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Abstract

This paper proposes opportunistic state-triggered strategies for solving convex multiobjective optimization problems that
involve human-robot interaction. The robot is aware of the multiple objective functions defining the problem, but requires
human input to find the most desirable Pareto solution. In order to avoid overloading the human with queries, we view her as a
limited resource to the robot, and design event-triggered controllers that opportunistically prescribe the information exchanges
among them. We consider various models of human performance, starting with an ideal one where queries are responded
instantaneously, and later considering constraints on the response time and the interaction frequency. For each model, we
formally establish the asymptotic convergence to the desired optimizer and rule out the existence of Zeno behavior.
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1 Introduction

In the not so distant future, it is envisioned that robots will
cooperate with humans in performing a multitude of tasks
in everyday life, ranging from routine jobs to dangerous
missions. This paper is motivated by this vision, and con-
siders scenarios where a robot is faced with balancing the
satisfaction of multiple objectives and resorts to a human
supervisor to assess the various trade-offs in doing so. As
an illustration, consider a motion planning problem where
the robot seeks to find a shortest path between origin and
destination while staying away from various undesired loca-
tions that may contain adversaries of varying threat levels.
As information is learned about the environment, a human
can assist the robot in assessing the threat levels. This type
of cooperation, when done reliably and efficiently, can lead
to higher degrees of performance and adaptiveness in the
resulting robot behavior. To manage the human workload
required by this cooperation, we take a resource-aware con-
trol design viewpoint, where the human is regarded as a
resource whose used by the robot is not unlimited. We are
interested in understanding to what extent constraints in
human performance, such as response time to queries and
frequency of queries, can be accommodated in the robot
executions while still guaranteeing the convergence to the
desired optimal solution of the multiobjective optimization.

Literature review. We rely on three bodies of literature:
multiobjective optimization, human-robot interaction and
event-triggered control. Interactive approaches in multiob-
jective optimization involve an algorithmic strategy that
“interacts” with a human supervisor to determine an ac-
ceptable solution to the problem A comprehensive survey
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on interactive approaches can be found in [Miettinen et al.,
2008], which groups different techniques into three main
categories: the trade-off approach, the reference points ap-
proach, and the classification method. Algorithmic solu-
tions often combine elements of several of these categories.
In the scenarios considered here, the optimization prob-
lems arise as the human-robot system explore the world,
and hence global information is not available a priori. Most
works in the trade-off approach focus on finding local infor-
mation, usually related to the gradient of an implicit pref-
erence function at each iteration that ranks different out-
comes [Geoffrion et al., 1972, Sakawa, 1982, Yang, 1999].
The implicit preference function is well-studied and utilized
in utility theory. For example, its existence is proven in
an important result in [Debreu, 1954] under mild assump-
tions. Using an implicit preference function is common for
solving a multiobjective problem, see e.g., [Geoffrion et al.,
1972, Luque et al., 2009, Miettinen et al., 2008]. We follow
this idea when proposing our results. The above reference
list is relatively old because newer methods often require
global information, such as the knowledge of the optimizer
of each objective function or the knowledge of the Pareto
front. For a list of newer methods with brief summaries of
them, we refer the readers to [Xin et al., 2018].

The literature of human-robot interaction has become vast
with the accelerated pace of development in robotics. A
good overview is captured by the survey [Goodrich and
Schultz, 2007]. Our work can be classified under the cat-
egory of supervisory control. One of the many human
factors often explored in the human-robot interaction is
the amount of workload on the human, see e.g., [Peters
et al., 2015, Steinfeld et al., 2006]. An important concept is
neglect time and interaction time as presented in [Crandall
et al., 2005]. Closely related is the concept of response and
reaction time, which becomes important when the human
needs to work and respond to robots in the real world [Har-
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riott and Adams, 2017]. To accommodate these time fac-
tors, we employ techniques from event-triggered control,
see [Heemels et al., 2012, Miskowicz, 2015, Tabuada, 2007,
Wang and Lemmon, 2011] and reference therein for great
introductions to the topic. Event-triggered control has
shown success in improving efficiency on the use of system
resources across actuation, sensing, communication, and
computing. Of particular relevance to the topic here are
works that employ the event-triggered design approach in
the context of optimization, usually in distributed settings
where communication among agents is viewed as a limited
resource, see e.g., [Kia et al., 2015, Richert and Cortés,
2016, Wang and Lemmon, 2011, Weimer et al., 2012]. The
application of resource-aware ideas to a multiobjective
optimization setting, with the human as the resource avail-
able to the robot whose use should be minimized, are novel
aspects of this paper. In dealing with time constraints, we
utilize the flexibility of event-triggered control to deal with
delay, see e.g., [Dolk et al., 2017, Hetel et al., 2006, Li et al.,
2012, Wu et al., 2015]. Although the results there are not
directly applicable to our presented problem because of
the particular features of the human-robot setup, we follow
the idea of bounding interevent times to deal with delay,
cf. [Li et al., 2012, Tabuada, 2007]. In addition, we also
employ the novel idea in event-triggered control of allow-
ing the certificate function to increase along trajectories.
This idea can be found in dynamic triggering [Dolk et al.,
2014, Girard, 2015] and in designs based on performance
barrier triggering [Ong and Cortés, 2018], and allows us to
consider more general constraints on human performance.

Statement of contributions. We consider a convex multiob-
jective optimization problem where a robot works along-
side a human to find a Pareto optimal solution. Based on
its knowledge of the multiple objective functions, the robot
presents outcomes to the human, who expresses her pref-
erence among them. The human cannot express in closed
form the function she uses to evaluate the outcomes, but
can provide its gradient (this is a convenient abstraction of
the ability of the human to express preferences about an
outcome being better than another). Throughout the pa-
per, we consider models of increasing complexity about how
the human can interact with the robot. Our contributions
are multiple fold. Our first contribution considers the ideal
case, where the human can respond instantaneously to the
robot queries. We propose an event-triggered design that
allows the robot to interact with the human in an oppor-
tunistic fashion as required by the solution of the overar-
ching multiobjective optimization problem, thereby reduc-
ing human workload. Our design is based on examining the
evolution of the value of the outcomes along the robot tra-
jectories and ensuring that it is decreasing. We next move
on to consider timing constraints on human performance.
Our second contribution considers the “need to rest” case,
where the human needs some time after responding to a
query before she can respond to a new one. In effect, this
means that the robot might not get the information it re-
quires if two queries are formulated in quick succession. We
examine to what extent our original trigger design case can
be made valid for this case by tuning a design parameter
and characterize the human resting times that can be toler-
ated. To accommodate longer resting times, we propose an
alternative trigger design that allows the certificate to in-
crease at times during the evolution, as long as it decreases
when evaluated at consecutive human’s queries. To do this,

our technical treatment introduces the important concepts
of critical time and grace period. Critical time refers to how
long without human input and by how much the robot can
guarantee the monotonic decrease of the certificate. After
the critical time, grace period refers to the amount of time
the robot can still wait without querying the human while
the certificate potentially increases, but not beyond the
value it had when information was last received from the
human. We show that this design can accommodate longer
resting times than our original design. Our third contribu-
tion considers the “need to think” case, where the human
needs some time before responding to a query. Our design
is based on the robot anticipating the evolution of the cer-
tificate for the period of time the human may take in re-
sponding, and using this information to query the human
sufficiently in advance by tuning appropriately a design pa-
rameter in our original design. Finally, our last contribution
considers the model of human performance that combines
both “need to rest” and “need to think” timing constraints.
For each model, we provide a complete analytical treatment
of the proposed design that includes establishing the mono-
tonic decrease of the certificate, a uniform lower bound on
the minimum time between consecutive queries (thereby
ruling out Zeno behavior), and the asymptotic correctness
of the resulting algorithm to the desired optimal solution.
Throughout the paper, we provide explicit expressions of
the lower bounds on the minimum interevent time which,
together with the characterization of the convergence rates
of the dynamics, provide a mean to assess the trade-offs
between the frequency of human queries and the algorithm
performance. Simulations on an example in multiobjective
robot motion planning show the reductions in human work-
load obtained by the proposed event-triggered design ver-
sus algorithms that require continuous human involvement.
We also illustrate the trade-offs between design convergence
rate, human workload, and human response time.

