
Noname manuscript No.
(will be inserted by the editor)

Distributed multi-agent deployment for full visibility of
1.5D and 2.5D polyhedral terrains

Aaron Ma Jorge Cortés

the date of receipt and acceptance should be inserted later

Abstract This paper presents deployment strategies

to achieve full visibility of 1.5D and 2.5D polyhedral

environments for a team of mobile robots. Agents may

only communicate if they are within line-of-sight. In

1.5D polyhedral terrains we achieve this by algorithmi-

cally determining a set of locations that the robots can

occupy in a distributed fashion. We characterize the

time of completion of the resulting algorithm, which is

dependent on the number of peaks and the initial condi-

tion. In 2.5D polyhedral terrains we achieve full visibil-

ity by asynchronously deploying groups of agents who

utilize graph coloring and may start from differential

initial conditions. We characterize the total number of

agents needed for deployment as a function of the envi-

ronment properties and allow the algorithm to activate

additional agents if necessary. We provide lower and up-

per bounds for the time of completion as a function of

the number of vertices in a planar graph representing

the environment. We illustrate our results in simula-

tion and an implementation on a multi-agent robotics

platform.

1 Introduction

With growing interest in autonomous vehicles to aid

in complex tasks, including surveillance, disaster re-

sponse and exploration, this paper considers scenarios

where mobile agents are constrained to moving on the

ground in 1.5D and 2.5D polyhedral terrains. We con-

sider a fleet of agents who are tasked with guarding

A preliminary version of this paper appeared as [16] at the
2016 ASME Dynamics and Control Conference.

Department of Mechanical and Aerospace Engineering,
University of California, San Diego, CA 92093, USA,
{aam021,cortes}@ucsd.edu

these terrains and are constrained by visibility-based

communication. Guarding a terrain or region is of par-

ticular interest in military applications where mobile

or stationary sensors can provide valuable visual feed-

back regarding activity in the area. The distributed de-

ployment of agents to find guarding locations to collec-

tively maintain complete visibility of a region is well-

studied and is known as the ‘art gallery’ problem. We

extend this idea, most commonly studied in 2D environ-

ments, to 1.5D and 2.5D terrain environments, where

agents determine their respective locations and remain

stationary to save battery and focus on surveillance.

The autonomous deployment of vehicles to guard en-

vironments is becoming an increasingly relevant topic

as hardware capabilities and interest in military appli-

cations increase. In particular, the emergence of cheap

autonomous vehicles make the robust distributed multi-

agent deployment approach more attractive.

Consider, for instance, scenarios where agents oper-

ate in GPS-denied and unknown environments. In this

situation, it is imperative that agents maintain commu-

nication connectivity and efficiently explore the envi-

ronment in a robust manner in case one or more agents

fail their mission. It is important that the deployment

of vehicles is quick, autonomous, and distributed in or-

der to alleviate user burden. Because of the unknown

nature of the environment and the potential presence

of adversaries, we are interested RF-quiet missions to

avoid the possibility of interception of radio communi-

cation. Because of this, we consider line-of-sight com-

munication based on optics. Our objective is to design

distributed strategies for deploying robots in polyhedral

terrains that achieve complete visibility endowed with

explicit guarantees on time completion.

2 Aaron Ma Jorge Cortés

Literature Review

We are inspired by research on distributed algorithms

for multi-agent networks [7,18,1] addressing computa-

tional geometric and optimization problems and, in par-

ticular, the classical art-gallery problem [19,5], which

seeks to find the optimum number of guards in a non-

convex environment so that each point is visible to at

least one guard. In general, n/3 guards are sufficient

and sometimes necessary to guard the inside of any

polygon with n vertices [9,24]. The work [11] designs

distributed algorithms for teams of robots to guard 2D

art gallery environments where agents are constrained

to line of sight communication. We extend notions from

distributed robotics constrained by line of sight com-

munication as well as work from art-gallery problems

to develop deployment for complete visibility in 1.5D

and 2.5D environments. In [3], a centralized algorithm

is presented for guarding 1.5D terrains in both discrete

and continuous domains. The work [15] introduces the

terrain guard range as a new geometric parameter by

discretizing the definition of range for agents with lim-

ited visibility in 1.5D terrains, and proposes a central-

ized algorithm that solves the 1.5D terrain guarding

problem in a tractable fashion with respect to the in-

troduced parameter. In contrast to these methods, we

are interested in the distributed deployment of multi-

ple agents to achieve complete visibility in these en-

vironments. The work [14] addresses the guarding of

polyhedral terrains and proposes methods for calcu-

lating and analyzing their visibility. [10] discusses a

polynomial-time approximation scheme for guarding of

1.5-dimensional terrains. [13] introduces a centralized,

locally optimal, polynomial-time approximation scheme

(PTAS) for guarding a terrain. The work [17] explores

dynamic and integer linear programming approaches to

guard 1.5D and 2.5D terrains also in a centralized set-

ting. Our treatment here builds on ideas from graph

coloring and shares commonalities in particular with

distributed graph coloring, cf. [4], a problem where each

of the nodes on the graph is a static agent with local

information consisting of its neighboring nodes. In con-

trast, in the setting considered here, agents and nodes

are two separate entities: agents are deployed starting

from a subset of the nodes, eventually all nodes will

not be occupied by an agent, and the color of nodes is

determined by the agents. The work [25] explores the

use of distributed simulated annealing as a technique

for 2.5D terrain visibility, where each agent moves to

another node with probability based on a temperature

function and marginal gain. Similarly, [12] presents

a probabilistic algorithm that yields near-optimal re-

sults with high probability. In contrast, our proposed

algorithm contains rules for agent movement to main-

tain communication and guarantee complete visibility.

The work [6] describes the number of agents required

to guard a 2.5D terrain which utilizes a colored planar

graph. Recent work [23] employs aerial drones to occupy

guarding points in a 2.5D terrain which are determined

using graph coloring techniques. In our work here, how-

ever, agents are deployed in a distributed fashion un-

der constraints of maintaining visibility-based commu-

nication. In order to analyze a 2.5D polyhedral terrain

for guarding, we use results from 4-coloring of a pla-

nar graph [2]. [22] provides an algorithm for 4-coloring

a planar graph which, however, is centralized. Algo-

rithms for 5-coloring a planar graph that are amenable

to distributed implementation are found in [8,26]. A

face-spanning subgraph of the 2.5D environment is cre-

ated as a result of our deployment strategy. Although

research in face-spanning subgraphs is sparse, [20] pro-

vides results on the minimum number of vertices in a

face-spanning subgraph which we use for our results.

Statement of Contributions

We design distributed algorithms for robotic teams to

achieve full visibility of polyhedral terrains. Our contri-

butions are structured in two blocks corresponding to

1.5D and 2.5D environments, respectively. The strate-

gies for deployment we propose are iterative processes

where the agents communicate through vision, com-

pute, move, and detect where they are in their envi-

ronment.

For 1.5D environments, we begin by characterizing

a guarding set to achieve full visibility of the terrain

based on identifying alternate peaks. This allows us to

determine a number of agents that are always sufficient

and some times necessary to guard any 1.5D environ-

ment. Building on this result, we design two deploy-

ment strategies and determine closed-form expressions

for the time it takes each strategy to finish. The first

strategy allows for more flexible initial conditions, while

the second strategy completes in less time.

For 2.5D environments, we synthesize a distributed

2.5D deployment strategy that yields complete visibil-

ity by utilizing planar graph coloring and redundant

locations. We start by identifying locations that are re-

dundant in terms of guarding and visibility. We deter-

mine the maximum number of locations that are not

redundant (removing an agent that guards a redun-

dant location does not change the collective visibility)

and use this result as the sufficient number of agents to

guard any 2.5D terrain. Agents are initialized at ran-

dom nodes in the environment and follow a set of rules

to identify, occupy and explore vertices with the objec-

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 3

tive of achieving complete visibility and connectivity.

Agents can be deployed asynchronously at any loca-

tion and execute the algorithm unaware of other agents

other than those which they are connected to via vis-

ibility. When one group of connected agents discovers

another group, they merge the information collected

about the environment so far and will not break com-

munication in the ensuing evolution. Finally, we provide

lower and upper bounds on the time completion of the

proposed algorithm.

2 Preliminaries

This section introduces basic notation and concepts on

planar graphs, coloring, and polyhedral terrains.

