
Efficient Identification of Linear Evolutions in Nonlinear Vector Fields:
Koopman Invariant Subspaces

Masih Haseli and Jorge Cortés

Abstract— This paper presents a data-driven approach to
identify finite-dimensional Koopman invariant subspaces and
eigenfunctions of the Koopman operator. Given a dictionary of
functions and a collection of data snapshots of the dynamical
system, we rely on the Extended Dynamic Mode Decomposition
(EDMD) method to approximate the Koopman operator. We
start by establishing that, if a function in the space generated by
the dictionary evolves linearly according to the dynamics, then
it must correspond to an eigenvector of the matrix obtained by
EDMD. A counterexample shows that this necessary condition
is however not sufficient. We then propose a necessary and
sufficient condition for the identification of linear evolutions
according to the dynamics based on the application of EDMD
forward and backward in time. Due to the complexity of
checking this condition, we propose an alternative character-
ization based on the identification of the largest Koopman
invariant subspace in the span of the dictionary. This leads us
to introduce the Symmetric Subspace Decomposition strategy
to identify linear evolutions using efficient linear algebraic
methods. Various simulations illustrate our results.

I. INTRODUCTION

Mathematical modeling of physical phenomena is at the
heart of every problem considered in science and engineer-
ing. In particular, modeling of evolutions in time plays a
crucial role in prediction and control. State-space models are
one of the main ways to represent dynamical systems, usually
leading to nonlinear models whose complexity grows with
the dimension of the state space. Moreover, the nonlinear
character makes the prediction of these dynamical systems
difficult. This has spurred interest in finding alternative ways
to describe dynamical behavior. The Koopman operator is a
linear but generally infinite-dimensional operator that repre-
sents an autonomous dynamical system. Despite its linearity,
the infinite-dimensional nature of the Koopman operator
prevents one from implementing it using digital computers.
To circumvent this issue one can find finite-dimensional
subspaces that are invariant under the application of the
Koopman operator and analyze the dynamical behavior on
those subspaces. This is the problem considered here.

Literature Review: The eigenfunctions of the Koopman
operator [1], [2] evolve linearly in time, and hence its
eigendecomposition can be used to analyze and predict the
behavior of dynamical systems [3]–[5]. This can simplify
identification [6] and control [7]–[11] of nonlinear systems.
Traditional roadblocks to the widespread use of the Koopman
operator have been its infinite-dimensional nature and the
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lack of practical methods to find representations for it.
One can circumvent these issues using data-driven methods
such as Dynamic Mode Decomposition (DMD) [12] and
Extended Dynamic Mode Decomposition (EDMD) [13] to
approximate the projection of the Koopman operator onto a
finite-dimensional subspace.

DMD was initially introduced as a method to extract
dynamic information from time series data gathered from
fluid flows under the assumption that the collected data are
governed by a linear time-invariant mapping [12]. Later, it
was generalized to work with non-sequential data snapshots,
and its connection with the Koopman operator was further
explained [14], including extensions [15], [16] that can work
with noisy data. EDMD is a variation of DMD specifically
designed to find finite-dimensional approximations of the
Koopman operator [13]. In this method, the snapshots go
through a dictionary of functions to form the dictionary
snapshots. The EDMD algorithm finds a linear relationship
between the dictionary snapshots by solving a least squares
problem. The work [17] shows the convergence of the
EDMD algorithm to the Koopman operator as the number of
dictionary elements and data snapshots goes to infinity. In our
recent work [18], we have proposed a noise-resilient coun-
terpart of EDMD using element-wise weighted total least
squares method to handle noisy data. Even though DMD and
EDMD provide linear models for the original system, those
linear models are not useful for long term prediction of the
behavior of nonlinear systems since the models are not exact.
As a result, finding dictionaries that span finite-dimensional
Koopman invariant subspaces is of utmost importance. The
works [19], [20] present methods to perform this task using
neural networks. Moreover, since the eigenfunctions span a
Koopman invariant subspace, one can find the eigenfunctions
empirically using [21], [22] and form the dictionary using the
calculated eigenfunctions. The aforementioned methods do
not present theoretical guarantees for the calculated functions
to be the eigenfunctions of the Koopman operator.