Notation. For n ∈ N, we let [n] = {1, . . . , n}. Given x ∈ Rn
and A ∈ Rm×n, ‖x‖ and ‖A‖ denote Euclidean and spec-
tral norm, respectively. We use In ∈ Rn×n for the identity
matrix. Given f : Rn → Rm, fi : Rn → R denotes its ith-
component. f is Lipschitz on S ⊂ Rn if there exists L >
0, termed Lipschitz constant, such that ‖f(x) − f(y)‖ ≤
L‖x− y‖, for all x, y ∈ S. For a continuously differentiable
f , Jf : Rn → Rm×n denotes its Jacobian matrix. For f and
g : Rm → R , the composition of functions is g◦f : Rn → R,
i.e., (g ◦ f)(x) = g(f(x)) for x ∈ Rn. For a twice continu-
ously differentiable, scalar-valued function g : Rn → R, we
let ∇g : Rn → Rn and ∇2g : Rn → Rn×n denote its gradi-
ent and Hessian functions. g is convex on S if, for all x ∈ S,
∇2g(x) � 0; strictly convex if ∇2g(x) � 0; and strongly
convex if there exists µ > 0 such that ∇2g(x) � µIn. If g
is strongly convex on S, its sublevel sets contained in S are
bounded. This implies that there exists M > 0 such that
∇2g �MIn on S. In fact, if x∗ is the minimizer of g, then

1

2M
‖∇g(x)‖2 ≤ g(x)− g(x∗) ≤ 1

2µ
‖∇g(x)‖2. (1)

2 Interactive Multiobjective Optimization

Consider a human-robot system that seeks to find the min-
imizer to a vector-valued, continuously differentiable func-
tion, function f : Rn → Rm, i.e. minx∈Rn f(x). Each of
the components of f represents a goal the robot is trying
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to achieve, and x represents the decision variable. A point
xpo ∈ Rn is a solution to the minimization problem if there
does not exist x ∈ Rn with fi(x) ≤ fi(xpo) for all i ∈ [m]
with at least one inequality being strict. These solutions,
called Pareto points, capture the fact that improving the
minimization of one component of f cannot be done with-
out increasing the value of another. In principle, there exist
multiple Pareto points corresponding to the different trade-
offs in optimizing the components of f .

Many multiobjective optimization problems find applica-
tions in practical scenarios involving control formulations,
cf. [Peitz and Dellnitz, 2018]. Usually, the decision variable
corresponds to the control input. For example, [Peitz et al.,
2017] considers an MPC formulation in autonomous driv-
ing where the control u can affect both the arrival time
and energy consumption. When doing motion planning,
the robot must consider the different conflicting factors in-
volved, see [Shaikh and Goodrich, 2017].

2.1 Interactive Approach

In general, finding the whole set of Pareto points is com-
putationally expensive. Furthermore, additional consider-
ations might make some Pareto points more desirable than
others. One way to address this is via the interactive ap-
proach, where a human is involved in determining the de-
sirable outcome. This has the added benefits of reduction in
computational resource usage, improved desirability of the
obtained solution, and adaptability to different scenarios.

Consider the following human-robot model. The robot has
first-order fully actuated dynamics and is assumed to have
knowledge of the component objective functions in f . A
human operator assists the robot in selecting the most ap-
propriate Pareto point. As is commonly done in trade-off
approaches to multiobjective optimization problems, we as-
sume the human has a scalar-valued, continuously differ-
entiable function v : Rm → R that ranks the different out-
comes, i.e., v(f(x)) represents the ‘value’ that the human
gives to the outcome f(x) achieved at x ∈ Rn. This func-
tion can then be used to establish a preference among all
Pareto points. However, the function v is implicit, mean-
ing that the human does not know it in closed form, but
can respond to queries about it. Specifically, we model the
human as being able to express preferences about an out-
come being better than another one, and we abstract this
with gradient information of v: if the robot queries the hu-
man about its current value f(x), the human can provide
the value ∇v(f(x)), indicating the direction of change in
which outcomes are more highly valued.

The optimization problem consists of maximizing v ◦ f .
For convenience, we instead formulate it as a minimiza-
tion problem by considering the cost function c = −v. The
problem to solve is then minx∈Rn(c ◦ f)(x). We assume the
composition function c ◦ f is strictly convex, and that the
problem has a unique minimizer x∗, which we can find via
the gradient descent algorithm

ẋ = −∇(c ◦ f)(x)> = −(∇c(f(x))Jf (x))>,

which globally asymptotically converges to x∗. This can be
shown by considering the value of c ◦ f , which strictly de-
creases over time along the trajectory. Note, however, that
the implementation of the gradient dynamics by the robot is

problematic. The robot knows the objective function f and
can therefore compute its Jacobian, Jf . However,∇c◦f can
only be provided by the human because only she knows the
cost function. Therefore, executing the dynamics would re-
quire the human to continuously relay preference informa-
tion to the robot, which is not feasible. The discretization
of the dynamics with a constant stepsize would make its
implementation plausible, albeit it still requires constant,
periodic human involvement. Given that the stepsize needs
to be sufficiently small to guarantee convergence for arbi-
trary initial conditions, this may still impose an unneces-
sary burden on the human. The basic premise of the paper
to tackle this is to endow the robot with criteria that allow
it to determine, in an opportunistic fashion, when to query
the human to avoid her unnecessary involvement.

2.2 Problem Statement

Motivated by Section 2.1, we consider the following gradi-
ent dynamics, which discretizes the human component but
maintains the continuous evolution of the robot component,

ẋ = −(∇c(f(xk))Jf (x))>, tk ≤ t < tk+1, (2)

where xk is shorthand notation to represent x(tk). Under
this dynamics, the human operator only needs to assess the
robot performance at the time instants {tk}∞k=0. Our goal
in this paper is to design triggers that the robot can eval-
uate on its own to determine this sequence of times effi-
ciently, while still guaranteeing the asymptotic convergence
to the desired solution and the feasibility of the resulting
implementation (i.e., interevent times are uniformly lower
bounded and hence the implementation is free of Zeno be-
havior). What makes the trigger design and analysis differ-
ent from other event-triggered control formulations is that
the resource to be aware of here is the human. In particu-
lar, the fact that the preference function c is unknown to
the robot (even the human does not explicitly know it, as
discussed above) and the various human behaviors (e.g.,
unable to comply with multiple rapidly succeeding requests
for information) detailed later in Sections 3 and 4 rule out
the use of standard results in event-triggered control.

In this paper, we consider different models for human be-
havior, starting with an ideal model where the human can
respond instantaneously. We then move to consider mod-
els with timing constraints, such as when the human needs
time to rest between queries, may take time to respond to
a query, or a combination thereof. For each model, we pro-
pose a trigger design that satisfies the above criteria.

Remark 2.1 (Strict Convexity of the Composition
Function). Note that, if all the component functions of f
are strictly convex and the cost function c is both strictly
increasing in each component (which is reasonable, given
that the human seeks to minimize each individual compo-
nent) and strictly convex, then c◦f is also strictly convex. •

3 Event-Triggered Design: Ideal Human

Here we synthesize a triggering condition for the robot that
allows it to efficiently query the human about her prefer-
ences on the optimization of the vector-valued objective
function. We assume that the human performance is ideal,
meaning that the human can respond to queries immedi-
ately, i.e., there is no delay in obtaining the value of ∇c◦f .
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Our trigger design is based on analyzing the evolution of
the cost function evaluated on the objectives towards its
optimal value. We consider

V (x) = c(f(x))− c(f(x∗)). (3)

Note that V is radially unbounded and has compact sub-
level sets due to our assumptions on strict convexity and
existence of a unique minimizer. For convenience, we use
the shorthand notation w = ∇c ◦ f : Rn → R, and, for
k ∈ {0} ∪N and t ≥ tk, we let ∆xk = x(t)− xk denote the
error between the state at time t and the state when the
gradient was last updated at time tk. The next result iden-
tifies a gradient update triggering condition that ensures V
decreases on a neighborhood of the optimizer.

Proposition 3.1 (Trigger for Ideal Human). Consider
the event-triggered human-robot system (2) and let xk 6= x∗

be the state when the gradient information was last updated.
Let V ⊆ Rn be a neighborhood of the optimizer such that
xk ∈ V and let Lc be the Lipschitz constant of∇c◦f over V.
For σ ∈ (0, 1], let tk+1 be determined by

tk+1 = min
{
t ≥ tk | ‖∆xk‖ =

σ‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

}
.

(4)
If Sk = {x ∈ Rn | V (x) ≤ V (xk)} ⊆ V, then for all
t ∈ [tk, tk+1), we have

d

dt
V (x(t)) < − 1− σ

(1 + σ)2
‖∇c(f(x(t)))Jf (x(t))‖2. (5)

PROOF. First we note that V is positive definite because
x∗ is unique. Let ∆wk = w(x) − w(xk). Then the time
derivative of V at t ∈ [tk, tk+1) is

d

dt
V (x(t)) = (w(x)Jf (x))ẋ = −(w(x)Jf (x))(w(xk)Jf (x))>

= −((w(xk) + ∆wk)Jf (x))(w(xk)Jf (x))>

≤ −‖w(xk)Jf (x)‖2
+ ‖∆wk‖‖Jf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2
+ Lc‖∆xk‖‖Jf (x)‖‖w(xk)Jf (x)‖.