Notation

We let R and Z denote the set of real and integer num-

bers, respectively. We denote by |S| the cardinality of

the set S. The map ceil : R → Z rounds its argument

to the next highest integer. We denote by p1p2 the line

segment between points p1, p2 ∈ Rd. A set C ⊂ Rd is

convex if the line segment between any pair of its points

is contained in C. In R3, we use xp, yp, and zp to denote

the components of the point p ∈ R3. Given p1, p2 ∈ R3,

the slope of p1p2 is

sp1p2 =
zp2 − zp1√

(xp2 − xp1)2 + (yp2 − yp1)2
.

When convenient, we embed the Euclidean plane R2

into the Euclidean space R3 through the map i defined

by i(a1, a2) = (a1, 0, a2). With this embedding, we have

yp = 0 for any point p ∈ i(R2) ≡ R2.

Planar graphs and coloring

An undirected graph G = (V,E) is a pair composed of

a vertex set V and an edge set E consisting of bidirec-

tional edges between vertices. The degree of a vertex is

the number of edges connected to it. Planar graphs are

undirected graphs with vertices in R2 and whose edges

can be drawn on R2 in such a way that no edges cross

each other. A planar graph is colored when its vertices

are labeled so that no two neighboring vertices share

the same label. Planar graphs can be colored with no

more than 4 colors, cf. [2]. Centralized algorithms can

color planar graphs with no more than 4 colors in O(n2)

time, cf. [22], and with no more than 5 colors in O(n)

time, cf. [8]. A face-spanning subgraph is a connected

subgraph of G that contains at least one vertex on every

planar face of the graph. A triangulated planar is a pla-

nar graph such that the addition of any edge results in a

non-planar graph. All bounded faces on a triangulated

planar graph are bounded by three edges.

Polyhedral environments

Polyhedral environments in 1.5D and 2.5D correspond

to the graphs of continuous piecewise affine functions

on R and R2, respectively. Formally, a continuous piece-

wise affine function f : I ⊂ R→ R, with I an interval,

defines the 1.5D terrain S1.5(f) = {(x, f(x)) : x ∈ I} ⊂
R2. Similarly, a continuous piecewise affine function

f : I ⊂ R2 → R, with I a polygon, defines the 2.5D ter-

rain S2.5(f) = {(x, y, f(x, y)) : (x, y) ∈ I} ⊂ R3. When

convenient, we drop the dependence on f and simply

denote Sd.5 ⊂ Rd+1, with d ∈ {1, 2}, to refer to either

of these two cases.

Alternatively, a polyhedral terrain Sd.5 can be seen

as an undirected graph with vertices in Rd+1. In the

case d = 1, these vertices correspond to the points in

R2 where the graph of two affine components of f inter-

sect. In the case d = 2, these vertices correspond to the

points in R3 where the graph of three affine components

of f intersect. The set of edges connecting vertices in

S1.5 and S2.5 are denoted E1.5 and E2.5, respectively.

For an arbitrary environment, Sd.5, we specify the re-

spective set of vertices as VSd.5
. All vertices vi ∈ VS1.5 ,

except for the extreme ones v1 and v|V |, have degree 2,

with neighbors, vi−1 and vi+1. It follows that v ∈ VS1.5

are ordered monotonically with respect to the x-axis,

such that xvi−1 < xvi < xvi+1 for i ∈ {2, . . . , |V | − 1}.
In S1.5, we define J(v1,v2) (resp. J[v1,v2]) to be the set

of all vertices v ∈ VS1.5
such that min(xv1, x

v
2) < xv <

max(xv1, x
v
2) (resp. min(xv1, x

v
2) ≤ xv ≤ max(xv1, x

v
2)). A

vertex vi in S1.5 is a peak if svi−1,vi > svi,vi+1
. Con-

versely, vi is a valley if it is not a peak. We denote by

P ⊂ VS1.5 and V ⊂ VS1.5 the collection of peaks and

valleys, respectively, in increasing order with respect to

their x-coordinate. Given a vertex v we denote its adja-

cent peak to the right by p+(v) and to the left by p−(v).

In our treatment of 2.5D terrains we find it con-

venient to use triangulated planar graphs. Denote by

pr : R3 → R2 the projection map onto the first two

components, pr(x, y, z) = (x, y). This map projects S2.5

onto a planar graph, which we denote by S∗2.5. Figure 1

shows a 2.5D terrain S2.5 transformed into its planar

graph equivalent S∗2.5. Two vertices, v1 and v2, are visi-

ble to each other if v1v2 does not intersect Sd.5. We use

the following visibility test to determine if two vertices

v1, v2 are visible,

sv1v2 > sv1w, ∀w ∈ Kv1v2 , (1)

where, in S1.5, Kv1v2 = J(v1,v2) is the set of vertices

between v1 and v2 and, in S2.5, Kv1v2 is the set of points

4 Aaron Ma Jorge Cortés

(a) 2.5D polyhedral terrain (b) Associated planar graph

Fig. 1 A 2.5D terrain converted into a planar graph.

on S2.5 that share x and y-coordinates with v1v2. If v1
is visible to v2 in S2.5, we also refer to the respective

vertices in the planar graph S∗2.5 as visible. Let R ⊂
VS∗2.5 such that all vertices inR are visible to each other.

Let Rhull be the set of vertices that contribute to the

convex hull of R and R∗ = R\Rhull. We refer to R∗
as a reducible set. We create a new planar graph S∗∗2.5
as a modification of S∗2.5, where every reducible set in

S∗2.5 is contracted into a vertex, see Figure 2 for an

illustration. The vertices in V corresponding to those

in S∗∗2.5 are then VS∗∗2.5 .

(a) S∗
2.5 (b) S∗∗

2.5

Fig. 2 Contraction of a reducible set in S∗
2.5. Vertices in R∗

are represented by . |R∗| = 7 is reduced to 1.

The visibility set of a vertex v in S∗∗2.5, denoted Q(v),

is the set of all vertices visible to v. Given Vw ⊂ VS∗∗2.5 ,

the collective visibility set,

Q(Vw) =
⋃
v∈Vw

Q(v),

is the set of all vertices visible to them. Finally, S∗∗2.5 is

fully visible from Vw if Q(Vw) = VS∗∗2.5 .

3 Problem statement

We consider scenarios where a team of robots, deployed

on an unknown polyhedral terrain Sd.5, d ∈ {1, 2}, seek

to achieve full visibility of it. In our treatment, we as-

sume small obstructions such as small rocks and shrubs

can be ignored because of their relative minor impact

on effective visibility. Instead, we assume that large ob-

structions such as buildings, large trees, and boulders

have already been incorporated in the environment de-

scription.

We first describe the model for the robotic network

and its capabilities, and then formulate their objective.

There are two sets of agents that can be used for deploy-

ment. The active agent set, Aa, indicates agents that are

actively exploring and guarding the environment. The

reserve agent set, Ar, contains agents that are inactive

for purposes of saving energy and resources. Each indi-

vidual agent has a unique identifier i ∈ {1, . . . , |Aa|+ |Ar|}.
This provides a sense of priority when two agents de-

cide to execute conflicting actions. The agents are capa-

ble of omni-directional vision and can localize vertices

at infinite distance. Only agents visible to each other

are able to communicate and share information. The

agents have the capability to share attributes about

vertices such as their local coordinates and color assign-

ments. In S2.5, we let agents place relays on a vertex

of their choosing to allow communication between any

two agents occupying vertices that are neighbors of it.

In S1.5, agents are able to traverse between two adja-

cent peaks at every time step. In S2.5, agents are able to
traverse between vertices connected by an edge at every

time step. We consider the motion of the robots slow in

comparison to the time required for computation.

We refer to the guarding set, G ⊂ V , as the set

of vertices that the agents decide to occupy. This set

is determined in a dynamic fashion by the agents as

they explore the environment. Our objective is to de-

sign coordinated strategies for the robotic team to dis-

tributively explore the polyhedral terrain Sd.5 and de-

termine the guarding set to achieve full visibility. We

also seek to characterize both the number of agents and

the execution time required by the proposed coordina-

tion strategies to achieve this objective.

4 Distributed deployment over 1.5D terrains

This section studies the distributed deployment prob-

lem over 1.5D polyhedral terrains. We identify a guard-

ing set that guarantees full visibility and study its size.

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 5

This allows us to obtain a characterization of a sufficient

and sometimes necessary number of agents required to

complete the task. Building on this characterization,

we design strategies to place agents in the identified

guarding set.

4.1 Guarding set via alternate peaks

We begin our analysis with a simple fact about the

visibility regions of adjacent peaks.

Lemma 1 (Visibility from adjacent peaks): Given two

adjacent peaks, v1 and v2 ∈ P, all intermediate vertices

of S1.5 are visible to them, i.e., J[v1,v2] ⊂ Q(v1)∩Q(v2).

