used to excite the system. This
assumption requires both functions in the dictionary and the
initial conditions used for acquiring the data to be diverse
enough to capture the characteristics of the system over the
domain of interest. A critical implication of this fact is that
the functions in the dictionary must be linearly indepen-
dent. Note that the rows of [∆DN (X,∆X),∆DN (Y,∆Y )]
are functions of the rows of [∆X,∆Y ]. Consequently, us-
ing Assumption 4.2, one can conclude that the rows of
[∆DN (X,∆X),∆DN (Y,∆Y )] are independent.

Next, we state the consistency of NREDMD.
Theorem 4.6: (Consistency of NREDMD): Suppose there

exists KExact ∈ RNd×Nd such that DN (Y ) =
DN (X)KExact for all N ∈ N. Then, under Assumptions 4.2-
4.5, problem (10) has a solution KNREDMD with probability
tending to 1 as N → ∞. Moreover, this solution converges
in probability to KExact as N →∞. �

Similar to the EDMD, the NREDMD method relies on
the dictionary. Theorem 4.6 guarantees approximation in
probability when the dictionary spans a Koopman invariant
subspace, i.e., if the EDMD method finds the right answer
using exact data, the NREDMD method approximates the
true matrix consistently.

Remark 4.7: (Approximating (9)): Since we do not have
access to the exact values X and Y due to noise, the quanti-
ties in (9) are not directly computable. Assuming the signal
to noise ratio is high, one can use X̃, Ỹ instead of X,Y to
approximate them. Our simulations show that the proposed
algorithms are robust to the error in this approximation. �

We define Ci = blkdiag(CX
i , C

Y
i ), where i ∈

{1, . . . , N}. As we have discussed above, problem (10)
does not have a general closed-form solution. Even though
there exist algorithms that can solve (10) numerically, see,
e.g. [22], [23], it would be more desirable to have exact
closed-form solutions. This is the task we tackle next.

V. NUMERICALLY EFFICIENT NREDMD

Here, we propose an alternative algorithm based on TLS
for which one can find the closed-form solution efficiently
and establish the key fact that, under appropriate conditions,
the proposed method shares a common minimizer with the
NREDMD method proposed above.

For convenience, we use the shorthand notation Z =
[∆1,∆2]. Consider the objective function

JN
1 (Z) =

1

N

N∑
i=1

ZiC
−1
i ZT

i , (11a)

Note that JN
1 is the normalized version of (10)’s cost func-

tion and since N > 0, this normalization does not change
the minimizer. In the NREDMD method, each row of Z is
normalized individually, which hinders calculating a closed-
form solution for the optimization problem (10). Instead,
here we propose to normalize the rows of Z using the sum
of all covariance matrices. Therefore, let CX

Σ =
∑N

i=1 C
X
i ,

CY
Σ =

∑N
i=1 C

Y
i , CΣ = blkdiag(CX

Σ , C
Y
Σ ) and consider the

objective function

JN
2 (Z) = ‖ZC−1/2

Σ ‖2F =

N∑
i=1

ZiC
−1
Σ ZT

i . (11b)

The method we propose to implement is then

minimize
Z,K

JN
2 (Z)

subject to (10b). (12)

Remark 5.1: (Turning (12) into Standard TLS): Using the
change of variables Z ′ = ZC

−1/2
Σ , ∆′1 = ∆1(CX

Σ )
−1/2,

∆′2 = ∆2(CY
Σ )
−1/2, and K ′ = (CX

Σ )
1/2
K(CY

Σ )
−1/2, one

can write (12) as

minimize
Z′,K′

‖Z ′‖2F

subject to
[
A+ Z ′

] [K ′
−I

]
= 0, (13)

where A = [DN (X̃)−Xbias, DN (Ỹ )− Ybias]C
−1/2
Σ . Prob-

lem (13) is a TLS and has a closed-form solution. �

Remark 5.1 justifies our focus in the rest of the section
devoted to characterize the relationship between the cost
functions of (10) and (12) as N →∞, and guaranteeing the



existence of the limits. In order to tackle this, we constrain
the variable Z which describes the perturbations in dictionary
snapshot matrices, as follows

minimize
Z,K

JN
1 (Z)

subject to (10b)

γ ≤ ‖Zi‖22 ≤ Γ, i ∈ {1, . . . , N} , (14)

minimize
Z,K

JN
2 (Z)

subject to (10b)

γ ≤ ‖Zi‖22 ≤ Γ, i ∈ {1, . . . , N} . (15)

Here the constants 0 < γ < Γ are design choices. By
choosing γ sufficiently small and Γ sufficiently large, one
can make the problems (14) and (15) have close solutions to
the problems (10) and (12), resp.