The last inequality relies on the assumption that w is Lip-
schitz on Sk with constant Lc so that ‖∆wk‖ ≤ Lc‖∆xk‖.
Since ‖∆xk‖ = 0 at time tk, and given the definition (4) of

tk+1, we have ‖∆xk‖ < σ
(
‖∇c(f(xk))Jf (x)‖

Lc‖Jf (x)‖

)
on the interval

[tk, tk+1). We can then deduce that

d

dt
V (x(t)) < −(1− σ)‖w(xk)Jf (x(t))‖2. (6)

This shows that d
dtV (x(t)) is negative, and hence the set Sk

is invariant under (2). Next, we find a relationship between
‖w(x)Jf (x)‖ and ‖w(xk)Jf (x)‖ as follows,

‖w(x)Jf (x)‖ ≤ ‖w(xk)Jf (x)‖+ ‖∆wkJf (x)‖
≤ ‖w(xk)Jf (x)‖+ Lc‖∆xk‖‖Jf (x)‖
< (1 + σ)‖w(xk)Jf (x)‖, (7)

where we have again used the bound on ‖∆xk‖ from the
design to bound the last inequality. The result now follows
by substituting (7) into (6). 2

Note that the hypothesis that Sk ⊆ V is easily satisfied
given that V is radially unbounded. Proposition 3.1 pro-
vides a trigger design (4) under which the function V is
strictly monotonically decreasing. One important feature of
the trigger design is that the design only relies on∇c(f(x))
at x = xk, which is available to the robot. This ensures that
the monitoring of this condition can be evaluated during
each iteration independently by the robot, i.e., the human
is only queried at discrete instants of time. Nevertheless, we
cannot yet conclude that the optimizer is asymptotically
stable. The reason for this is that we first need to discard
Zeno behavior, i.e., the possibility of (4) inducing an infi-
nite number of trigger updates in a finite amount of time.
To do so, it is useful to characterize how the system state
discretization error, ‖∆xk‖, evolves during interexecution
periods, i.e., between consecutive updates, independently
of how triggering times are determined.

Lemma 3.2 (State Deviation Bound). Consider the
event-triggered human-robot system (2) and let xk be the
state when the gradient information was last updated.
For any triggering time tk+1 such that x(t) ∈ Sk for all
t ∈ [tk, tk+1), the system state discretization error satisfies

‖∆xk‖ ≤ φk(t− tk)‖ẋ‖ (8)

during the interexecution period [tk, tk+1), where φk(t) =
1
Mk

(eMkt − 1) with Mk = maxx∈Sk ‖∇2(w(xk)f(x))‖.

PROOF. We first note that the case where xk = x∗ is
trivial. Then for xk 6= x∗, we must have that ẋ 6= 0 at time
tk and we can examine the dynamics of ‖∆xk‖/‖ẋ‖.

d

dt

‖∆xk‖
‖ẋ‖

=
d

dt

(∆x>k ∆x)1/2

(ẋ>ẋ)1/2
(9)

=
(∆x>k ∆xk)−1/2∆x>k

˙∆xk(ẋ>ẋ)1/2

ẋ>ẋ

− (ẋ>ẋ)−1/2ẋ>ẍ(∆x>k ∆xk)1/2

ẋ>ẋ

=
∆x>k

˙∆xk
‖∆xk‖‖ẋ‖

− ẋ>ẍ‖∆xk‖
‖ẋ‖3

≤ ‖∆xk‖‖
˙∆xk‖

‖∆xk‖‖ẋ‖
+
‖ẋ‖‖ẍ‖‖∆xk‖

‖ẋ‖3
= 1 +

‖∆xk‖
‖ẋ‖

‖ẍ‖
‖ẋ‖

,

where in the last step we have used the fact that ˙∆xk = ẋ.
Now, we define the function Vk(x) = w(xk)f(x), and write

ẍ =
d

dt
(−w(xk)Jf (x))> = − d

dt
(∇Vk(x))> = −∇2Vk(x)ẋ.

We then find that ‖ẍ‖ ≤ ‖∇2Vk(x)‖‖ẋ‖ ≤Mk‖ẋ‖. We use
this bound in (9) to obtain

d

dt

‖∆xk‖
‖ẋ‖

≤ 1 +Mk
‖∆xk‖
‖ẋ‖

. (10)
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Now, because φk(t − tk) satisfies the differential equation

φ̇k = 1 + Mkφk with the initial condition φk(0) = 0, we

have that φk(t−tk) ≥ ‖∆xk‖‖ẋ‖ by the Comparison Lemma, cf.

[Khalil, 2002, Lemma 3.4]. Finally, we show that the bound
(8) is valid for all time [tk, tk+1) by ruling out the possibility
that ‖ẋ‖ = 0 along the trajectory. This can be proven by
contradiction. Let tstop > tk denote the first instance when
‖ẋ(tstop)‖ = 0. The resulting bound (8) is then valid for the
duration [tk, tstop). In this duration, we note φk(t − tk) is
upper bounded by a positive value φk(tstop−tk) because it is
strictly increasing. Therefore, as ‖ẋ(t)‖ → ‖ẋ(tstop)‖ = 0,
we have ‖∆xk‖ → 0. This implies ‖∆xk‖ = 0 at t = tstop,
i.e., x(tstop) = xk. This contradicts the fact ẋ 6= 0 at x = xk,
concluding the proof. 2

With the bound on how the state discretization error
evolves given in Lemma 3.2, we next establish a lower
bound on the interexecution time.

Proposition 3.3 (Lower Bound on Interexecution
Time). For the event-triggered human-robot system (2)
with updates determined according to (4) and initial con-
dition x0, if S0 ⊆ V, then the interexecution time is lower
bounded as

tk+1 − tk ≥ τ i
σ :=

1

M0
ln

(
1 +

M0σ

LcJmax

)
(11)

for all k ∈ {0} ∪ N with Jmax = maxx∈S0 ‖Jf (x)‖.

PROOF. We aim to show that there is a finite lower bound
to the time it takes before the condition defining the next
update time in (4) is met. For convenience, notice that this
condition can be equivalently rewritten as

‖∆xk‖
‖ẋ‖

=
σ

Lc‖Jf (x)‖
. (12)

Then, by continuity, it takes longer to evolve from ‖∆xk‖
‖ẋ‖ =

0 to ‖∆xk‖‖ẋ‖ = σ
LcJmax

than it takes to reach condition (12).

Now using the result (5), because S0 ⊆ V we can deduce
through induction that that Sk+1 ⊂ Sk ∈ V for all k ∈
{0} ∪ N. From this, we note here as well that Mk ≤ M0

for all k ∈ {0} ∪ N. By the Comparison Lemma, we can
show that φk(t − k) ≤ φ0(t − tk). Together with (8), we

have ‖∆xk‖‖ẋ‖ ≤ φ0(t − tk), so it takes an even shorter time

for φ0(t− tk) to reach σ
LcJmax

, which is precisely τ i
σ. 2

The lower bound on the interexecution time in Proposi-
tion 3.3 rules out the possibility of Zeno behavior. Combin-
ing this result with Proposition 3.1, we deduce asymptotic
convergence towards the desired optimizer.

Corollary 3.4 (Asymptotic Stability – Ideal Human
Design). For the event-triggered human-robot system (2)
with updates determined according to (4), the optimizer x∗

is asymptotically stable, with X0 = {x0 ∈ Rn | S0 ⊆ V}
contained in its region of attraction. Moreover, if c ◦ f is
strongly convex with constant µ > 0 on V, then given an

initial condition x0 ∈ X0,

V (x(t)) ≤ (13)V (xk)e
−2µ

∫ t
tk

1−ξ0(s−tk)

(1+ξ0(s−tk))2
ds

, t ∈ [tk, tk + τ i
σ]

V (x(tk + τ i
σ))e

− 2µ(1−σ)
(1+σ)2

(t−tk−τ i
σ)
, t ∈ [tk + τ i

σ, tk+1)

for all k ∈ {0} ∪ N, where ξ0(t) = LcJmaxφ0(t). As a con-
sequence, the certificate satisfies for all t,

V (x(t)) ≤ V (x0)e
− 2µ(1−σ)

(1+σ)2
t
, (14)

and the optimizer is exponentially stable for σ ∈ (0, 1).