Proof Since v1 and v2 are adjacent peaks, all vertices

vi ∈ J(v1,v2) are valleys and have the property, svi−1,vi ≤
svi,vi+1

. Therefore the slope between adjacent vertices,

vi and vi+1 ∈ J(v1,v2), monotonically increases with

increasing x along the interval xv1 to xv2 , implying

sv1v > sv1k for all v ∈ J(v1,v2) and k ∈ Kv1v = J(v1,v).
Hence, all vertices between v1 and v2 are visible from

either v1 or v2. ut

As a consequence of Lemma 1, we deduce that J[p−(v),p+(v)]

is visible from v. Inspired by this observation, we con-

sider the subset of alternating peaks, denoted Gap ⊂ P,

corresponding to all peaks with odd indices. Note that

if |P| is even, then one can alternatively consider the set

of peaks with even indices. The set Gap is the largest set

of peaks in S1.5 such that every other peak is skipped.

This results in |Gap| = ceil(|P|/2). We order the in-

dices of Gap in increasing order with respect to their

x-coordinate.

Lemma 2 (Visibility set from alternating peaks): The

visibility set of Gap is

Q(Gap) =

{
V if |P| odd,

J[v1,p|P|] if |P| even.

Proof From Lemma 1, if v1 and v2 are two peaks with

a single peak v between them (e.g., p+(v1) = v =

p−(v2)), then Q(v1∪v2) contains J[p−(v1),p+(v2)]. It fol-

lows that, if Gap = {g1, . . . , g|Gap|}, then Q(Gap) is

equal to J[p−(g1),p+(g|Gap|)], and the result follows. ut

As a consequence of this result, we identify Gap ∪
{p|P|} as a sufficient set of vertices to achieve full visi-

bility.

Theorem 1 (Full visibility): The 1.5D environment S1.5

is fully visible from G = Gap ∪ {p|P|}. Furthermore,

|G| = floor(|P|/2) + 1 is sufficient and sometimes nec-

essary to achieve full visibility of S1.5.

Proof The fact that Q(G) = V readily follows from

Lemma 2. If |P| is odd, then G = Gap and therefore

|G| = ceil(|P|/2) = floor((|P|/2) + 1. If |P| is even,

|G| = ceil(|P|/2) + 1 = floor((|P|/2) + 1. To show that

|G| agents are sometimes necessary, we provide a spe-

cific example. Consider an environment where all ver-

tices are peaks. Then, the visibility set of any vertex v

is exactly Q(v) = J[p−(v),p+(v)], which implies that any

guarding set must contain at least every other vertex

in order to achieve full visibility. ut

We specify environments with ratio of peaks to val-

leys to be 1 : 1, as an average case scenario. In what

follows, we allocate resources for this average case sce-

nario, but allow for flexibility if needed.

4.2 1.5D alternate peak strategy

Given our analysis in Section 4.1, here we design dis-

tributed strategies to deploy agents on G = Gap ∪
{p|P|}. We initially begin with |Aa| = floor(|VS1.5

|/4)+1

as this is sufficient for average case scenarios, and |Ar| =
floor(|P|/2) + 1− |Aa| in case the ratio of peaks to val-

leys is worse than expected. We begin with an informal

algorithm description.

[Informal description]: All agents are initially lo-

cated at vertex, v0, whose position in S1.5 is un-

known to them. Agents explore S1.5 and incre-

mentally distribute themselves on G = Gap ∪
{p|P|}. Half of the agents, Alft ∈ Aa, go left,

while the other half, Arght ∈ Aa, goes right (if

|A| is odd, we let Alft have one extra agent).

Depending on the location of v0 within the en-
vironment, one of these two sets contains too

many agents. Agents keep track of a variable

termed “goal”. Once an agent detects the edge

of S1.5 (either v1 or v|V |), it raises its “goal” flag,

which signals visible neighboring agents that the

other group needs more agents to complete the

algorithm. Two strategies are then possible. Let

A− be the group of agents that does not have

enough agents, and A+ be the group that has too

many. In both strategies, A− deploys until they

guard as many alternating peaks as they can.

Then, in the 1.5D alternate peak strategy
with wait , agents in A− wait until they receive

a “goal” message from A+ to continue exploring

and finally guarding S1.5. Instead, in the 1.5D
alternate peak strategy w/o wait , agents in

A− make the assumption that the “goal” flag

will eventually come from A+ and continue de-

ploying towards the boundary of S1.5 (creating

a void in visibility coverage that will eventually

6 Aaron Ma Jorge Cortés

be filled by the agents in A+). If at any time v0
runs low on active agents without the task hav-

ing been completed, this means that the ratio

of peaks to valleys in the environment is higher

than expected and 2 more agents are activated

from Ar to provide resources to the left and right

groups.

Algorithm 1 provides a formal description of 1.5D
alternate peak strategy , both with and without wait.

The steps that are only executed under 1.5D alternate-
peak strategy w/o wait are marked with the sym-

bol †. All other steps are common to both strategies.

Algorithm 1 : 1.5D alternate peak strategy

Agent a variables:

bool goal=False, continue=False

int direction=-1 | a ∈ Alft or 1 | a ∈ Arght

While Q(G) is not V :

Communicate

if any visible agents to a have goal is True:

a sets goal to True

a sets direction to direction of agent with goal

to True

Move

if any of the following conditions are met:

• Agent a occupies v 6∈ P
• a ∈ Alft and J(v,p+(v)] is occupied or a ∈ Arght and

J[p−(v),v) is occupied

• a does not have the greatest ID of all agents that

occupy v

• †: a has goal is False and continue is True
if a is only active agent that occupies v and

inactive agents occupy v:

activate two agents from Ar

a moves one peak dictated by direction

else:

a stays at vertex v

Detect

if v1 or v|V | is visible:

a sets goal to True

a sets direction away from detected v1 or v|V |

†: if the time elapsed is equal to 2|A−|+a.ID−2

a sets continue to True

Remark 1 (Wait versus no wait): The strategies dif-

fer in how the agents react when they determine that

there are not enough agents in their group to reach the

boundary of the environment. While the 1.5D alternate-
peak strategy w/o wait completes in less time, it re-

quires all agents to start on the same initial condition

(otherwise the use of the “continue” flag might be detri-

mental to algorithm completion). Instead, the 1.5D al-
ternate peak strategy with wait requires in general

more time to complete, but agents can be initialized at

multiple locations. •

Remark 2 (Ordering of agents): Agents occupy a peak

only if no other agent with lower ID occupies the same

peak. As the algorithm executes, the agents naturally

order themselves within their respective groups of A−
and A+ in decreasing order of ID from v0 in the di-

rection they are initialized. This enables the agents to

rationalize when the “goal” flag should have arrived by

(agents in A+ with lower ID receive the “goal” flag be-

fore agents with greater ID). Due to the speed at which

the “goal” flag propagates in A+, agents in A− ratio-

nalize that they are not in A+ if they do not receive the

“goal” flag in 2A−+ ID −2 time steps. •

Figure 3 shows an example of agents being deployed

on S1.5 using the 1.5D alternate peak strategy with
wait . At time step: 4, A+ reaches the leftmost bound-

ary and raises the “goal” flag. At time step: 7, A− runs

out of agents and begins to wait for the “goal” flag.

By time step: 15, the network has completely deployed

achieving full visibility of the environment.

4.3 Time steps for algorithm completion

In this section we characterize the number of time steps

required by the proposed strategies for completion. We

recall that an agent can move between adjacent peaks

in one time step. For the following analysis, let i be the

index of v0 in P and define

i∗ =

{
i if i ≤ |P|/2,
|P| − i+ 1 if i > |P|/2.

(2)

The following three sets cover all possibilities for the

location of the initial vertex v0,

A = {v0 | if |A| even, i ≤ |P|/6 + 1 or i ≥ 5|P|/6− 1

and if |A| odd, i ≤ |P|/6 or i ≥ 5|P|/6},
B = {v0 | if |A| even, |P|/6 + 1 < i < 5|P|/6− 1

and if |A| odd, |P|/6 < i < 5|P|/6},

and region C, which only exists if |P| is odd and cor-

responds to i = |P|+1
2 . Figure 4 illustrates these three

cases. We are ready to characterize the time complexity

of the strategy with wait.

Theorem 2 (1.5D alternate peak strategy with wait
completion time): The number of time steps required by

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 7

Fig. 3 Execution of 1.5D alternate peak strategy with wait
on a 1.5D environment with 16 peaks. From Theorem 1,
|A| = 9 agents are sufficient to achieve full visibility. All agents
begin at the same initial location, v0, of index 6 with respect
to P, and split into two groups. The location of agents with
the “goal” flag not raised are shown by a red dot where the
number states the number of agents on that vertex. Agents
with a raised “goal” flag are denoted with a cross .