Statement of Contributions: We develop data-driven meth-
ods to identify finite-dimensional subspaces that are invariant
under the application of the Koopman operator. The pro-
posed methods are able to identify Koopman eigenfunctions,
i.e., functions that evolve linearly in time according to the
(generally nonlinear) vector field. We start by showing that
being identified by the EDMD method is a necessary but
not sufficient condition for a function to evolve linearly
according to the dynamics. Motivated by this observation, we
develop a necessary and sufficient condition for functions to
evolve linearly based on the application of EDMD forward



and backward in time. One can use this characterization as
a tool to find the functions with linear evolution based on
the available data. The identified functions are not necessarily
Koopman eigenfunctions, since they are guaranteed to evolve
linearly based on the available data snapshots, and might not
do so over the whole state space. To circumvent this issue, we
provide a necessary and almost sure sufficient condition to
identify the Koopman eigenfunctions under the assumption
that the dictionary functions are continuous and the set of
sampled initial conditions converges to a dense subset of the
compact state space with probability 1. The characterization
based on the application of EDMD forward and backward
in time requires the computation and comparison of the
eigendecomposition of two potentially large matrices. This
can be cumbersome for large dictionaries, since one needs
to compare every eigenpair in the eigendecomposition of the
matrices. To alleviate this issue, we propose the Symmetric
Subspace Decomposition (SSD) algorithm, a strategy that
uses the fact that any subdictionary in the span of the original
dictionary of functions can be characterized by a matrix.
Using this fact, we prune the dictionary at each iteration to
remove the parts that do not correspond to linear evolutions.
We prove that the SSD algorithm is equivalent to the method
based on application of EDMD forward and backward in
time. Simulations illustrate the versatility of the proposed
approach. The proofs are omitted due to space constraints
and will appear elsewhere1.

II. PRELIMINARIES

Here, we introduce the Koopman operator [5] and Ex-
tended Dynamic Mode Decomposition (EDMD) [13].

A. Koopman Operator

Consider a discrete-time autonomous dynamical system
over a state spaceM⊆ Rn defined by a map T :M→M,

x+ = T (x), (1)

The Koopman operator K : F → F is defined as

K(f) = f ◦ T, (2)

where F is a linear space of functions (also known as observ-
ables) defined onM which is closed under composition with
T , i.e, f ◦ T ∈ F for every f ∈ F . Typically, F = L2(µ),

1Throughout the paper, we employ the following notation. We denote the
sets of natural, real, nonnegative real, and complex numbers by N, R, R≥0,
and C respectively. For a matrix A ∈ Cm×n we denote its transpose,
complex conjugate, conjugate transpose, Frobenius norm, pseudo-inverse,
and range space by AT , Ā, AH , ‖A‖F , A†, R(A) respectively. Moreover,
if n = m we use A−1 to denote the inverse of A. For matrices A ∈ Cm×n

and B ∈ Cm×d, we denote by [A,B] ∈ Cm×(n+d) the matrix created by
concatenating A and B. For v ∈ Cn, we use Re(v) and Im(v) to denote
its real and imaginary parts, and define its 2-norm as ‖v‖2 :=

√
vHv.

Given v1, . . . , vk ∈ Cn, span{v1, . . . , vk} denotes the set comprised of
all vectors in the form of c1v1 + · · ·+ cnvn, with c1, . . . , cn ∈ C. Given
setsA andB, we useA∩B andA∪B to denote their intersection and union,
respectively. Also, A ⊆ B means that A is a subset of B. For functions
f : B → A and g : C → B, f ◦ g : C → A represents their composition.
We refer by class-K to the set consisting of all continuous strictly increasing
functions α : R≥0 → R≥0 with α(0) = 0. Given a positive measure µ on
M, we use L2(µ) to denote the set of all measurable functions f :M→ C
with

∫
M f(x)Hf(x) dµ(x) <∞.

where µ is a positive measure on M. Linearity of F results
in the linearity of the Koopman operator on the functional
space F , i.e., for functions f1, f2 ∈ F and c1, c2 in the field
on which the linear space F is defined (typically C), we have

K(c1f1 + c2f2) = c1K(f1) + c2K(f2). (3)

Since K is a linear operator, one can naturally define its
eigendecomposition. The function φ ∈ F is called an
eigenfunction of K associated with eigenvalue λ if

K(φ) = λφ.

Since the states of the system are real, the complex eigen-
functions of the Koopman operator form a pair, i.e., if φ
is a complex eigenfunction with eigenvalue λ, then φ̄ is an
eigenfunction with eigenvalue λ̄.