The following result characterizes the behavior of JN
1 at

the solutions of (14) as N goes to infinity.
Lemma 5.2: (Convergence of JN

1 to a Positive Limit at
the Solutions of (14)): Suppose that Assumptions 4.2-4.5
hold. Let {ZN} and {KN} be sequences comprised of
solutions of (14) using the first N data snapshots. If γ ≤
‖[DN (X̃)−Xbias, DN (Ỹ )−Ybias]N‖22 ≤ Γ for every N ∈ N
then limN→∞ JN

1 (ZN ) exists and is positive. �

The following result characterizes the behavior of JN
2 at

the solutions of (15) as N goes to infinity.
Lemma 5.3: (Convergence of JN

2 to a Positive Limit at
the Solutions of (15)): Suppose that Assumptions 4.2-4.5
hold. Let {ZN} and {KN} be sequences comprised of
solutions of (15) using the first N data snapshots. If γ ≤
‖[Dn(X̃)−Xbias, Dn(Ỹ )−Ybias]N‖22 ≤ Γ for every N ∈ N
then limN→∞ JN

2 (ZN ) exists and is positive. �

Lemmas 5.2 and 5.3 facilitate connecting the cost func-
tions of (14) and (15). Now, we are ready to establish the
connection between the minimizers of (14) and (15) for a
sufficiently large number of data snapshots.

Theorem 5.4: (Common Minimizer for (14) and (15)):
Let Assumptions 4.2-4.5 hold and γ ≤ ‖[DN (X̃) −
Xbias, DN (Ỹ ) − Ybias]N‖22 ≤ Γ for every N ∈ N. If the
problems (14) and (15) have unique solutions for sufficiently
large N , then for sufficiently large N those solutions are
equal. �

Theorem 5.4 shows that the problems (14) and (15) are
equivalent for sufficiently large number of data snapshots.

Remark 5.5: (Solving (15) using a Standard TLS Prob-
lem): Using the change of variables presented in Remark 5.1,
problem (15) can be written as problem (13) with additional
constraints γ ≤ ‖[Z ′C1/2

Σ ]i‖22 ≤ Γ, for i ∈ {1, . . . , N}.
As a result, for most practical cases, one can make sure
that this constraint is not active by choosing γ sufficiently
small and Γ sufficiently large. Moreover, if the conditions
in Theorem 5.4 are satisfied, the problems (14) and (15)
will have a common minimizer. Consequently, the constraint
γ ≤ ‖[Z ′C1/2

Σ ]i‖22 ≤ Γ, for i ∈ {1, . . . , N} will be inactive
at the solution of (14). Hence, the minimizer of (10) is the

same as the minimizer of (13). �

Theorem 5.4 and Remark 5.5 are a bridge between TLS
and EWTLS problems which is helpful since one can solve
a standard TLS problem in closed-form instead of solving
EWTLS problem using cumbersome numerical methods.

VI. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the
NREDMD method using two examples from [17]. In order
to focus on the advantages of NREDMD versus EDMD,
we use examples for which the Koopman operator can be
approximated via a reasonably simple dictionary. All the
calculations regarding NREDMD are performed using the
standard TLS presented in (13).

Example 6.1 (Linear System with Nonlinear Dictionary):
Consider the following linear system[

x1(n+ 1)
x2(n+ 1)

]
=

[
0.9 −0.1
0 0.8

] [
x1(n)
x2(n)

]
. (16)

We use a dictionary comprised of distinct monomials of
the form

∏2
i=1 yi where yi ∈ {1, x1, x2} for i ∈ {1, 2, 3}.

Therefore, we have ns = 2 and Nd = 6. Moreover, we
confine the initial conditions to [−2, 2]× [−2, 2] ⊂ R2. The
measurement noise is zero-mean normally distributed with
covariance matrix W = 0.05 I .