Fig. 4 Illustration of cases A, B, and C for the locations of
the common initial condition of the agents. The 1.5D envi-
ronment S1.5 has |P| = 17 peaks.

the 1.5D alternate peak strategy with wait to com-

plete is

T =


|P| − i∗ v0 ∈ A,
|P|+ i∗

2 − |A−| −
3
2 v0 ∈ B,

3(|P|−1)
4 v0 ∈ C,

(3)

where i∗ is determined by v0 according to (2).

Proof For simplicity of exposition, we only consider the

case when i ≤ (|P| + 1)/2 (the case when i > |P|
2

is analogous). Consequently, i∗ = i, Alft = A+, and

Arght = A−. We first consider the scenario when both

groups of agents reach the boundary of the environ-

ment at the same time. Note that this is only possible

if v0 ∈ C.
Case C: If |P| is odd and v0 is the peak with index
|P|+1

2 , the agents split up perfectly since there are the

same number of peaks to the left and right. The agents

reach the boundaries and send the “goal” message at

the same time. The algorithm completes when the goal

messages meet at |P|+1
2 . The time to completion is then

the sum of the time to reach the boundaries, and the

time that it takes for the flags to reach the |P|+1
2 , which

is

|P|+ 1

2
− 1 +

|P|+1
2 − 1

2
=

3(|P| − 1)

4
.

Next, we consider the scenario when both groups

of agents do not reach the boundary of the environ-

ment at the same time. In this scenario, it is A+ which

reaches the boundary first. Agents move one peak at

a time, distributing themselves on every other peak.

Because of this, note that A− runs out of agents af-

ter exactly 2|A−| time steps. On the other hand, it

takes exactly i∗−1 time steps for agents in A+ to reach

the boundary of S1.5 and raise the “goal” flag. At this

time, the rightmost agents in A− are located at peak

i∗ + (i∗ − 1) = 2i∗ − 1. Once the “goal” flag is raised,

since agents can communicate with agents at adjacent

peaks, the speed at which the “goal” flag is communi-

cated is effectively two peaks per time step.

Two things might happen depending on whether the

“goal” flag reaches the rightmost agents in A− before

this group runs out of agents. Let t denote the number

of time steps elapsed since A+ first raised the “goal”
flag. After t time steps, the goal flag is at 1 + 2t. If

A− does not run of agents, its rightmost agents are at

2i∗ − 1 + t. Therefore, we are looking for the solution

to 1 + 2t = 2i∗ − 1 + t, which is

t = 2i∗ − 2.

The total elapsed time since the beginning is then i∗ −
1 + (2i∗ − 2) = 3i∗ − 3. This time must be less than or

equal to than the time it takes A− to run out of agents,

i.e.,

i∗ ≤ 2

3
|A−|+ 1. (4)

Case A: One can see that equation (4) is satisfied if

and only if v0 ∈ A. Because the “goal” flag reaches the

rightmost agent in A− before A− runs out of agents, A−
moves at one time step towards the rightmost boundary

through the entirety of the strategy. Once A− reaches

the boundary, the agents will have distributed them-

selves on G. Therefore, if v0 ∈ A, we deduce that the

8 Aaron Ma Jorge Cortés

number of time steps required for completion is T =

|P| − i∗.
Case B: If instead, v0 ∈ B, this means that equa-

tion (4) is not satisfied, i.e., A− runs out of agents be-

fore the “goal” flag reaches its rightmost agents. After

the “goal” flag is raised, agents in A+ move at 1 peak

per time step and occupy their half of G by the time

the “goal” flag reaches the rightmost boundary since

no agent has to travel more than |P|/2 peaks. Since

agents in A− previously occupy alternating peaks, they

all must travel the same number of peaks to reach their

final configuration. The rightmost agent in A− receives

the “goal” flag last and is the last agent to occupy its

peak in G. Therefore, we need to compute the time it

takes for A− to receive the message and the leftover

time needed for the rightmost agent in A− to move to

the boundary of S1.5. A− runs out of agents at vertex

d = i∗+ 2|A−|. With the notation used above, the time

required for the “goal” flag to reach this vertex is the

solution to 1 + 2t = d, i.e., t = (d− 1)/2. Once the A−
has received the message it takes

|P| − d,

steps to reach the boundary. Therefore, the total num-

ber of time steps is

T = i∗ − 1 + (d− 1)/2 + |P| − d = |P|+ i∗

2
− |A−| −

3

2
.

ut

From Theorem 2, one can see that, in region B, the

time complexity monotonically increases as the initial

location moves from the left boundary of this region (at

|P|/6 + 1 or |P|/6, depending on whether |A| is even or

not), to the peak closest to |P|2 , Next, we determine the

completion time of the 1.5D alternate peak strategy
w/o wait .

Theorem 3 (1.5D alternate peak strategy w/o
wait completion time): The number of time steps re-

quired for the 1.5D alternate peak strategy w/o
wait to complete is

T =


|P| − i∗ v0 ∈ A,
7|P|
8 −

i∗

4 v0 ∈ B,
3(|P|−1)

4 v0 ∈ C,
(5)

where i∗ is determined by v0 according to (2).

Proof With respect to the proof of Theorem 2, the sce-

narios when the initial condition belongs to A and C
are the same. In case A, the “goal” flag is communi-

cated completely before either group runs out of agents.

Similarly, in case C the algorithm completes before the

“continue” flag is raised.

Case B: In this case, agents in A− rationalize as

soon as possible that they are in A− and raise their

“continue” flag. Agent, a, in A− raises its “continue”

flag at time step: 2A−+ID −2, where ID is the unique

identification of the agent. Since the agents occupy peaks

in order of decreasing ID, this is the amount of time the

agent should have received the “goal” flag if it belonged

in A+. a then moves at one peak per turn in its ini-

tial direction until it receives or raises the “goal” flag.

This means that if v0 is in region B, two “goal” flags

may be active at the same time and propagate from

the boundaries to the center. The algorithm terminates

when agents no longer move, which occurs where the

two “goal” flags meet. We use this fact to determine the

time of execution for 1.5D alternate peak strategy
w/o wait in region B. For this analysis, we examine the

“goal” flag from A−. The rightmost agent in A− reaches

the boundary and raise the “goal” flag in t1 = |P | − i∗
since the 1.5D alternate peak strategy w/o wait
allows agents to move at one peak per time step to

the boundary when “continue” is raised. The rightmost

“goal” flag travels at two peaks per time step and meets

the leftmost “goal” flag in t2 = d
2 time steps, where d

is the distance from the rightmost boundary to where

the “goal” flags meet. Note that d increases linearly

with respect to i∗ since the time that |A−| and |A+|
reach their respective boundaries is linearly dependent

on i∗. We interpolate between two boundary initial con-

ditions of region B to determine d. For v0 = |P |
2 , A−

and A+ reach their respective boundaries at or around

the same time. The goal flags meet at the center of S1.5,

and d = |P |
2 . For v0 = |P |

6 , the goal flag from A+ reaches

the rightmost agent in A− just as the “continue” flag is

raised and meets with rightmost “goal” flag at d = 0.

We interpolate for:

d =
3

4
(i∗ − |P|

6
),

which allows us to determine the time of execution

T = t1 + t2 = |P| − i∗ +
3

4
(i∗ − |P|

6
) =

7|P|
8

+
i∗

4
,

as stated. ut

We find that 1.5D alternate peak strategy w/o
wait completes quicker than 1.5D alternate peak
strategy with wait in regions B and C. In regionA, the

limiting factor for both algorithms is the time required

to traverse S1.5 from one end point to the other. These

realizations are illustrated in Figure 5 which graphs re-

sults from Theorems 2 and 3 with respect to the initial

starting vertex.

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 9

Fig. 5 Time of execution versus initial condition in a 1.5D
environment with 500 peaks. On the y-axis we show the time
of execution T over the number of peaks |P|. The x-axis de-
scribes the initial starting location v0.

5 Distributed deployment over 2.5D terrains

This section studies the distributed deployment prob-

lem over 2.5D polyhedral terrains. We introduce the

concept of a (non-)redundant vertex of a guarding set

and characterize a sufficient and sometimes necessary

number of vertices of guarding sets without redundant

vertices. We build on this result to design a distributed

strategy to efficiently place the robotic agents and achieve

full visibility as shown in Figure 10.