One can observe that the eigenfunctions of the Koopman
operator evolve linearly in time. Formally,

φ(x+) = (φ ◦ T )(x) = K(φ)(x) = λφ(x).

The linear evolution of the eigenfunctions in conjunction
with the spatial linearity of the operator (3) makes the
Koopman operator a powerful tool in analyzing the behavior
of the dynamical system (1), since one can use the spectral
properties of the operator to predict the temporal behavior
of the underlying system.

It is worth highlighting some difference between the
operator-theoretic and conventional state-space viewpoints.
The Koopman operator acts on functions in F , as opposed
to the dynamical system (1), which defines the evolution
of states in M. The Koopman operator is linear even if the
dynamical system is nonlinear. In addition, despite its linear-
ity, the Koopman operator captures the global characteristics
of the underlying dynamical system as opposed to standard
linearization techniques which are only valid locally.

B. Extended Dynamic Mode Decomposition

The Koopman operator is generally infinite-dimensional,
which impedes the use of conventional linear methods to
compute the operator explicitly. To circumvent this issue,
one can find finite-dimensional approximations for the Koop-
man operator using data-driven methods such as Extended
Dynamic Mode Decomposition (EDMD). In this method,
the data snapshots acquired from the system are lifted to
a higher-dimensional space using a dictionary of functions
and then the projection of the Koopman operator onto the
span of the dictionary can be found by minimizing the sum
of squares error. Formally, let X,Y ∈ RN×n be N data
snapshots of the dynamical system (1): if xTi and yTi denote
the ith rows of X and Y , respectively, this means that

yi = T (xi), i ∈ {1, . . . , N}.

Furthermore, let D : Rn → R1×Nd be a dictionary of Nd

functions belonging to F , with D(x) = [d1(x), . . . , dNd
(x)].

Any function in the span of the dictionary can be written as
f(x) = D(x)v, with v ∈ CNd . Note that v fully characterizes
f . We define the action of the dictionary on data matrices as

D(X) := [D(x1)T , . . . , D(xN )T ]T ,



where xTi , i ∈ {1, . . . , N} denotes the ith row of X .
The EDMD method approximates the projection of the

Koopman operator on the span of the dictionary by minimiz-
ing the residual in sum of squares form ‖D(Y )−D(X)K‖2F .
This yields the matrix KEDMD(D(X), D(Y )) as a finite-
dimensional approximation of K. In closed form,

KEDMD(D(X), D(Y )) = D(X)†D(Y ). (4)

We simply use KEDMD when the context is clear.
Inspecting (4) reveals that, due to the pseudo-inverse, the

computational cost of EDMD grows as the number of data
snapshots increases. The work [23] presents a kernel method
approach to resolve this issue. A closer look at (4) reveals
the dependence of EDMD on the choice of the dictionary. If
‖D(Y )−D(X)KEDMD‖F 6= 0, the EDMD algorithm loses
some information about the operator. However, even under
this circumstance, EDMD can capture important information
regarding the operator if the dictionary is sufficiently rich.

III. PROBLEM STATEMENT

As mentioned in Section II-B, the approximation derived
by the EDMD algorithm heavily relies on the choice of
dictionary. Moreover, a larger dictionary is not necessarily
better. For instance, the states of a linear dynamical system
form a perfect dictionary for the system, i.e., D(X) = X ,
D(Y ) = Y , and since the system is linear we have

min
K
‖D(Y )−D(X)K‖2F = min

K
‖Y −XK‖2F = 0.

This means that the error associated with the EDMD approx-
imation is zero and the solution is exact. However, one can
add a nonlinear function to the dictionary which leads to a
nonzero approximation error and hence an inexact solution.