PROOF. Asymptotic stability follows directly from
Propositions 3.1 and 3.3. Next, similar to the derivation
of (5) in Proposition 3.1, we can use Lemma 3.2 to bound
the time derivative of the Lyapunov function as

d

dt
V (x(t)) ≤ − 1− ξ0(t− tk)

(1 + ξ0(t− tk))
2 ‖∇c(f(x(t)))Jf (x(t))‖2

for the interval [tk, tk+1). Now, if c ◦ f is strongly convex,
using (1) to bound the inequality above and also (5), we
find that for t ∈ [tk, tk+1),

d

dt
V (x(t)) ≤ −2µ

1−min{σ, ξ0(t− tk)}
(1 + min{σ, ξ0(t− tk)})2V (x(t)).

To find what the min function evaluates to, we use the fact

that for t ∈ [tk, tk+τ i
σ), if t−tk ≤ τ i

σ = 1
M0

ln
(

1 + M0σ
LcJmax

)
,

then ξ0(t − tk) ≤ σ. As a result, we separate the intervals
into two accordingly to use the better bound. Using the
Comparison Lemma, we get the bound (13). Finally, (14)
follows by using (5) as the bound on the Lyapunov func-
tion’s time derivative along the trajectory. Next, we note
that from the strong convexity of function V , there exists
M ≥ µ > 0 such that for all x ∈ S0, µ2 ‖x− x

∗‖2 ≤ V (x) ≤
M
2 ‖x− x

∗‖2. As a result, we deduce from (14),

‖x(t)− x∗‖ ≤
√
M

m
‖x0 − x∗‖e

−µ(1−σ)
(1+σ)2

t
, (15)

and exponential stability is proven. 2

Corollary 3.4 shows that one can discretize the human com-
ponent of the continuous-time gradient descent of the robot
motion in an opportunistic fashion while guaranteeing con-
vergence to the desired outcome. Our results show that,
under the trigger design (4), the robot can determine when
to query an ideal human operator for gradient information:
Proposition 3.1 states that the design choice of σ ∈ (0, 1)
affects the magnitude of the time derivative of V , cf. (5),
and therefore, the speed of convergence to the optimizer.
At the same time, Proposition 3.3 suggests that σ affects
the amount of trigger updates, cf. (11), and therefore the
amount of human workload. The choice of σ can therefore
be adjusted depending on the model of human performance,
an issue that we address in the following section.
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Remark 3.5 (Generalizations of Corollary 3.4).
Corollary 3.4 can be generalized in a number of ways. One
can, for instance, state a global version of it provided that
c ◦ f is globally Lipschitz by taking V = Rn. This would
come at the cost of having a larger constant Lc, which in
turn affects the interexecution time, making it shorter, and
hence increasing the human workload. Also, if the compos-
ite function c ◦ f is not convex, the convergence arguments
employed to establish Corollary 3.4 are still valid on a
sufficiently small neighborhood of a local minimizer. •

4 Event-Triggered Design: Constraints on Human
Performance

In this section, we extend our trigger design and anal-
ysis to deal with practical constraints on human perfor-
mance. Specifically, we consider the following models on the
amount of workload that the human can take:

(1) “Need to rest” model: the human needs some time
after providing gradient information before she can
respond to the next query;

(2) “Need to think” model: the human cannot respond
to queries instantaneously and instead requires some
time to provide gradient information;

(3) “Need to think then rest” model: this is a human with
both “need to rest” and “need to think” constraints.

Our treatment takes advantage of the possibility of tuning
the design parameter σ to handle these constraints.

4.1 “Need To Rest” Human

We consider the scenario where the human cannot respond
in quick succession to multiple queries, i.e., after providing
an answer to the robot, some time must elapse before the
human can respond to another query. We assume that an
upper bound Trest ≥ 0 on the time the human needs for
resting is known. Our first approach to this problem tunes
the design parameter σ so that the interexecution time is
longer than the resting time Trest.

Note that, besides σ, the parameters Lc, M0, and Jmax also
affect the bound (11) on the interexecution time. As de-
fined, the parameters M0 and Jmax depend on the initial
condition x0. When dealing with the constraints on human
performance, it becomes relevant to explicitly calculate the
bound on the interexecution time for our design, and hence
we would like them to hold independently of the initial con-
dition x0 ∈ X0. We assume that the set of initial conditions
X0 satisfies S̄ = {x ∈ Rn | V (x) ≤ maxx0∈X0 V (x0)} ⊆ V
(in words, the largest possible initial sublevel set of V is
contained in V). With the assumption, we can instead con-
sider the parameters

M̂ = m ·max
x∈V
‖w(x)‖ · max

x∈V,i∈[m]
‖∇2fi(x)‖,

Ĵ = max
x∈V
‖Jf (x)‖.

Note that M̂ ≥ M0 and Ĵ ≥ Jmax for all initial conditions
x0 ∈ X0. With this in place, we define the interexecution

time lower bound τVσ := 1
M̂

ln(1 + σM̂
LcĴ

), which applies to

all trajectories starting in the region of attraction X0.

The following result shows that our trigger design of Sec-
tion 3 can accommodate sufficiently small resting times.

Proposition 4.1 (Trigger for “Need to Rest” Hu-
man). Consider the event-triggered human-robot sys-
tem (2) with updates determined according to (4) and initial

condition x0 ∈ X0. If Trest < τV1 := 1
M̂

ln(1 + M̂
LcĴ

), let

σ ∈ (0, 1] be such that

σ ≥ LcĴ

M̂
(eM̂Trest − 1). (16)

Then, tk+1 ≥ tk + Trest for all k ∈ {0} ∪ N. �

The proof of this result follows from Proposition 3.3 since
the choice of σ satisfying (16) makes Trest ≤ τVσ . If the
resting time Trest does not satisfy the bound identified in
Proposition 4.1, then we cannot guarantee that the Lya-
punov function is monotonically decreasing while the hu-
man is resting and cannot answer robot queries.

To accommodate longer resting times, we explore next the
possibility of allowing the Lyapunov function to increase
at times during the evolution, as long as it decreases when
evaluated at consecutive human’s queries (note that this
corresponds to a standard discrete Lyapunov function). By
doing so, we develop a new trigger design that combines
both event- and time-triggered ideas. Before getting into
the technical exposition, we outline here the basic rationale
behind this approach, cf. Figure 1. First, we examine the

Fig. 1. Evolution of Lyapunov function with grace period. The
diagram shows an example of the evolution of the Lyapunov
function using our strategy to extend the resting time.

dynamics to determine a time after which the Lyapunov
function V can potentially start increasing. We refer to this
time as critical. We make the robot wait after the critical
time for a pre-specified amount of time, referred to as grace
period (later formally introduced in Proposition 4.5). This
period is determined in a way that ensures that the Lya-
punov function remains below its value at tk by the end
of it. After the grace period, allow the system to continue
without querying the gradient information only if the Lya-
punov function is decreasing.

Our first result characterizes for how long without updating
the human’s input and by how much we can guarantee the
monotonic decrease of the Lyapunov function.

Lemma 4.2 (Trigger for Critical Time). Consider the
event-triggered human-robot system (2) and let c ◦ f be
strongly convex with parameter µ. Define the critical time,

tcr,k = min
{
t ≥ tk | ‖∆xk‖ =

‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

}
.

(17a)
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If the robot does not receive any update on the gradient in-
formation from the human during (tk, tcr,k], then tcr,k ≥
tk + τV1 , and

V (x(tcr,k)) ≤ γ0V (xk) (17b)

with the constant γ0 = e
−2µ

∫ τV
1

0

1−ξ(s)
(1+ξ(s))2

ds
< 1 and ξ(t) =

LcĴ

M̂
(eM̂t − 1).

PROOF. Notice that the definition (17a) corresponds
to (4) with σ = 1. Therefore, from (11), we deduce that
tcr,k − tk ≥ τ i

1 ≥ τV1 . If the robot does not receive any up-
date on the gradient information from the human during
(tk, tcr,k], then, using (13), we deduce that

V (x(t)) ≤{
V (xk)e

−2µ
∫ t
tk

1−ξ(s−tk)

(1+ξ(s−tk))2
ds

if t ∈ [tk, tk + τV1 ],

V (x(tk + τV1 )) if t ∈ [tk + τV1 , tcr,k),

which implies (17b). 2

The expression (17b) estimates how much the Lyapunov
function has decreased before we can no longer guarantee
that it will not increase. Next, we turn our attention to
bound how much the Lyapunov may increase after the crit-
ical time if the robot does not get updated gradient infor-
mation from the human. To find such a bound, we make
the following additional assumption.