5.1 Guarding set via non-redundant vertices

In this section, we reason over the planar graph S∗∗2.5
determined by contracting reducible sets in S∗2.5 as de-

scribed in Section 2. Let ∆S∗∗2.5
be the set of triangles

in the triangulated planar graph S∗∗2.5 and let G be a

guarding set. A triangle ∆ is uniquely guarded if only

1 of its vertices v is in G. We denote the collection of

such triangles by ∆u ⊂ ∆S∗∗2.5
and by ∆v

u the set of all

triangles uniquely guarded by v. A vertex in VS∗∗2.5 is re-

dundant if it does not uniquely guard any triangle, i.e.,

|∆v
u| = 0. An edge in S∗∗2.5 is redundant if it connects

two redundant vertices. A vertex is non-redundant if it

is not redundant, i.e., |∆v
u| ≥ 1. We denote by V r and

Er ⊂ ES∗∗2.5 the set of redundant vertices and edges, re-

spectively. Let Gnr be the result of removing all redun-

dant vertices from G. Note that Gnr remains a guarding

set and, furthermore, Gnr = VS∗∗2.5 \ V
r.

Lemma 3 (Upper bound on |Er|) Given a guarding

set G of S∗∗2.5, |Er| ≤ 3|V r| − 6.

Proof For planar graphs, the maximum number of edges

given n vertices is 3|n| − 6. Since Er ⊂ ES∗∗2.5 , no edges

cross in Er, thus the graph (V r, Er) is also planar. ut

In order to bound the number of agent needed for

achieving full visibility on S∗∗2.5, we next determine the

minimum number |Er| of redundant edges that can ex-

ist given G. To do this we find the maximum ratio

of non-redundant vertices to redundant edges. Given

er ∈ Er, let Ner,∆ be the number of uniquely guarded

triangles that are adjacent to er. Note that, for any

planar graph, we have Ner,∆ ≤ 2. This is because for

any redundant edge, there exists at most two vertices

v1 and v2 in G that uniquely guard triangles adjacent

to er. Let

rer =

{
1

∆
v1
u

if Ner,∆ = 1,
1

∆
v1
u

+ 1
∆

v2
u

if Ner,∆ = 2.
(6)

Since the minimum number of triangles that any vertex

v ∈ Gnr uniquely guards is 1, |∆v
u| ≥ 1 and, therefore,

rer ≤ 2. Furthermore, the number of vertices in Gnr can

be expressed as the sum of this ratio for all redundant

edges

|Gnr| =
∑
er∈Er

rer . (7)

Using rer ≤ 2, this quantity is bounded as

|Gnr| ≤ 2|Er|. (8)

Theorem 4 (Upper bound on |Gnr|) Let Gnr be a

guarding set of S∗∗2.5 without redundant vertices. Then

|Gnr| ≤ (|6VS∗∗2.5 | − 12)/7.

Proof Using Lemma 3 and (8), |Gnr| ≤ 2|Er| ≤ 6|V r|−
12. From Gnr = VS∗∗2.5 \ V

r, we have |V r| = |VS∗∗2.5 | −
|Gnr|. Then

|Gnr| ≤ 6|VS∗∗2.5 | − 6|Gnr| − 12

and the result follows. ut

The bound in Theorem 4 can be improved with

an additional operation after pruning redundant ver-

tices. Consider the particular case where there are two

non-redundant vertices v1 and v2 that uniquely guard

triangles adjacent to a single redundant edge er and

that |∆v1
u | and |∆v2

u | are 1. In this case, we call er
a doubly redundant edge, as is the type of edge that

generates the maximum possible ratio rer = 2. When

there is a doubly redundant edge, it is always possible

to convert both v1 and v2 to redundant vertices and

convert one of the original redundant vertices to non-

redundant. Doing this operation does not change the

overall guarding character of the modified Gnr, since

10 Aaron Ma Jorge Cortés

both of the uniquely guarded triangles are still guarded

by the new non-redundant vertex. We call this process

Non-redundant vertex reduction , which can be ex-

ecuted on S∗∗2.5 sequentially for each doubly redundant

edge. Let the remaining guarding set after removing

doubly redundant edges via Non-redundant vertex
reduction be G∗nr.

Theorem 5 (Upper bound on |G∗nr|): Let G∗nr be a

guarding set of S∗∗2.5 determined by running Non-redundant
vertex reduction on Gnr. Then |G∗nr| ≤ (|9VS∗∗2.5 | −
9)/11.

Proof This proof follows that of Theorem 4 except that

the ratio between non-redundant vertices and redun-

dant edges changes. After Non-redundant vertex re-
duction is executed, no doubly redundant vertices ex-

ist and rer is maximized when Ner,∆ = 2 and one of its

associated non-redundant vertices v uniquely guards at

least 2 or more triangles, |∆v
u| ≥ 2. In this case, the

maximum possible ratio according to (6) is rer = 1.5.

Using this fact in (7) yields

|G∗nr| ≤ 1.5|Er|.

A similar reasoning as in the proof of Theorem 4 yields

the desired result. ut

The bound in Theorem 5 can be further refined for a

class of environments that satisfies a specific topological

assumption. We say S∗∗2.5 contains embedded triangles if

there exist a triangle that is contained in the convex

hull of another triangle in S∗∗2.5, cf. Figure 6. We denote

by Nr the number of triangles in S∗∗2.5 that encapsulate

1 or more triangles in its convex hull.

(a) no embedded triangles (b) embedded triangles

Fig. 6 A simple illustration of two S∗∗
2.5 graphs with and with-

out embedded triangles. In (a) Nr = 0 and in (b) Nr = 1.

Theorem 6 (Upper bound on |G∗nr| with

Non-redundant vertex reduction over environments

without embedded triangles): Let G∗nr be a guarding set

of S∗∗2.5 determined by running Non-redundant vertex
reduction on Gnr and assume that S∗∗2.5 does not con-

tain embedded triangles. Then |G∗nr| ≤ (3|VS∗∗2.5 | − 4)/4.

Proof To guard any given triangle, one of its vertices

must belong to G∗nr if S∗∗2.5 contains no embedded ver-

tices (this is not necessarily true when S∗∗2.5 does con-

tain embedded triangles) This implies that there can-

not be any redundant vertices that form a triangle. Be-

cause the resulting graph of redundant edges is planar,

and planar graphs without triangles have no more than

2n − 3 edges (with n being the number of vertices),

then |Er| ≤ 2|VS∗∗2.5 | − 3. Using this inequality instead

of Lemma 3 in the proof of Theorem 5 yields the result.

ut

We rely on the results above to upper bound the

number of agents that need to be active in the guarding

deployment of S∗∗2.5.

5.2 S2.5 exploration and guarding algorithm

If we know that there are no embedded triangles in the

environment, then we let |Aa| = (3|VS∗∗2.5 | − 4)/4 and

|Ar| = ∅ based on Theorem 6. Otherwise, if we have

no knowledge regarding the presence of embedded tri-

angles in the environment, we consider initially |Aa| =
(3|VS∗∗2.5 |−4)/4 and |Ar| = (9|VS∗∗2.5 |−9)/11−|Aa| agents

based on Theorem 5. Our proposed deployment strat-

egy seeks to guard non-redundant vertices to achieve

distributed coverage of S2.5. The idea is to allocate

agents on a guarding set G∗nr determined by a valid

coloring of S∗∗2.5 and detection of redundant vertices. To

determine a valid coloring of S∗∗2.5, the agents label ver-

tices that they discover such that no connected vertices

are labeled the same color. We refer to the colors that

the agents assign to vertices as {1 , 2 , Gc}, where Gc is

a label for a color in {3 , 4 , 5 , 6} that is instantiated
during the execution of the algorithm and denotes ver-

tices that agents plan to occupy or place a relay on. By

definition of coloring on planar graphs, each triangular

face in S∗∗2.5 contains a vertex that is colored Gc. Oc-

cupying all vertices that are not {1 , 2} guarantees full

visibility, since every face on S2.5 is a triangle.

Agents arrange themselves into trees to organize the

exploration in a hierarchical fashion. We use the follow-

ing notation to indicate properties of an agent including

their determined place in the dynamically created trees

a.v: The vertex v occupied by a

a.parent: An agent that is the parent of a

a.children: A set of agents that are children of a

a.root: True if a is the root of a tree

a.explored: True if a recently explored

In addition to knowledge regarding their tree, agents

need to keep track of which vertices have been explored

thus far. We sort vertices in S2.5 into exploration sets,

which help the agents decide which vertices to explore.