Motivated by these observations, the goal of the paper
is, given a dictionary, to find the largest invariant subspace
of functions under the Koopman operator in the span of the
dictionary. In other words, we seek to prune the dictionary in
order to ensure that the remaining functions evolve linearly.
Formally, we consider the dynamical system (1) where
T : M → M is a continuous mapping, and we aim to
find the maximal subspace in the span of the dictionary
which is invariant under the application of the Koopman
operator. In the other words, given a dictionary comprised of
functions d1(x), . . . , dNd

(x), we intend to find the functions
d̃1(x), . . . , d̃m(x) such that

span{d̃1, . . . , d̃m} ⊆ span{d1, . . . , dNd
}, (5)

and, if f ∈ span{d̃1, . . . , d̃m} then

K(f) ∈ span{d̃1, . . . , d̃m}. (6)

Moreover, span{d̃1, . . . , d̃m} must be maximal in the sense
that for any dictionary of functions {d̄1, . . . , d̄k} that satisfies
properties presented in (5) and (6), we must have

span{d̄1, . . . , d̄k} ⊆ span{d̃1, . . . , d̃m}.

To tackle this task, we make the following assumption
regarding the dictionary snapshots.

Assumption III.1: (Full Rank Dictionary Matrices): The
matrices D(X) and D(Y ) have full column rank. �
Assumption III.1 requires the dictionary functions to be
linearly independent and the set of initial conditions to be
rich enough to capture the characteristics of the vector field.

Since we rely on the EDMD algorithm throughout the
paper and this method is not designed specifically to work
with noisy data, we assume access to data with sufficiently
high signal-to-noise ratio. Our results are indeed stated for
the noise-free data case, which may require to preprocess the
data before using the proposed algorithms.

IV. CAPABILITIES AND LIMITATIONS OF EDMD

In this section, we study the advantages and disadvantages
of the EDMD method regarding the identification of the
eigenfunctions of the Koopman operator. The next result
shows that the EDMD method captures the linear evolution
of functions in the span of the dictionary even if this space
is not invariant under the Koopman operator.

Lemma IV.1: (EDMD Captures the Linear Evolution of
Functions in the Span of the Dictionary): Let f(x) = D(x)v,
with v ∈ CNd \ {0}, be a function with linear evolution
based on the existing data, i.e., there exists λ ∈ C such that
D(Y )v = λD(X)v. Then under Assumption III.1, the vector
v is an eigenvector of KEDMD with eigenvalue λ. �

Based on the definition of the eigenfunctions of the
Koopman operator, one can derive the following result.

Corollary IV.2: (EDMD Captures the Eigenfunctions of
the Koopman operator in the Span of the Dictionary):
Suppose that Assumption III.1 holds and f(x) = D(x)v,
with v ∈ CNd \ {0}, is an eigenfunction of the Koopman
operator with eigenvalue λ ∈ C. Then, v is an eigenvector
of KEDMD with eigenvalue λ. �

Lemma IV.1 and Corollary IV.2 provide a necessary con-
dition for functions in the span of the dictionary to evolve
linearly in time according to the dynamics. However, the
aforementioned condition is not sufficient.

Example IV.3: Consider the scalar linear system x+ = 2x
with state space M = [1,∞) and dictionary D(x) =
[x, x2 + x3]. Moreover, assume that we gather data in a
way that Assumption III.1 holds. By Corollary IV.2, the
EDMD algorithm identifies the true eigenfunction f1(x) = x
with eigenvalue λ1 = 2. Additionally, it identifies f2(x) =
a1x+ a2(x2 +x3) as another eigenfunction with eigenvalue
λ2. Note that a2 6= 0 since the matrix KEDMD defined in (4)
must be full rank as a consequence of Assumption III.1. Now
suppose that f2 is an eigenfunction of the Koopman operator.
Then, for every x ∈M we have

f2(x+) = λ2f2(x)

⇒ 2a1x+ a2(4x2 + 8x3) = λ2
(
a1x+ a2(x2 + x3)

)
⇒ a1(2− λ2) + a2(4− λ2)x+ a2(8− λ2)x2 = 0

The last equality can hold for at most two x ∈M and hence
f2 cannot be an eigenfunction of the Koopman operator. �

Even though the necessary conditions in Lemma IV.1
and Corollary IV.2 identify Nd potential eigenfunctions, one



still needs to check the effect of the dynamics on these
functions to identify the ones that evolve linearly in time.
This procedure is not practical for large Nd. As a result,
finding necessary and sufficient conditions for a function to
evolve linearly according the dynamics is desirable.

V. IDENTIFICATION OF KOOPMAN INVARIANT
SUBSPACES

Here, we present two methods to identify linear evolu-
tions in the data and consequently find Koopman invariant
subspaces and eigenfunctions.