Assumption 4.3 (StrongConvexity of the Composi-
tion Function). The composition function c◦f is strongly
convex with parameter µ as a consequence of

(1) each objective function fi ∈ {fi}i∈[m] being strongly
convex; and

(2) the cost function c being strictly convex and increasing
with respect to each component. •

Under Assumption 4.3, the function Vk(x) = w(xk)f(x) is
strongly convex because every component of w is always
positive. Therefore, there exist a strongly convex parame-
ter µk > 0 such that µkI � ∇2Vk(x). Define also

µ̂ = min
x∈V
‖w(x)‖ · min

x∈V,i∈[m]
‖∇2fi(x)‖,

and note that, by definition, µ̂ ≤ µk for all k. Our next re-
sult characterizes how fast the Lyapunov function increases
after the critical time, and how long it will take for the
function to exceed the amount it previously decreased.

Lemma 4.4 (Lyapunov Function Bound After Crit-
ical Time). Consider the event-triggered human-robot sys-
tem (2) with Assumption 4.3. If tk+1 is such that x(t) ∈ Sk,
for all t ∈ [tk, tk+1), and tk+1 ≥ tcr,k, then

V (x(t)) ≤ V (x(tcr,k)) + V (x(tk))β(t) (18a)

for t ∈ [tcr,k, tk+1], where β is the strictly increasing function

β(t) =
2M̂2

µ̂

∫ t

tcr,k

(ξ(s−tcr,k+τV1 )−1)e−2µ̂(s−tk)ds. (18b)

with ξ(t) = LcĴ

M̂
(eM̂t − 1).

PROOF. We begin by finding a bound on the state devi-
ation after the critical time. The assumption on tk+1 is the
same as that of Lemma 3.2, so we can deduce (10). Because

M̂ ≥Mk, we can find

d

dt

‖∆xk‖
‖ẋ‖

≤ 1 + M̂
‖∆xk‖
‖ẋ‖

for t ∈ [tk, tk+1). From (17a), we note that ‖∆xk‖‖ẋ‖ ≤ 1
LcĴ

at time tcr,k. Using the Comparison Lemma with dynamics

φ̇ = 1 + M̂φ and initial condition φ(tcr,k) = 1
LcĴ

, we have

‖∆xk‖
‖ẋ‖

≤ 1

M̂

((
1 +

M̂

LcĴ

)
eM̂(t−tcr,k) − 1

)
≤ 1

M̂
(eM̂(t−tcr,k+τV1 ) − 1)

for t ∈ [tcr,k, tk+1). We use this bound in the time derivative
of the Lyapunov function along the trajectory as follows,

d

dt
V (x(t)) ≤ −‖w(xk)Jf (x)‖2 + ‖∆wkJf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2
+ Lc‖∆xk‖‖Jf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2 + LcĴ
‖∆xk‖
‖ẋ‖

‖w(xk)Jf (x)‖2

≤ (−1 + ξ(t− tcr,k + τV1 ))‖w(xk)Jf (x)‖2.
(19)

for t ∈ [tcr,k, tk+1). By definition, ξ(t) is strictly increasing
and ξ(τ̄) = 1, therefore ξ(t − tcr,k + τV1 ) − 1 > 0 for t >
tcr,k. Therefore, we proceed by finding the upper bound to
‖w(xk)Jf (x(t))‖2 using (1) as follows

‖w(xk)Jf (x(t))‖2 ≤ 2M̂Vk(x(t))
(a)

≤ 2M̂e−2µ̂(t−tk)Vk(xk)

≤ M̂

µ̂
e−2µ̂(t−tk)‖w(xk)Jf (xk)‖2

≤ 2M̂2

µ̂
e−2µ̂(t−tk)V (xk),

where (a) follows from d
dtVk(x(t)) = −‖w(xk)Jf (x(t))‖2 ≤

−2µ̂Vk(x(t)). Substituting in (19), we obtain

d

dt
V (x(t)) ≤(ξ(t− tcr,k + τV1 )− 1)

(2M̂2

µ̂
e−2µ̂(t−tk)V (xk)

)
,

and the result follows via the Comparison Lemma. 2

The combination of Lemmas 4.2 and 4.4 bounds the evo-
lution of the Lyapunov function before and after the criti-
cal time. With these results, we can use guarantee an over-
all decrease between two interexecution times despite some
increase in the Lyapunov function after the critical time.
Using this idea, we propose a novel event-triggered design.

Proposition 4.5 (Trigger for “Need to Rest” Hu-
man using Grace Period). Consider the human-robot
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system (2) with Assumption 4.3. For γ ∈ [γ0, 1), let the
grace period τgr be the solution to

γ − γ0 =
2M̂2

µ̂

∫ τgr+τ
V
1

τV1

(ξ(s)− 1)e−2µ̂sds.

For Trest ∈ [τV1 , τgr + τV1 ], let the updates {tk+1}k∈{0}∪N be
determined according to

tk+1 = min
{
t ≥ tcr,k+τgr | ‖∆xk‖ ≥

‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

}
.

(20)
Then, for each k ∈ {0} ∪ N, V (x(tk+1)) ≤ γV (x(tk)), and
tk+1−tk ≥ Trest. As a result, the optimizer is asymptotically
stable, with X0 contained in its region of attraction, and

V (x(tk)) ≤ γkV (x0). (21)

PROOF. Note that due to the trigger design (20), tk+1 ≥
tcr,k, and therefore, both Lemma 4.2 and Lemma 4.4 hold.
We use the following bounds

β(tcr,k + τgr)

=
2M̂2

µ̂

∫ tcr,k+τgr

tcr,k

(ξ(s− tcr,k + τV1 )− 1)e−2µ̂(s−tk)ds

=
2M̂2

µ̂

∫ τgr+τ
V
1

τV1

(ξ(s)− 1)e−2µ̂(s−tk+tcr,k−τV1 )ds

≤ 2M̂2

µ̂

∫ τgr+τ
V
1

τV1

(ξ(s)− 1)e−2µ̂sds = γ − γ0

where the inequality holds because ξ(s)−1 ≥ 0 for s ≥ τV1 ,
and tk − tcr,k + τ̄ ≤ 0 from Lemma 4.2. Substituting the
inequality above and (17b) to evaluate (18a), we obtain

V (x(tcr,k + τgr − τV1 )) ≤ γ0V (xk) + (γ − γ0)V (xk)

= γV (xk).

Now, for t ∈ [tcr,k + τgr − τV1 , tk+1), we can find that

‖∆xk‖ < σ
(
‖∇c(f(xk))Jf (x)‖

Lc‖Jf (x)‖

)
. As such, (6) holds and Lya-

punov function decreases during the duration. In other
words, V (x(tk+1)) ≤ γV (xk), and (21) follows. Finally, be-
cause tcr,k − τV1 ≥ tk, we note that tk+1 ≥ tk + τgr + τV1 by
design, so tk+1 − tk ≥ Trest as claimed. Since the design is
Zeno-free, the optimizer is asymptotically stable. 2

Note that the grace period τgr can be determined offline
given the various problem parameters and the design pa-
rameter γ. Proposition 4.5 offers a strategy for accommo-
dating longer resting times than the ones obtained in Propo-
sition 4.1. Let us recapture here the ideas behind the trig-
ger design (20) that allows to accomplish this. After each
human update, we use the trigger (17a) to determine tcr,k,
where we know the decrease in V given by (17b). We then
let the system proceed without any human update for τgr. In
this period, the definition of τgr in Proposition 4.5 guaran-
tees that V can increase but cannot exceed γV (xk), which
is a direct result from Lemma 4.4. Finally, we let the system

continue with trigger (20), which will prescribe an update
once V stops decreasing (this might be immediate). As a
consequence, our design ensures that the Lyapunov func-
tion decreases between two consecutive execution times.

The design parameter γ directly corresponds to the conver-
gence rate guarantee, cf. (21). Note that the convergence
rate is given with respect to the number of iterations rather
than time, which are not equivalent when the interexecu-
tion time is not fixed. In any case, much like how the ac-
commodation of longer resting times increases the value σ
in Proposition 4.1, here it requires a larger value of γ, which
slows down the convergence rate.