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 11

Let us introduce some terminology and notation. Ver-

tices that are have not yet been detected by agents be-

long to the undetected set U. If v has been detected

by the agents and all of the triangles that touch v are

visible to agents, then v belongs to the known set of

vertices K. Finally if a vertex v has been detected but

some triangles that touch v are not visible, i.e., v 6∈ K,

then v belongs to the discovered set D. All agents con-

nected via edges on S2.5 are able to communicate. Note

that, at any given time, there may be more than one

connected component of agents. Each connected com-

ponent ACi maintains its own exploration sets of ver-

tices, UAC
i

, DAC
i

, and KAC
i

.

We proceed to define 2.5D non-redundant peak
strategy . The following is an informal description for

the pseudocode in Algorithm 2.

[Informal description]: Agents can be initialized

on any vertex. Connected components of agents

are determined based on connectivity of the ini-

tial condition. Each of the occupied vertices are

assigned color Gc. There are multiple processes

for each step of 2.5D non-redundant peak
strategy , which each connected component of

agents execute. The agents first create subtrees

in build subtrees, that allow them to organize

themselves for exploration and maintaining con-

nectivity. The connected component of agents

ACi keeps track of DAC
i

and KAC
i

. Agents color

newly discovered vertices in color . In explore ,

one agent in each of the created subtrees move
to a vertex in DAC

i
. The vacant spot is then oc-

cupied by the parent of the agent that moves.

Agents then use redundant agent removal to

refine the guarding set so that |A| is sufficient.

We allow the agents to place relays, r ∈ R at a

vertex they occupy. Relays provide communica-

tion between neighboring vertices. 2.5D non-
redundant peak strategy repeats until agents

occupy G such that Q(G) = V . As a result of

the exploration, two or more separate connected

components of agents may be able to communi-

cate with each other via neighboring edges. In

merge , their exploration sets, KAC,i
,UAC,i

and

DACi
are combined and the sets of connected

components of agents merge into one, larger set.

Last, agent activation activates agents from

the set of reserve agents when embedded trian-

gles are detected in S∗∗2.5.

Algorithm 2 :2.5D non-redundant peak strategy

for all a:

a.parent = None

a.children = ∅
a.v = vertex that agent occupies

def main:

While Q(G) is not V :

build subtrees
color
explore
redundant agent removal
merge
agent activation

5.2.1 Process: build subtrees

The first process of 2.5D non-redundant peak strat-
egy is build subtrees where agents structure them-

selves for exploration.

[Informal description]: In build subtrees agents

determine tree structures that allow them to ex-

plore without breaking connectivity. This algo-

rithm begins by determining which vertices are

occupied by more than one agent. One agent

on these vertices claim to be the root of a new

subtree. Agents can only belong to one subtree.

After roots determined, the agents take turns

adopting neighboring agents as their children.

Each agent maintains memory of their parent

and child. If an agent has no children they will

have priority in exploring amongst its subtree in

explore .

12 Aaron Ma Jorge Cortés

build subtrees
find roots ()

While AP is not empty:

a = AP.get()
adopt children(a)

Subfunctions

def find roots

a.parent = None

a.children = ∅
AP = ∅
If a.v is occupied by at least one other agent and no

other agents are a root:

a.root = True

AP = AP ∪ a

def adopt children(a):

for all b that neighbors a:

if b.parent =None:

a.children.append(b)

b.parent = a

AP.put(b)

5.2.2 Process: color

Next, we describe the process for coloring vertices that

have just been discovered.

[Informal description]: Agents that have recently

explored (a.explored = True) color their neigh-

boring vertices in this process. For each agent

a, if a neighboring vertex v is in DAC
i

and that

vertex has no neighbors with color 1 , then a col-

ors that vertex 1 . The agent does the same for

color 2 . If v has neighbors of both colors 1 and

2 , then a colors that vertex Gc, indicating that

vertex should be guarded in future exploration

steps.

color
for a ∈ A such that a.explored= True:

for all v ∈ DAC
i

that neighbor a:

if v has no neighbors with color 1 :

a colors v to 1

else if v has no neighbors with color 2 :

a colors v to 2

else:

a colors v to Gc
a.explored= False

a broadcasts and updates colors in DAC
i

a sets DAC
i

to ∅

5.2.3 Process: explore

After the agents have colored their neighboring vertices

they are ready to explore S∗∗2.5 as follows.

[Informal description]: Agents move to vertices

that need to be guarded or, if they cannot find

one, move to vertices that discover more candi-

dates for guarding. For each subtree, agents that

do not have children look for neighboring ver-

tices in DAC
i

, prioritizing vertices in Gc. If such

a vertex exists, the agent moves to that vertex. If

no such vertex exists the agent signals its parent

to explore. When an agent moves its parent fol-

lows to the vertex that the child was previously

occupying.

explore

G = ∅
for a ∈ A such that a.children= ∅:

explore subtree(a)

for all a ∈ A:

if a.child moved:

a moves to last occupied vertex of a.child

G = G ∪ a.v

Subfunctions

def explore subtree(a):

if a neighbors v ∈ DAC
i

of color Gc:

v′ = v

else if a neighbors v ∈ DAC
i

of color 1 or 2 :

v′ = v

else:

explore subtree(a.parent)

return

a moves to v

a broadcasts and updates tree

a.explored= True

Remark 3 (Exploration): As a result of moving to the

exploration process, vertices in S∗2.5 are discovered. These

vertices are visible and now belong to Q(G) through

completion of the 2.5D non-redundant peak strat-
egy . When new vertices are discovered, agents re-evaluate

S∗∗2.5 and DAC
i

. •

5.2.4 Process: merge

After agent exploration, two or more connected compo-

nents of agents may be able to communicate via neigh-

boring edges. In merge , the exploration sets are up-

dated accordingly and the connected components of

agents merge into one larger set.

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 13

[Informal description]: Let {AC1 , AC2 , . . .} denote

the set of connected components of agents that

are able to merge after exploration, and AC# de-

note the connected component of agents after

merging. KAC
#

contains all vertices in KAC
1
,KAC

2
,

DAC
#

contains all vertices in DAC
1
,DAC

2
, . . . ex-

cept for any vertex in KAC
#

. Finally, UAC
#

con-

tains the rest of the vertices, which have not yet

been detected by the agents and do not need to

be calculated for the algorithm.

merge

KAC
#

= ∅
DAC

#
= ∅

{AC1 , AC2 , . . .} is a set of merging connected components

for ACi in {AC1 , AC2 , . . .}
KAC

#
= KAC

j
∪KAC

i

for ACi in {AC1 , AC2 , . . .}
DAC

#
= DAC

j
∪DAC

i
\KAC

j

5.2.5 Process: redundant agent removal

Agents need to place relays in order to maintain con-

nectivity when redundant vertices are found. The pro-

cess for determining and placing relays is redundant

agent reduction as described in redundant agent -
removal .

[Informal description]: One agent at a time de-

termines if they occupy a redundant vertex by

checking if there is a triangle that it uniquely

guards (a triangle with vertices not occupied by

an agent). If an agent is redundant, it places a

relay on its vertex. Relays are considered other

agents when it comes to finding roots in build -
subtrees Furthermore, if two agents occupy non-

redundant vertices that create a doubly redun-

dant edge er is detected, one of the two agents

colors a vertex v ∈ er to Gc and places a re-

lay on their currently occupied vertex. During

the next exploration step, one vertex on er will

be occupied by either agent. The agent that does

not occupy v marks their currently occupied ver-

tex as redundant on the next redundant agent

reduction step.

redundant agent removal

for all a, asynchronously:

if if ∆a.v
u = 0

a places a relay at a.v

if a that uniquely guards a doubly redundant edge

a places a relay at a.v

a colors a vertex v that is part of the doubly

redundant edge as Gc

Remark 4 (Tree-based exploration): By construction, the

tree-based ordering of agents guarantees |Q| never de-

creases during exploration because agents are always

flowing from the root of the tree to the leafs. The root

of the tree by definition contains 2 or more agents.

It is necessary that redundant agent removal cy-

cles through every agent because the set of redundant

agents changes every time a redundant agent is re-

moved. •

5.2.6 agent activation

After redundant agent removal, all vertices with

color 1 or 2 or vertices with a relay can be considered

to be redundant. We use properties of the redundant

vertices and their respective redundant edges to add

agents to the deployment if necessary.

[Informal description]: If a connected component

of agents detect a triangle of redundant vertices,

2 agents are added to Aa from Ar.

agent activation

until |Aa| = min
(3|VS∗∗2.5

|−4
4 + 2|Nr|,

|9VS∗∗2.5
|−9

11

)
move any a from Ar to Aa

5.3 2.5D non-redundant peak strategy completion

In this section we show that our deployment strategy

yields a guarding set G∗nr such that S∗∗2.5 is fully visible.