A. Forward and Backward EDMD
A simple observation reveals that if a function evolves lin-

early forward in time, then it also evolves linearly backward
in time. The following result uses this observation to provide
a necessary and sufficient condition for functions in the span
of dictionary to evolve linearly according the available data.

Theorem V.1: (Identification of Linear Evolutions by For-
ward and Backward EDMD): Let Assumption III.1 hold.
Then v ∈ CNd \ {0} is an eigenvector of Kf =
KEDMD(D(X), D(Y )) with eigenvalue λ ∈ C \ {0}, and
an eigenvector for Kb = KEDMD(D(Y ), D(X)) with eigen-
value λ−1 if and only if D(Y )v = λD(X)v. �

According to Theorem V.1, one can find functions that
evolve linearly in time based on the available data by
performing the EDMD forward and backward in time, and
comparing the eigenvectors and corresponding eigenvalues.
However, this does not mean that they are eigenfunctions, as
it is not guaranteed that they evolve linearly in time starting
from anywhere in the state space. Before addressing this
point, we make an assumption on the density of the sampling.

Given N data snapshots, we define SN as the set com-
prised of the columns of XT . Note that the size of X grows
as we gather more data. Consequently, SN ⊂ SN+1 for every
N ∈ N. Next, we introduce an assumption regarding the state
space and sampling procedure.

Assumption V.2: (Almost sure dense sampling): The state
space M is compact and there exists a class-K function α
such that, for every N ∈ N,

∀m ∈M, ∃x ∈ SN such that ‖m− x‖2 ≤ α
( 1

N

)
holds with probability pN , where limN→∞ pN = 1. �

The compactness of M holds in most practical cases
(either because the state space is bounded itself or because
attention is limited to a specific bounded range). Moreover,
one is only able to gather data from bounded sets due to
the limitation in the range of the sensors. In addition, most
conventional random samplings satisfy Assumption V.2.

Theorem V.3: (Identification of Koopman Eigenfunctions
by Forward and Backward EDMD): Suppose that Assump-
tion III.1 holds and let KN

f = KEDMD(D(X), D(Y )),
KN

b = KEDMD(D(Y ), D(X)) for X,Y ∈ RN×n. Given
v ∈ CNd \ {0} and λ ∈ C \ {0}, let f(x) := D(x)v. Then,

(a) If f is an eigenfunction of the Koopman operator with
eigenvalue λ, then v is an eigenvector of KN

f with eigenvalue
λ and an eigenvector of KN

b with eigenvalue λ−1.

(b) Conversely, and assuming the dictionary functions are
continuous and Assumption V.2 holds, if v is an eigenvector
of KN

f with eigenvalue λ and an eigenvector of KN
b with

eigenvalue λ−1 for every N ≥ Nd, then f is an eigenfunction
of the Koopman operator with probability 1. �

One can use Theorem V.1 to identify the functions that
evolve linearly in time according to the available data.
However, this procedure requires one to deal with poten-
tially complex-valued eigenvectors and their corresponding
eigenvalues, which can be cumbersome for large dictionaries.
Since eigenfunctions come in complex-conjugate pairs, they
can be described instead by their real and imaginary parts.
We develop such methods next.

B. Symmetric Subspace Decomposition

The eigenfunctions of the Koopman operator identified
with the methods proposed in Section V-A can be employed
to generate an invariant subspace. Here, we follow this path
in the reverse order, i.e., we first find an invariant Koopman
subspace using efficient linear algebraic methods and then
use it to identify eigenfunctions of the Koopman operator.

We start with a dictionary D : Rn → R1×Nd of Nd

linearly independent functions and use it to construct a
dictionary D̃ : Rn → R1×Ñd with Ñd linearly independent
functions in the span of D and defining a linear evolution
based on available data. Formally, suppose that Assump-
tion III.1 holds for D and data snapshots X,Y . Then the
new dictionary D̃ must satisfy

D̃(Y ) = D̃(X)K (7)

for some K ∈ RÑd×Ñd . Moreover, since the elements of D̃
must lie in the span of the original dictionary, one can write
D̃(x) = D(x)C, for all x ∈ M, for some C ∈ RNd×Ñd

with full column rank. Under Assumption III.1, this implies
that D̃(X), D̃(Y ), and K are also full rank. Consequently,

R(D(X)C) = R(D(Y )C).