4.2 “Need to Think” Human

In this section, we deal with the case when the human does
not respond instantaneously to queries from the robot and
instead, once asked, takes some time “to think” and provide
information. Formally, for each k ∈ {0}∪N, when the robot
asks the human at time tk+1 for the evaluation of the gra-
dient ∇c at f(xk+1), the human takes some time Dk+1 ≥ 0
to relay the information ∇c◦ f(xk+1). This means that, up
until tk+1 +Dk+1, the robot still uses the “old” information
∇c ◦ f(xk) provided in the previous communication with
the human. The dynamics is then given by

ẋ = −(∇c(f(xk))Jf (x))>, (22)

for t ∈ [tk +Dk, tk+1 +Dk+1]. Human thinking time spans
are not necessarily equal across different time instants, but
we assume them to be uniformly upper bounded by a known
constant Tthk > 0, representing the maximum time it takes
the human to relay her gradient information. Regarding
the initialization of the dynamics, we assume that the op-
timization starts when the human gives his initial gradient
information, and therefore, D0 = 0.

Given the model above, there are two new complications
that arise in designing the event-triggered law. First, it is
clear that the robot should not wait until it absolutely needs
the new gradient information available to request it from
the human, as it did in the ideal human case considered in
Section 3. In other words, if we were to define the time at
which the trajectory satisfies the condition for (4) as

tnec,k = min
{
t ≥ tk | ‖∆xk‖ =

σ‖∇c(f(xk))Jf (x(t))‖
Lc‖Jf (x(t))‖

}
,

then we would like tk+1 +Dk+1 to occur before tnec,k to en-
sure condition (5), like we did in the ideal human case. How-
ever, this is not simple as subtracting Tthk from tnec,k be-
cause we do not know exactly what tnec,k is since it is deter-
mined by an event. The robot should anticipate the human
delay in responding and ask in advance, ideallyDk+1 before
the need for updated information arises. Another compli-
cation in designing a trigger is that the trigger may occur
too often. We assume that when queried, the human opera-
tor is busy during the time interval [tk+1, tk+1 +Dk+1], and
therefore cannot accept another query during this time.

In summary, we want our new design to prescribe tk+1 sat-
isfying the following:

• tk+1 occurs before tnec,k −Dk+1;
• tk+2 happens after tk+1 + Dk+1 when prescribed itera-

tively.
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To achieve these objectives, we use a similar trigger design
as in the ideal human case with a new design parameter σ′.
Our strategy is based on tuning this parameter so that
tk+1 neither occurs too late nor too early. This is done by
estimating how long after tk+1 it takes for tnec,k to occur,
and how long it takes for tk+2 to occur after tk+1. The
following result makes this statement precise.

Proposition 4.6 (Trigger for “Need to Think” Hu-
man). Consider the event-triggered human-robot sys-
tem (22). With σ ∈ (0, 1), let D∗thk be the unique solution to

(
1 + σ

1− σ

)2

=
eM̂(τVσ −D

∗
thk) − 1

eM̂D∗
thk − 1

,

and assume D∗thk > Tthk. Let σ′ ∈ (0, 1) be such that

LcĴ

M̂

(
1 + σ

1− σ

)2

(eM̂Tthk−1) < σ′ ≤ LcĴ

M̂
(eM̂(τVσ −Tthk)−1).

(23)
For k ∈ {0} ∪ N, let tk+1 be determined by

tk+1 =min
{
t ≥ tk | ‖∆xk‖ =

σ′‖∇c(f(xk))Jf (x)‖
LcĴ

}
.

(24)

Then, for each k ∈ {0}∪N, we have ‖∆xk‖ < σ‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

for t ∈ [tk, tk+1 +Dk+1), tk+2 > tk+1 +Dk+1, and as a con-
sequence, the performance guarantee (5) on the Lyapunov
function holds for all t ∈ [tk +Dk, tk+1 +Dk+1).

PROOF. We start by guaranteeing the existence of σ′.
For this, we simply show that the upper bound in (23) is
greater than or equal to the lower bound, or equivalently,(

1 + σ

1− σ

)2

<
eM̂(τ i

σ−Tthk) − 1

eM̂Tthk − 1

The right hand side is strictly decreasing with respect to
Tthk. Given the definition ofD∗thk, we deduce that all Tthk <
D∗thk satisfy the inequality. Note also that σ′ ≤ σ.

Next, with a slight abuse of notation, we use ẋ[k] =
(∇c(f(xk))Jf (x))>. We resort to Table 1 to help specify
desired values of ‖∆x‖ in effect at different time intervals.

Table 1
Desired state deviation at different time intervals.

Interval (tk +Dk, tk+1) tk+1 (tk+1, tk+1 +Dk+1)

‖∆xk‖ < σ′‖ẋ[k]‖
LcĴ

σ′‖ẋ[k]‖
LcĴ

< σ‖ẋ[k]‖
Lc‖Jf (x)‖

‖∆xk+1‖ Undefined 0 < σ′‖ẋ[k+1]‖
LcĴ

The first part of the proof focuses on the evolution of ‖∆xk‖.
As shown in the last column of Table 1, the trigger (24)
requesting the gradient at time tk+1 should not violate

‖∆xk‖ < σ
(
‖ẋ[k]‖

Lc‖Jf (x)‖

)
up until the gradient implementa-

tion at tk+1 + Dk+1. To do so, we would like Dk+1 to be

shorter than the time it takes for ‖∆xk‖‖ẋ[k]‖ to evolve, from σ′

LcĴ

to σ
LcĴ

(Notice that σ
LcĴ

< σ
Lc‖Jf (x)‖ , ∀x ∈ X0). This leads

to applying the Comparison Lemma with the function φ

satisfying φ̇ = 1 + M̂φ with φ(tk+1) = σ′

LcĴ
, and asking for

Dk+1 ≤
1

M̂
ln(1 + M̂

σ

LcĴ
)− 1

M̂
ln(1 + M̂

σ′

LcĴ
).

To ensure this condition, we can select σ′ so that the right
hand side is an upper bound on Tthk, which leads to the
upper bound on σ′ in (23).

The second part of the proof examines the possibility of the
state error ‖∆xk+1‖ to begin with a larger value than the
trigger value at the time tk+1 +Dk+1 of implementation of
the new gradient. This is possible because ∆xk+1 evolves
with ẋ[k] until tk+1+Dk+1. For this, let Tallow = tk+2−tk+1

be the time it takes ‖∆xk+1‖ to evolve from 0 to σ′‖ẋ[k+1]‖
LcĴ

with the dynamics ẋ = ẋ[k]. We will show that enforcing
the lower bound on σ′ in (23) ensures Dk+1 ≤ Tallow. We
reason by contradiction. Assume Dk+1 > Tallow and let

us examine the dynamics of ‖∆xk+1‖
‖ẋ[k]‖ . Following a similar

derivation as in the proof of Lemma 3.2, we arrive at

d

dt

‖∆xk+1‖
‖ẋ[k]‖

≤ ‖ẋ
[k+1]‖
‖ẋ[k]‖

+ M̂
‖∆xk+1‖
‖ẋ[k]‖

. (25)

We next proceed to bound ‖ẋ
[k+1]‖
‖ẋ[k]‖ . Note that, from (7), we

have ‖w(x)Jf (x)‖ ≤ (1 +σ)‖ẋ[k]‖ for t ∈ [tk, tk+1 +Dk+1].
Additionally, from w(xk)Jf (x) = (w(x)−∆wk)Jf (x),

‖w(xk+1)Jf (x)‖ ≤ ‖w(x)Jf (x)‖+ ‖∆wk+1‖‖Jf (x)‖
≤ ‖w(x)Jf (x)‖+ Lc‖∆xk+1‖‖Jf (x)‖
≤ ‖w(x)Jf (x)‖+ σ′‖w(xk+1)Jf (x)‖
≤ ‖w(x)Jf (x)‖+ σ‖w(xk+1)Jf (x)‖,

during t ∈ [tk+1, tk+1 + Tallow]. Using this in conjunction
with (7) and the fact that Tallow < Dk+1, we have

(1− σ)‖ẋ[k+1]‖ ≤ ‖w(x)Jf (x)‖ ≤ (1 + σ)‖ẋ[k]‖,

valid for t ∈ [tk+1, tk+1 +Tallow], and hence ‖ẋ
[k+1]‖
‖ẋ[k]‖ ≤

1+σ
1−σ .

Substituting this ratio in (25), we get

d

dt

‖∆xk+1‖
‖ẋ[k]‖

≤ 1 + σ

1− σ
+ M̂

‖∆xk+1‖
‖ẋ[k]‖

.

Now, we solve for ψ̇ = 1+σ
1−σ + M̂ψ with initial condition

ψ(tk+1) = 0, and use the Comparison Lemma to ensure

ψ(tk+1 + Tallow) =
(1 + σ)

M̂(1− σ)
(eM̂Tallow − 1) ≥ ‖∆xk+1‖

‖ẋ[k]‖
.