Lemma 4 (Monotonic increase of KAC
i

from explore):

Let KAC
i

, DAC
i

, and U be non-empty for a connected

group of agents that contain at least one agent that is a

root. Then the cardinality of the set of known vertices

KAC
i

monotonically increases as a result of explore.

Proof Agents move in explore when it is their turn

based on the hierarchy of the tree that they have formed

and there is a suitable neighboring vertex to explore to.

As specified in explore , the neighboring vertex always

belongs to DAC
i

. This is always possible for some agent

because any v ∈ DAC
i

is by definition visible by at least

one agent. When an agent moves to a vertex v ∈ DAC
i

,

that vertex must become part of the known set of ver-

tices KAC
i

, since all triangles touch that vertex will be

visible. Because visibility does not change as a result of

exploration, KAC
i

monotonically increases. ut

Lemma 5 (Completion of the 2.5D non-redundant
peak strategy): Given |Aa| = (3|VS∗∗2.5 | − 4)/4 and

|Ar| = (9|VS∗∗2.5 | − 9)/11 − |Aa| agents, 2.5D non-
redundant peak strategy results in complete explo-

ration of S2.5.

14 Aaron Ma Jorge Cortés

Proof Consider a connected group of agents ACi and

assume UAC
i

and KAC
i

are non-empty. Note that there

must exist a vertex in DAC
i

along any path from any

two vertices v1 ∈ UAC
i

and v2 ∈ KAC
i

. This is because

v1 and v2 cannot be neighbors of each other, otherwise

v1 would be detected since neighbors of v2 are visible by

definition. Therefore, if UAC
i

and KAC
i

are non-empty,

DAC
i

must be non-empty as well. While KAC
i

, DAC
i

, and

UAC
i

are non-empty, Lemma 4 indicates that |KAC
i
|

monotonically increases as long as there are enough

agents. Agents in a connected component of agents ACi
explore until the algorithm is complete or until there are

no two agents in ACi that occupy the same vertex. In

the latter case, the agents remain dormant while wait-

ing for another connected component of agents to make

communication during their exploration. We now show

that there are enough agents for deployment. As a result

of redundant agent removal, agents do not occupy

redundant vertices and no doubly redundant edges ex-

ists. Furthermore, for every redundant triangle that is

detected, 2 agents are activated. This is enough because

for any 3 redundant vertices that do not form a trian-

gle, there can be at most 2 edges and 3 non-redundant

vertices, using rer = 1.5. If those three redundant ver-

tices do form a triangle, then there are 3 edges and 9/2

non-redundant vertices, using rer = 1.5. Considering

an environment with any number of redundant trian-

gles, the maximum number of non-redundant vertices is

given by Theorem 5. Hence, there will always be enough

agents in some connected component to explore with

|Aa| = min

(
3|VS∗∗2.5 | − 4

4
+ 2|Nr|,

|9VS∗∗2.5 | − 9

11

)
,

where
∑
∀AC

i
|ACi | = |Aa|. Note that a vertex cannot

belong to two different KAC
1

and KAC
2

, since other-

wise the connected components AC1 , and AC2 would be

connected, being part of a single known set. There-

fore
∑
∀AC

i
|KAC

i
| ≤ |VS∗∗2.5 |, where equality only holds

when all vertices and faces are visible. Since there is al-

ways some connected component with enough agents

to explore and given Lemma 4, the collective num-

ber of known vertices
∑
∀AC

i
|KAC

i
| monotonically in-

creases until UAC
i

and DAC
i

are empty for all ACi or

until
∑
AC

i
|KAC

i
| = |VS∗∗2.5 |. ut

The result of deployment on S∗∗2.5 with sufficient num-

ber of agents is the occupation of vertices in a guarding

set G∗nr. Next, we characterize the number of time steps

required by 2.5D non-redundant peak strategy for

completion.

Theorem 7 (Upper bound on completion time of 2.5D
non-redundant peak strategy): The S2.5 deployment

strategy takes at most |VS∗∗2.5 |−3 time steps to complete.

(a) An initial S∗∗
2.5 (worst case) after coloring

(b) Second step of S∗∗
2.5 (worst case) after coloring

(c) Third step S∗∗
2.5 (worst case) after coloring

(d) Last step of S∗∗
2.5 (worst case) after coloring

Fig. 7 A S∗∗
2.5 with the potential of taking |VS∗∗2.5

| − 3 time
steps to complete.

Proof The strategy completes whenQ(G∗nr) = V , which

must be true when UAC
i

= ∅ and |KAC
i
| = |VS∗∗2.5 |.

From Lemma 4, |KAC
i
| is increased by at least 1 ev-

ery turn. Therefore, the completion time is dictated by

how quickly the agents explore S∗∗2.5. Since Q includes

v0, and at least two other vertices (since every vertex

has at least two neighbors in the polyhedral terrain),

the strategy takes no more than |VS∗∗2.5 |−3 time steps to

complete. Figure 7 provides an example for this worst-

case scenario, showing that the upper bound is attained.

ut

Although it is possible for the algorithm to take up

to |VS∗∗2.5 | − 3 time steps, it is highly unlikely and can

be avoided through smarter coloring schemes. In Fig-

ure 7, we use a color scheme that prioritizes labeling by

{1 , 2 , Gc}. During the exploration phase, there are no

unoccupied vertices with color Gc, therefore the agent

has to label a vertex with color 1 or 2 to Gc and pro-

ceed to move to that vertex.

Next, we characterize a lower bound on completion

time of the 2.5D non-redundant peak strategy . Let

do be the max out-degree of vertices in S∗∗2.5.

Theorem 8 (Lower bound on completion time of 2.5D
non-redundant peak strategy): Assume a deploy-

ment of 2.5D non-redundant peak strategy where

all agents are initialized on the same vertex. The S2.5

deployment strategy takes at least
|∆S∗∗2.5

|−2
do−2 − 1 time

steps to complete.

Proof Upon deployment completion and full 2.5D ter-

rain visibility we know that for each triangular face

on the planar graph, an agent occupies a vertex on

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 15

that triangular face. As agents explore, they create a

face-spanning subgraph of the complete environment

that consists of vertices occupied by relays and agents.

A face-spanning subgraph can be created with no less

than
∆S∗∗2.5

−2
do−2 − 1 vertices [20]. Lastly, from Lemma 4

we have that 2.5D non-redundant peak strategy ex-

pands the face-spanning subgraph by 1 vertex per step.

ut

6 Implementation

To illustrate the practicality of our algorithm, we pro-

vide here both simulation and experimental results on

group of robots.

Figure 8 shows several steps of the simulation of

2.5D non-redundant peak strategy on a 2.5D ter-

rain. The terrain has 200 nodes. In (a), 149 and 14

agents are initialized in Aa and Ar, respectively, at ei-

ther one of two initial nodes, which become roots rep-

resented by . Roots occur when 2 or more agents oc-

cupy the same vertex. The vertices that are visible to

the agents are denoted with either blue or green dots.

The agents label the newly detected vertices with col-

ors priority: 1 : green dot, 2 : red dot, and Gc : .

Agents from each one of the starting nodes will explore

unaware of the other group of agents and their node ex-

plorations until they make communication visually by

occupying adjacent nodes. Once the agents are able to

communicate with the other group, cohesion is never

lost as agents keep exploring. In (b), agents have ex-

plored and 14 time steps have passed. At this point,

two connected components of agents are able to com-

municate via the dashed edge shown on the bottom of

the image. Hence, merge combines the exploration sets

of each of the connected components so knowledge of

the environment is shared. There is also a vertex shown

as shown in the bottom left. This vertex was deemed

redundant by agents so a relay is placed here. In (c) the

environment is completely visible and the deployment

is complete after 55 time steps.

In Figure 9, we display the number of time steps

required for the agents to complete deployment on the

2.5D terrain as a function of the number of nodes in

the environment. As one can see from the plot, the re-

quired number of time steps increases roughly linearly

with the number of nodes. Noting this fact, the com-

putational complexity of the average case looks linear,

since the amount of time it takes an agent to compute

its step is independent of the total number of nodes in

the environment (and only depends on its neighboring

nodes).

Fig. 9 Number of time steps required to complete deploy-
ment using the 2.5D non-redundant peak strategy versus the
number of nodes in the environment. Each data point is av-
eraged over 100 trials. The error bars show the corresponding
standard deviation.