Since one can fully obtain the new dictionary from the
original one with the matrix C, our problem can be equiv-
alently formulated as that of finding the matrix C with the
maximum possible number of columns, full column rank, and
such that R(D(X)C) = R(D(Y )C). To tackle this task, we
propose the “Symmetric Subspace Decomposition” strategy
described in Algorithm 1. In this strategy, the function
null([Ai, Bi]) returns a basis for the null space of [Ai, Bi],
and if the null space only contains the zero vector, it returns
∅. Moreover, ZA

i and ZB
i have the same size.

The next result discusses the convergence of Algorithm 1
and the properties of its output.

Theorem V.4: (Symmetric Subspace Decomposition): Al-
gorithm 1 has the following properties:

(a) Stops after a finite number of iterations2;

2The most time-consuming calculation in Algorithm 1 is Step 4, which
can be done via Singular Value Decomposition with complexity O(NN2

d ),
considering that N � Nd. Moreover, the algorithm terminates after at most
Nd iterations. Consequently, the complexity is O(NN3

d ), which is linear
in the number of the dictionary snapshots N .



Algorithm 1 Symmetric Subspace Decomposition

1: Initialization
2: i← 1, A1 ← D(X), B1 ← D(Y ), C ← INd

3: while 1 do

4:

[
ZA
i

ZB
i

]
← null([Ai, Bi]) . Basis for the null space

5: if null([Ai, Bi]) = ∅ then
6: return 0 . The basis does not exist
7: break
8: end if
9: nAi ← number of rows of ZA

i

10: mA
i ← number of columns of ZA

i

11: if nAi ≤ mA
i then

12: return C . The procedure is complete
13: break
14: end if
15: C ← CZA

i . Reducing the subspace
16: Ai+1 ← AiZ

A
i , Bi+1 ← BiZ

A
i , i← i+ 1

17: end while

(b) Returns a matrix C which is either 0 or has full
column rank and satisfies R(D(X)C) = R(D(Y )C);

(c) The subspace R(D(X)C) is maximal, i.e., for any
matrix E with R(D(X)E) = R(D(Y )E), we have
R(D(X)E) ⊆ R(D(X)C) and R(E) ⊆ R(C). �

After finding C, one simply can find the dictionary by
setting D̃(x) = D(x)C. Since R(D(X)C) = R(D(Y )C),
we have R(D̃(X)) = R(D̃(Y )), and consequently, one can
find the matrix K satisfying (7). Given an eigenvector v of K
with eigenvalue λ and using (7), we have D̃(Y )v = λD̃(X)v
and consequently the function f(x) := D̃(x)v evolves
linearly according to the data snapshots. The eigendecompo-
sition of K not only fully characterizes the linear evolutions
in D̃(X) and D̃(Y ) but also fully characterizes the linear
evolutions in D(X) and D(Y ) according to the next result.

Theorem V.5: (Identification of Linear Evolutions using
Algorithm 1): Suppose that Assumption III.1 holds and let
C be the output of the Symmetric Subspace Decomposition
strategy. Let D̃ : Rn → R1×Ñd the dictionary defined by
D̃(x) = D(x)C, x ∈ M. Then D̃(Y )w = λD̃(X)w for
some λ ∈ C and w ∈ CÑd if and only if there exists v ∈ CNd

such that D(Y )v = λD(X)v. In addition v = Cw. �
Theorem V.5 establishes an alternative necessary and

sufficient condition to the one presented in Theorem V.1
for the identification of linear evolutions in data matrices.
One can state a result similar to Theorem V.3 regarding the
identification of eigenfunctions with the output provided by
Algorithm 1, but we omit it here for reasons of space.

Remark V.6: (Approximation of Koopman Invariant Sub-
spaces): One also can modify Algorithm 1 to approximate
Koopman invariant subspaces when the span of the dic-
tionary does not contain enough eigenfunctions to capture
the behavior of the system. Specifically, at each iteration of
Algorithm 1, the subspace reduction is performed based on
the rank deficiency in [Ai, Bi]. In order to approximate the

Koopman invariant subspaces, one can replace [Ai, Bi] by a
rank-deficient matrix. Let σ1 ≥ · · · ≥ σli ≥ 0 be the singular
values of [Ai, Bi] ∈ RN×li . Also, let ki be the minimum
integer in {1, . . . , li} such that∑li

j=ki
σj∑li

j=1 σj
≤ ε, (8)

where ε is a design parameter tuning the accuracy of the
approximation. The modified algorithm employs a rank-
deficient matrix close to [Ai, Bi] by setting σki

, . . . , σli equal
to zero in the singular value decomposition of [Ai, Bi]. �

VI. SIMULATION RESULTS

Here we demonstrate the effectiveness of the Symmetric
Subspace Decomposition strategy, cf. Algorithm 1, regarding
the identification of Koopman invariant subspaces.