Recall this inequality is true for all t ∈ [tk+1, tk+1 + Tallow]
where we can use once again the relationship ‖ẋ[k+1]‖ ≥
1−σ
1+σ ‖ẋ

[k]‖. Therefore, at t = tk+1 + Tallow,

σ′

LcĴ
=
‖∆xk+1‖
‖ẋ[k+1]‖

≤ 1

M̂

(
1 + σ

1− σ

)2

(eM̂Tallow − 1) (26)
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Using now the lower bound in (23), we deduce Tthk < Tallow,
which is a contradiction because Tthk > Dk+1. Therefore,
Dk+1 ≤ Tallow. Since tk+2 = tk+1 + Tallow, we have tk+2 >
tk+1 +Dk+1. Finally, since at all times t ∈ [tk +Dk, tk+1 +

Dk+1), we have bounded ‖∆xk‖ ≤ σ
(
‖∇(c(f(xk)))Jf (x)‖

Lc‖Jf (x)‖

)
,

the Lyapunov function rate (5) is ensured. 2

Proposition 4.6 requires the thinking time Tthk to be smaller
than D∗thk. Consistent with the treatment of delays in the
event-triggered control literature [Dolk et al., 2017, Hetel
et al., 2006, Li et al., 2012, Wu et al., 2015], it does not
come as a surprise that the thinking time must be suffi-
ciently small for a trigger design to exist; otherwise, the
system will receive no human updates for too long and start
behaving unsatisfactorily. D∗thk can then be interpreted as
the maximum allowable thinking time for the human. Al-
though we interpret the delays as caused by the human’s
thinking time, other sources of delay could be equally ac-
commodated by Proposition 4.6.

Similarly to the ideal human case of Section 3, to ensure
convergence, we need to show that the trigger (24) will
not exhibit Zeno behavior. The following result provides a
uniform lower bound on the interexecution time.

Proposition 4.7 (Interexecution Time with Update
Delay). For the event-triggered human-robot system (22)
with updates determined according to (24), and under the
same hypotheses as Proposition 4.6, the interexecution time
is lower bounded as tk+1 − tk ≥ τ thk

σ′ where

τ thk
σ′ :=

1

M̂
ln

(
1 + M̂ σ′

LcJmax

1 +
(

1+σ
1−σ

)2

(eM̂Tthk − 1)

)
+ Tthk. (27)

PROOF. By construction, during [tk +Dk, tk+1], the dy-
namics is given by ẋ[k]. Similarly to how we obtained in-
equality (26) in the proof of Proposition 4.6, we have

‖∆xk‖
‖ẋ[k]‖

≤ 1

M̂

(
1 + σ

1− σ

)2

(eM̂Dk − 1),

at time tk +Dk. Setting φ(tk +Dk) equal to the right hand
side of the above inequality as the initial condition, we solve
the dynamics φ̇ = 1 + M̂φ,

1

M̂
ln

(
1 + M̂φ(t)

1 + M̂φ(tk +Dk)

)
= t− (tk +Dk),

for t ≥ tk + Dk. Using the Comparison Lemma, we know
‖∆xk‖
‖ẋ[k]‖ ≤ φ(t), so it takes longer time for ‖∆xk‖‖ẋ[k]‖ to evolve to
σ′

LcĴ
(precisely tk+1 − tk −Dk) than it takes φ(tk +Dk) to

increase to φ(t) = σ′

LcĴ
. As such, we find that

tk+1 − tk ≥
1

M̂
ln

(
1 + M̂ σ′

LcJmax

1 +
(

1+σ
1−σ

)2

(eM̂Dk − 1)

)
+Dk.

The result now follows by observing that the right hand
side is decreasing in Dk. 2

The combination of Propositions 4.6 and 4.7 ensures that
the event-triggered human-robot system (22) with updates
determined according to (24) enjoys the same convergence
guarantee as stated in Corollary 3.4.

Corollary 4.8 (Asymptotic Stability – “Need to
Think” Human Design). For the event-triggered
human-robot system (22) with updates determined ac-
cording to (24), the optimizer x∗ is asymptotically stable,
with X0 = {x0 ∈ Rn | S0 ⊆ V} contained in its region of at-
traction. Moreover, if c ◦ f is strongly convex with constant
µ > 0 on V, then given an initial condition x0 ∈ X0, (13)
holds for all k ∈ {0}∪N. As a consequence, the optimizer is
exponentially stable with the bound (14) for σ ∈ (0, 1). 2

4.3 “Need to Think Then Rest” Human

Here, we combine the “need to rest” and “need to think”
models into a single one: not only does the human take
some time in responding to a robot’s query, but she also has
to rest before she can reply to the robot again. Formally,
this means that the robot follows the dynamics (22) with
the additional constraint that tk+1 ≥ tk + Dk + Trest for
all k ∈ {0} ∪ N. Our next result addresses this problem.

Proposition 4.9 (Trigger for “Need to Think Then
Rest”Human).Consider the event-triggered human-robot
system (22). Given σ ∈ (0, 1) and Trest, let D∗tnk-rst be the
unique solution to(

1 + σ

1− σ

)2

=
eM̂(τVσ −D

∗
tnk-rst−Trest) − 1

eM̂D∗
tnk-rst − 1

, (28)

and assume D∗tnk-rst > Tthk. For k ∈ {0} ∪ N, let tk+1 be
determined according to (24), where σ′ ∈ (0, 1) is such that

LcĴ

M̂

((1 + σ

1− σ

)2

(eM̂Tthk−1)eM̂Trest +(eM̂Trest−1)
)
< σ′

≤ LcĴ

M̂
(eM̂(τVσ −Tthk) − 1).

Then, for each k ∈ {0}∪N, we have ‖∆xk‖ < σ‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

for t ∈ [tk, tk+1 +Dk+1), tk+2 > tk+1 +Dk+1 + Trest, and
as a consequence, the bound (5) on the evolution of the Lya-
punov function holds for all time, t ∈ [tk+Dk, tk+1+Dk+1).

PROOF. First, note that the newly introduced rest time
constraint has no effect on how the upper bound is de-
rived in (23), so it remains the same here. On the other
hand, the lower bound to σ′ is affected by the rest time
constraint. Specifically, we must now guarantee that the
value of ‖∆xk+1‖ must not exceed the trigger condition
σ′‖ẋ[k+1]‖
LcJmax

, but at the time tk+1 + Dk+1 + Trest (instead of

the earlier tk+1 +Dk+1). We break the time of interest into
two intervals, [tk+1, tk+1 +Dk+1] and [tk+1 +Dk+1, tk+1 +
Dk+1 + Trest] because in these two intervals, the dynamics
are different due to the human’s update.

First, we focus on the latter of the two time intervals.
From (9),

d

dt

‖∆xk+1‖
ẋ[k+1]

≤ 1 + M̂
‖∆xk+1‖
ẋ[k+1]

.
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As such, we know that if

‖∆xk+1‖
ẋ[k+1]

≤ 1

M̂

(
(1 + M̂

σ′

LcJmax
)e−M̂Trest − 1

)
,

at time tk+1 +Dk+1, then ‖∆xk+1‖
ẋ[k+1] ≤ σ′

LcJmax
at time tk+1 +

Dk+1 + Trest by using the Comparison Lemma. Next, we
deal with the interval [tk+1, tk+1 +Dk+1] to show that the
lower bound given in the statement ensures the above in-
equality at time tk+1 +Dk+1. This can be done by follow-
ing the same contradiction proof procedure as presented for
Proposition 4.6. 2

Proposition 4.9 gives a method to deal with both human
resting and thinking time. Once again, these constraints
must be sufficiently small. We can interpret D∗thk-rst as the
maximum allowable thinking time for the human, given
the amount of time he needs to rest. As Zeno behavior is
absent due to the interexecution time being lower bounded
by the resting time, an analogous statement to Corollary 4.8
follows. The given model is the richest in term of dealing
with constraints on human performance, and we can recover
earlier models by setting resting or thinking time to zero.