Fig. 1a shows the difference between Koopman repre-
sentation obtained from applying EDMD on true data and
approximated representations obtained from applying EDMD
and NREDMD on noisy data. It is important to note that the
dictionary used in Example 6.1 spans an invariant Koopman
subspace which leads to a linear relationship in the form
of D(Y ) = D(X)KExact. Fig. 1a indicates the effective-
ness of NREDMD vs EDMD. Moreover, the eigenvalues
of representations obtained from different methods using
4 × 104 data points are plotted in Fig. 1b which indicates
reasonably accurate reconstruction of the eigenvalues using
the NREDMD method. It is important to note that the only
source of error that limits the accuracy of NREDMD method
is the usage of X̃, Ỹ instead of X,Y in (9).
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Fig. 1: Comparison between the effectiveness of EDMD
and NREDMD on noisy data acquired from the linear sys-
tem (16): (a) The error in Frobenius norm between calculated
matrices from noisy data and true Koopman representation.
(b) Eigenvalues of corresponding matrix representations.



Example 6.2 (Duffing Equation with Nonlinear Dictionary):
Consider the Duffing equation stated in (17)

ẋ1 = x2,

ẋ2 = −0.5x2 − x1(x2
1 − 1). (17)

We use a dictionary comprised of distinct monomials of
the form

∏3
i=1 yi where yi ∈ {1, x1, x2} for i ∈ {1, 2, 3}.

Consequently, we have ns = 2 and Nd = 10. Moreover,
we confine the initial conditions to [0, 2] × [0, 2] ⊂ R2.
The measurement noise is zero-mean normally distributed
with covariance matrix W = 0.03 I . In this example, the
subspace spanned by the dictionary is not an invariant
Koopman subspace. Hence, one can only find an approximate
representation for the Koopman operator in the form of
D(Y ) ≈ D(X)KApprox, i.e., the EDMD method minimizes
the error ‖D(Y ) − D(X)KApprox‖F which happens to be
nonzero in this example. Consequently, we do not expect to
accurately converge to KApprox using NREDMD applied on
noisy data. Fig. 2a shows the difference between Koopman
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Fig. 2: Comparison between the effectiveness of EDMD
and NREDMD on noisy data acquired from Duffing equa-
tion (17): (a) The error in Frobenius norm between calculated
matrices from noisy data and true Koopman representation.
(b) Eigenvalues of corresponding matrix representations.

representation obtained from applying EDMD on true data
and representations obtained from applying EDMD and
NREDMD on noisy data. Fig. 2b illustrates the eigenvalues
of approximate representation obtained by applying EDMD
on true data, and representations produced by employing
EDMD and NREDMD on noisy data. Fig. 2 shows nearly
accurate performance of NREDMD method.

VII. CONCLUSIONS

We have presented a method based on EWTLS to find a
finite-dimensional approximation for the Koopman operator
using noisy data. Also, we have proposed an optimization
problem based on TLS which is equivalent to the ETWLS
based method under some conditions and leads to finding
the closed-form solution for ETWLS based method. The ef-
fectiveness of the presented methods has been demonstrated
using two simulation examples. Future work will characterize
the minimal number of data snapshots needed for the two
proposed methods to have a common minimizer, explore the
extension of the results to handle streaming datasets, and
design methods for the efficient selection of dictionaries.
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[9] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Auto-
matica, vol. 93, pp. 149–160, 2018.

[10] H. Arbabi, M. Korda, and I. Mezic, “A data-driven Koopman model
predictive control framework for nonlinear flows,” arXiv preprint
arXiv:1804.05291, 2018.

[11] I. Abraham, G. de la Torre, and T. Murphey, “Model-based control
using Koopman operators,” in Proceedings of Robotics: Science and
Systems, Cambridge, Massachusetts, July 2017.

[12] S. Peitz and S. Klus, “Koopman operator-based model reduction for
switched-system control of PDEs,” arXiv preprint arXiv:1710.06759,
2017.

[13] P. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[14] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N.
Kutz, “On dynamic mode decomposition: theory and applications,”
arXiv preprint arXiv:1312.0041, 2013.

[15] S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley,
“Characterizing and correcting for the effect of sensor noise in the
dynamic mode decomposition,” Experiments in Fluids, vol. 57, no. 3,
p. 42, 2016.

[16] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta,
“De-biasing the dynamic mode decomposition for applied Koopman
spectral analysis of noisy datasets,” Theoretical and Computational
Fluid Dynamics, vol. 31, no. 4, pp. 349–368, 2017.

[17] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven
approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307–1346, 2015.
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