Example VI.1: (Linear System): Consider the second
order-linear system x+ = Ax, where x = [x1, x2]T and

A =

[
0.8 0.5
−0.5 0.8

]
.

We use D(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, x1x

2
2, x

2
1x2, x

3
2] with

Nd = 9. One can use direct calculation to verify that
the dictionary D̃(x) = [1, x1, x2, x

2
1, x1x2, x

2
2] spans the

maximal subspace in the span of D(x) that is invariant under
application of the Koopman operator. We use N = 104

samples uniformly taken from M = [−2, 2]× [−2, 2]. After
applying Algorithm 1, we find a new dictionary comprised
of 6 functions which spans the same subspace as D̃(x), i.e.,
the algorithm successfully identifies the maximal Koopman
invariant subspace. The algorithm identifies the real-valued
eigenfunctions f1(x) = 1 and f2(x) = x21 + x22 with
eigenvalues λ1 = 1 and λ2 = 0.89. The algorithm also
identifies two pairs of complex valued eigenfunctions. We
illustrate one eigenfunction from each pair in Figs. 1 and 2.
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Fig. 1: Absolute value (left) and angle (right) of the eigen-
function corresponding to eigenvalue λ = 0.39 + 0.8j on
[−2, 2]× [−2, 2] for the system presented in Example VI.1.

Example VI.2: (Van der Pol Oscillator): Consider

ẋ1 = x2

ẋ2 = −x1 + (1− x21)x2. (9)

We use Algorithm 1 to approximate Koopman invariant
subspaces associated with the discretized version of (9). We
use a dictionary consisting of all the Nd = 36 distinct
monomials up to degree 7 of the form

∏7
i=1 yi, where
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Fig. 2: Absolute value (left) and angle (right) of the eigen-
function corresponding to eigenvalue λ = 0.8 + 0.5j on
[−2, 2]× [−2, 2] for the system presented in Example VI.1.

yi ∈ {1, x1, x2} for i ∈ {1, . . . , 7}. We create our data
snapshots using N = 104 points uniformly sampled from
M = [−4, 4] × [−4, 4] as initial conditions and finding the
state of the system after ∆t = 5×10−3s. Using Algorithm 1
on the dictionary snapshots results in the trivial dictionary
D̃1(x) = [1], since f(x) = 1 is the only eigenfunction of
the Koopman operator in the span of the dictionary.

One can resolve this issue by approximating Koopman in-
variant subspaces using the method presented in Remark V.6.
Here we use ε = 10−4 and identify a dictionary D̃(x) with
Ñd = 24. By computing KEDMD = KEDMD(D̃(X), D̃(Y ))
and its eigendecomposition, one can approximate the Koop-
man eigenfunctions. We use the following relative error to
measure the quality of the approximation

er =
‖D̃(Y )− D̃(X)KEDMD‖F
min{‖D̃(X)‖F , ‖D̃(Y )‖F }

.

By computing er using the available data, we get er < 6×
10−4 which shows that the evolution of dictionary snapshots
is close to linear. Fig. 3 shows a leading eigenfunction of
the Koopman operator corresponding to system (9).
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Fig. 3: Absolute value (left) and angle (right) of the eigen-
function corresponding to eigenvalue λ = 0.9997 + 0.0048j
on [−4, 4]× [−4, 4] for the Van der Pol oscillator.

VII. CONCLUSIONS

We have presented a necessary and sufficient condition for
a function to evolve linearly according to the dynamics based
on application of the EDMD method forward and backward
in time. One can use the proposed condition to identify func-
tions that evolve linearly according to the dynamics. Also,
we have proposed an equivalent but more efficient algorithm
to identify Koopman invariant subspace and linear evolutions
according to the dynamics. For the future work, we plan on
developing noise-resilient and distributed counterparts of the
proposed algorithm. Moreover, we plan on modifying the
proposed algorithm to work with streaming data sets.
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