Remark 4.10 (Units of Time). The two types of con-
straints on human performance considered here both have
parameters dealing with time. The resting time Trest and
the thinking timeDmost likely will be quantified with units
of time that are meaningful in the real world (e.g., seconds
and hours). On the other hand, the gradient descent has its
own unit of time that is encoded in the dynamics. To use our
results, it is important to reconcile the difference in units.
One way to do this is by noting that the gradient descent is
calculated by the robot. In practice, the robot will proba-
bly implement the continuous gradient dynamics through a
discretization with a constant stepsize. Given how long the
robot takes to compute each step in the gradient descent,
we have a convenient unit conversion between the two time
units. We note here that the conversion depends on the
robot’s computing power and the selected stepsize. •

5 Simulations

We consider a human-robot interaction scenario where a hu-
man aids the robot in determining a safe trajectory through
an environment populated with threats of different levels.
The robot is tasked to travel from the origin at (0, 0) to (1, 0)
on the xy-plane. The robot has scanned a few potential
threats in the area with positions among

(xobs, yobs) = {(0.8, 0.1), (0.3,−0.2), (0.2, 0.04),

(0.68, 0.3), (0.5, 0.12)}.

Ideally, the robot would like to stay away from these lo-
cations while, at the same time, would like to traverse the
shortest path possible to its goal. To describe its reference
trajectory, the robot uses a sum of sinusoidal functions as,

y =

10∑
i=1

ai sin(iπx), x ∈ [0, 1],

where a ∈ R10 are the amplitudes to be optimized. The
objective functions for avoiding obstacles and for measuring

path length are given by

fobs,j(a) = − max
x∈[0,1]

{
(yobs,j − y)2 + (xobs,j − x)2

}
,

flen(a) =

∫ 1

0

√√√√1− (

10∑
i=1

iπai cos(iπx))2 dx,

for j ∈ [5] and a ∈ R10. In order to find the amplitudes that
best describe the most desired reference trajectory, a hu-
man works with the robot in the multiobjective optimiza-
tion problem with objective functions fobs,1, . . . , fobs,5, flen

by evaluating risks of the likely threats and providing the
robot with gradient information. In practice, the human
preference function is not known, and the gradient infor-
mation can only be estimated, perhaps through asking the
human to rate the importance of each objective functions
at a given point. For the purpose of the simulation, we use
the following function to represent the human preferences,

c(f) =
f2

len

10
+

5∑
j=1

qj
f2

obs,j

,

where q = [0.2, 0.5, 0.03, 0.1, 0.3]. The weights captured in
q represent how the human assesses the threats. The third
potential threat, for example, is an order of magnitude lower
than the others. This can represent, for instance, how the
human knows that the third object is a friendly entity and
does not pose much risk besides a potential crash. We as-
sume the human provides the exact value of the gradient
information and focus on how we can apply the results in
this paper to accommodate the constraints in human per-
formance, as discussed in Section 4.
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Fig. 2. Optimized trajectories. The diagram shows the trajec-
tories of the optimized amplitudes after 10000 robot iterations
with the initial condition of a straight path, a = 0. Shown in
the dotted lines are the trajectories at 5000 robot iterations for
each respective model. The proposed triggers for updating hu-
man gradient information shows convergence towards the de-
sired (continuous case) trajectory in all the cases.

We run our simulations in MATLAB on a desktop with a
3.5GHz Intel Core i5-6600K quad-core CPU and 16GB of
RAM. For comparison, we generate a reference optimized
trajectory having the robot use gradient information at all
times. We refer to this as the “continuous” case. To simu-
late the continuous dynamics, we use an Euler discretiza-
tion with a stepsize of 1 × 10−5. Note that the timescales
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of the robot, over which the dynamics runs, and of the hu-
man are not necessarily the same, cf. Remark 4.10. In fact,
in our platform, each iteration of this discretization takes
the robot roughly one second to compute. Therefore, con-
tinuous queries by the robot would mean that the human
needs to respond every second. From an operational point
of view, this amount of time can be too little for the human
to work with. Instead, the results of this paper allow the
robot to efficiently query the human in an opportunistic
fashion to continue its operation and also allow the human
to gain more time to work between consecutive queries.

Even though the resulting optimization problem is not con-
vex, we employ our event-triggered law (4) with σ = 0.5
to find a local optimizer via human-robot interactive gradi-
ent descent (cf. Remark 3.5). Under the ideal human model
of Section 3, the trajectory from the resulting optimized
amplitudes after 10000 iterations is plotted in Figure 2.
Using (11), the lower bound to the interexecution time
is 5.2 × 10−4, i.e., 52 robot iterations. As a result, the hu-
man does not need to respond at every iteration to ensure
convergence to the desired trajectory. In addition, Figure
3 shows the number of iterations elapsed before the human
responds, which is lower bounded by the aforementioned
value. Note that the optimal trajectory ends up closer to the
obstacle on the left, compared to others. This is expected
because the object corresponds to the threat location with
weight q3, which has lower potential risk than the others.
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Fig. 3. Interexecution times. The diagram shows the time
elapsed between each request from the robot to the human to
update the gradient value. The interevent times are uniformly
lower bounded in both cases, as guaranteed by our analysis. The
robot runs its dynamics with stepsize 1 × 10−5, which means
that the human only has to respond after at least 65 iterations.

Next, we consider a scenario where the human may take
time to provide gradient information and may need some
time to rest between consecutive queries, as described un-
der the “need to think then rest” model of Section 4.3. With
the notation of that section, we select Tthk = 5 × 10−5,
which corresponds to 5 robot iterations – i.e., the robot has
to wait for up to 5 iterations in the execution of its gradi-
ent dynamics before receiving a response from the human
to its query. In order to determine the allowable resting
times in this scenario, we use (28) from Proposition 4.9 to
plot in Figure 4 the design space of pairs (σ, Trest) for which
the above thinking time D is feasible. To obtain the same
guaranteed convergence rate as in the ideal human case,
we select σ = 0.5 and then, based on Figure 4, we pick
Trest = 1× 10−4 to be in the interior of the feasible option.
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Fig. 4. Design space for “need to think then rest human.” The
diagram shows the region where the pairs (σ, Trest) that can
accommodate the thinking time Tthk = 5 × 10−5. The colored
region represents the sublevel sets of maximum allowable think-
ing time D∗tnk-rst, starting with D∗tnk-rst ≥ 5 × 10−5, and the
brightness denotes higher values.

Note that this selection corresponds to 10 iterations of the
robot. In practice, the algorithm might still converge with
much longer resting times because of the various bounds
involved in obtaining our guarantee. In fact, in our simu-
lations, cf. Figure 3, we observe that the human actually
has the minimum resting time of 6.5 × 10−4, which corre-
sponds to 65 iterations. According to Proposition 4.9, we
select σ′ = 0.42 to satisfy the hypotheses and implement
the event-triggered law (24). The result shows that the rest-
ing and thinking time constraints are respected and, as ex-
pected, the interevent times are reduced to accommodate
the delay, cf. Figure 3. Figure 5 shows the evolution of the
Lyapunov function, where one can see that the same level
of performance as in the ideal human case is attained.
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Fig. 5. Convergence of the cost function. The plot shows the
evolution of the Lyapunov function using our event-triggered
design for different models. The design parameters σ for the
“need to think then rest” model is chosen to match the conver-
gence guarantee of the ideal human case.

6 Conclusions

We have developed event-triggered strategies for human-
robot interactive multiobjective optimization. Our design
seeks to minimize human workload by having the robot
require her involvement in an opportunistic fashion when
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it is necessary to ensure the asymptotic correctness of the
robot dynamics. We have shown how different human per-
formance limitations can be accommodated, such as the hu-
man requiring some time between consecutive queries, re-
quiring some time before producing a response, and a com-
bination thereof. For each model, we show that the corre-
sponding event-triggered strategy is provably correct and
Zeno-free, with uniformly lower bounded inter-event times.
We believe further work could expand the versatility and
flexibility of the proposed solutions, including improving
upon the conservatism of our proposed designs. In partic-
ular, we will seek to extend our designs here beyond gradi-
ent dynamics to incorporate other optimization methods,
explore the online learning of human models with the in-
formation received by the robot to reduce the workload,
expand upon the use of the concept of grace time and the
idea of allowing controlled increases of the Lyapunov func-
tion along the system trajectories, and the incorporation of
time-varying human preference functions and inexact hu-
man responses to robot queries.
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J. Weimer, J. Araújo, and K. H. Johansson. Distributed event-
triggered estimation in networked systems. IFAC Proceedings
Volumes, 45(9):178–185, 2012.

W. Wu, S. Reimann, D. Görges, and S. Liu. Suboptimal
event-triggered control for time-delayed linear systems. IEEE
Transactions on Automatic Control, 60(5):1386–1391, May
2015.

B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu. In-
teractive multiobjective optimization: A review of the state-
of-the-art. IEEE Access, 6:41256–41279, 2018.

J. B. Yang. Gradient projection and local region search for
multiobjective optimisation. European Journal of Operational
Research, 112(2):432–459, 1999.

13