We have also implemented 2.5D non-redundant
peak strategy on a group of robots in the Robotar-

ium [21]. The Robotarium is a multi-agent platform

for remotely testing swarm robot applications. In this

experiment, 12 agents are deployed on S∗∗2.5 with 24 ver-

tices. In order to deploy, the agents use controllers based

on their unicycle dynamics to reach vertices that they

explore, which they treat as waypoints. Agents initially

begin at the vertex shown in Figure 11(a) and find ver-

tices to guard shown in Figure 11(b). At every time

step, agents are given a set amount of time to reach

their waypoints before computing other steps of the al-

gorithm, such as coloring and vertex redundancy. Be-

cause the platform utilizes robots for 2D environments,

we projected the 2.5D environment to a planar graph

which is shown as an overlay in Figure 11(b).

7 Conclusions

We have designed coordination algorithms for distributed

exploration and guarding of agents in 1.5D and 2.5D

environments. For 1.5D settings, we have determined a

number of active agents that, on average, is sufficient

to achieve full visibility and provided enough reserve

agents when the ratio of peaks to valleys is high. We

have developed the 1.5D alternate peak strategy ,

established that it leads to agent deployment with full

visibility of the environment, and characterized its time

of completion. For 2.5D settings, we have characterized

the necessary number of agents required to achieve visi-

bility for environments with and without embedded tri-

angles. We have introduced the 2.5D non-redundant
peak strategy , which allows for groups of agents to be-

gin on different nodes and operate independently from

each other. These groups dynamically create subtrees

and choose to explore nodes that maintain connectivity.

Separate groups eventually meet, merge their learned

16 Aaron Ma Jorge Cortés

(a) Initialization of the 2.5D
non-redundant peak strategy

(b) Exploration and coloring
after 14 time steps step

(c) Fully guarded environment

Fig. 8 Execution of 2.5D non-redundant peak strategy on S∗∗
2.5 with 200 vertices.

(a) Fully guarded S2.5 (0◦) (b) Fully guarded S2.5 (120◦)

Fig. 10 For agent deployment, S2.5 is transformed into a planar graph S∗∗
2.5. The guarding set G∗

nr as a result of 2.5D non-
redundant peak strategy on S∗∗

2.5 from Figure 8 shown as large dots on the environment. The respective vertices in the 2.5D
environment S2.5 are shown at different angles.

(a) Robotarium deployment implementation (b) Robotarium deployment visualization

Fig. 11 Deployment of 2.5D non-redundant peak strategy using Robotarium [21]. A projection of the S2.5 to a planar graph
S∗∗
2.5 overlays the images. In (a) agents are shown at their initial location at the vertex on the top right. To avoid collisions,

agents start too the side of the vertex. The final configuration of the agents are shown in (b) where the environment is fully
visible.

information about the environment and deployment in

a consistent way, and continue exploring as a new sin-

gle group. We show that this process may be repeated

until the overall group of agents achieves full visibil-

ity, and provide both upper and lower bounds on the

time of completion. Future work will explore scenarios

for agents with limited visibility and anisotropic visi-

bility regions. A possible line of attack to accommo-

date range-limited agent visibility would have the al-

gorithm add vertices to the 1.5D and 2.5D terrains to

limit inter-node distances. Furthermore, future work

will extend the analysis to asynchronous algorithm ex-

ecutions, and incorporate increasingly realistic consid-

erations in modeling the interactions of the agents with

the physical world, such as agents traversing across the

planes of the 2.5D terrain instead of just the edges and

Distributed multi-agent deployment for full visibility of 1.5D and 2.5D polyhedral terrains 17

accounting for agent dynamics in the algorithm execu-

tion. Finally, the proposed algorithm is conservative in

that it has agents reasoning over a convex subset of

their full visibility region. We are also interested in im-

proving the algorithm efficiency by employing the full

agents’ visibility regions.

Acknowledgments

This work was supported by ONR Award N00014-16-

1-2836.

References

1. Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.: A
survey on multi-robot coverage path planning for model
reconstruction and mapping. SN Applied Sciences 1(8),
847 (2019)

2. Appel, K., Haken, W.: Every planar map is four col-
orable. Part i: Discharging. Illinois J. Math 21, 429–490
(1977)

3. Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi,
M.: Exact algorithms for terrain guarding. ACM Trans-
actions on Algorithms (TALG) 14(2), 1–20 (2018)

4. Barenboim, L., Elkin, M.: Distributed graph coloring:
Fundamentals and recent developments. Synthesis Lec-
tures on Distributed Computing Theory 4(1), 1–171
(2013)

5. de Berg, M., van Kreveld, M., Overmars, M.,
Schwarzkopf, O.: Computational Geometry: Algorithms
and Applications, 2 edn. Springer (2000)

6. Bose, P., Shermer, T., Toussaint, G., Zhu, B.: Guarding
polyhedral terrains. Computational Geometry 7, 173–185
(1997)

7. Bullo, F., Cortés, J., Martinez, S.: Distributed Control of
Robotic Networks. Applied Mathematics Series. Prince-
ton University Press (2009)

8. Chiba, N., Nishizeki, T., Saito, N.: A linear 5-coloring
algorithm of planar graphs. Journal of Algorithms 2,
317–327 (1981)

9. Chvátal, V.: A combinatorial theorem in plane geome-
try. Journal of Combinatorial Theory. Series B 18, 39–41
(1975)

10. Friedrichs, S., Hemmer, M., Schmidt, C.: A PTAS for the
continuous 1.5d terrain guarding problem. In: Canadian
Conference on Computational Geometry. Halifax, Nova
Scotia, Canada (2014). Electronic Proceedings

11. Ganguli, A., Cortés, J., Bullo, F.: Distributed deploy-
ment of asynchronous guards in art galleries. In: Ameri-
can Control Conference, pp. 1416–1421. Minneapolis, MN
(2006)

12. Ghaffari, M., Lymouri, C.: Simple and near-optimal dis-
tributed coloring for sparse graphs. arXiv preprint
arXiv:1708.06275 (2017)

13. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.:
Guarding terrains via local search. Journal of Compu-
tational Geometry 5(1), 168–178 (2014)

14. Hurtado, F., Loffler, M., Matos, I., Sacristan, V.,
Saumell, M., Silveria, R.I., Staals, F.: Terrain visibility
with multiple viewpoints. In: International Symposium
on Algorithms and Computation, pp. 317–327. Jeonju,
Korea (2014)

15. Khodakarami, F., Didehvar, F., Mohades, A.: 1.5D ter-
rain guarding problem parameterized by guard range.
Theoretical Computer Science 661, 65–69 (2017)

16. Ma, A., Cortés, J.: Visibility-based distributed deploy-
ment of robotic teams in polyhedral terrains. In: ASME
Dynamic Systems and Control Conference. Minneapolis,
MN (2016). DSCC2016-9820

17. Maini, P., Gupta, G., Tokekar, P., Sujit, P.: Visibility-
based monitoring of a path using a heterogeneous robot
team. In: IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, pp. 3765–3770 (2018)

18. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods
in Multiagent Networks. Applied Mathematics Series.
Princeton University Press (2010)

19. O’Rourke, J.: Art Gallery Theorems and Algorithms. Ox-
ford University Press (1987)

20. Patwary, M., Rahman, S.: Minimum face-spanning sub-
graphs of plane graphs. AKCE International Journal of
Graphs and Combinatorics 7(2), 133–150 (2010)

21. Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A.,
Feron, E., Egerstedt, M.: The Robotarium: A remotely
accessible swarm robotics research testbed. In: IEEE Int.
Conf. on Robotics and Automation, pp. 1699–1706. Sin-
gapore (2017)

22. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.:
Efficiently four-coloring planar graphs. In: ACM Sym-
posium on Theory of Computing, pp. 571–575. Philadel-
phia, PA (1996)

23. Savkin, A.V., Huang, H.: Proactive deployment of aerial
drones for coverage over very uneven terrains: A version
of the 3d art gallery problem. Sensors 19(6), 1438 (2019)

24. Shermer, T.C.: Recent results in art galleries. Proceed-
ings of the IEEE 80(9), 1384–1399 (1992)

25. Veenstra, K., Obraczka, K.: Guiding sensor-node deploy-
ment over 2.5d terrain. In: 2015 IEEE International Con-
ference on Communications (ICC), pp. 6719–6725 (2015)

26. Williams, M.H.: A linear algorithm for colouring planar
graphs with five colours. The Computer Journal 28, 78–
81 (1985)

	Introduction
	Preliminaries
	Problem statement
	Distributed deployment over 1.5D terrains
	Distributed deployment over 2.5D terrains
	Implementation
	Conclusions

