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Abstract— This paper formulates a safe and stabilizing con-
trol state feedback law for a control affine nonlinear system.
We assume that there exist a known control Lyapunov function
(CLF) and a control barrier function (CBF) that are compatible,
i.e., there exists a control choice satisfying the conditions given
by both the CLF and CBF at each given state. In contrast to the
approach in the literature of finding a minimum-norm control
using optimization on the feasible control set, we take a different
approach by finding and combining different weighted centroids
of the feasible control set. As a result, we can propose a control
feedback law with guaranteed smoothness everywhere except
at the origin, and with guaranteed continuity at the origin if
small control property holds.

I. INTRODUCTION

Recently, safety critical systems have gained attentions
in control. In such systems, it is undesirable for the state
trajectory to hit certain states at any point in time. This
poses an extra difficulty in designing a controller because
in addition to trying to stabilize the origin, one must make
sure that the control signal will also not produce a trajectory
that violate the state constraints. To address such a problem,
motivated by the usage of CLF to certify stability, the concept
of CBF is developed as a useful tool for guaranteeing safety.
A CBF provides choices of control guaranteeing that the
trajectory will not evolve to the unsafe states. Through the
lens of this new concept, research in controls refocuses on
the problem of not only stabilizing the system but also
ensuring safety. Particularly, recent research topics, such
as minimum-norm controller and control Lyapunov barrier
function (CLBF), emerge with the ultimate aim of proposing
a state feedback control law that satisfies both the safety and
stability criteria given by the CLF and CBF.

Literature Review: This paper builds on three different
bodies of literature. The first body of work is the literature
on safe stabilization via the usage of CLF and CBF. Notably,
there are two general approaches to how to exploit the
available CLF and CBF. One way is to find the control
through pointwise optimization over a feasible control set
given by the CLF’s and CBF’s associated Lie derivative
inequalities (see e.g., [1]–[3]). However, as pointed out in
[4] with a counterexample, using this pointwise minimization
method can result in a non-Lipschitz feedback controller.
This can pose a problem for solution and uniqueness of
the solution. To remedy this, [2], [3] sacrifice condition for
stability for the guaranteed Lipschitzness of the controller.
Another approach, as introduced by [5], is to combine a
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CLF and a CBF into a CLBF and then to use Sontag’s
universal formula for stabilization as its smooth control
feedback law. However, there are problems such as the lack
of guarantee that the newly constructed CLBF will satisfy the
criterion required by the paper. The restrictiveness of CLBF
is discussed further in [6]. Nevertheless, the smoothness of
the controller is to be commended.

Next, we rely on the literature on smooth stabilization
using a universal formula. The idea of smooth stabilization
begins with [7], which shows that there exists a continuous
control feedback for a control-affine system with a differ-
entiable CLF. As briefly mentioned in [8], the idea can be
extended to guarantee a smooth control feedback. However,
the proof does not provide a construction of such feedback.
This motivates [8] to use the analyticity of the root of a
quadratic function with respect to its parameters to formulate
the famous Sontag’s universal formula for stabilization. As
its name suggests, the formula does not take into account
safety which would limit the feasible control option. It should
be noted that there are extension to the universal formula in
[9], [10], which consider constrained inputs of u ∈ [0,∞)
and u ∈ [0, 1]. However, these constraints are static unlike
constraints from CBF that change across each state. To the
best of our knowledge, there is no universal formula for the
latter case.

Last, our work fits in the literature of set-valued function
selection. The feasible control set, given jointly by a CLF
and a CBF, can be viewed as a set-valued function that
changes across each state. Under the context of this paper,
the idea behind selection is to pick a control from each
feasible control set at each point to construct a single-valued
function. One important selection theorem to note from [11],
which is known as Michael’s theorem, can be applied to our
problem to show that a continuous feedback exists. However,
the proof is not constructive. The work [12] and the book [13]
use set-valued selection in controls context. In fact, in these
works, it is shown that the minimum-norm controller are in
fact continuous under lower semicontinuity of the control
set. In addition, [13] discusses Lipschitz selection, but again
does not give a constructive function. Another notable work
is [14], which generalizes minimum-norm controller with a
guide function, but once again, only continuity is guaranteed.
Smooth selection for polytope set-valued function is explored
in [15], [16], which suggests using the vertex of the polytope,
but smoothness is only guaranteed almost everywhere, and
if the result is applied in the context of controls, the control
signal can be unnecessarily large.

Statement of Contributions: This paper considers the prob-
lem of safe stabilization for control affine systems. We first



revisit the simpler problem of smooth stabilization under the
same settings as what Sontag’s universal formula stabiliza-
tion, i.e., a smooth CLF is given. This is to lay a groundwork
for when we later consider an additional requirement for
safety from a smooth CBF. The goal of the paper is to
construct a smooth feedback controller from the CLF and
CBF. The contribution of this paper is threefold. The first
contribution is the construction of an alternative formula
for stabilization. The construction is based on the idea of
finding a weighted centroid of the admissible control set,
using the weights given by a probability density function
of a normal distribution. With this formula, we are able to
achieve exactly what Sontag’s universal formula does. On
top of that, we can extend the idea to when a CBF is also
given. This brings us to the second and main contribution of
this paper; we provide a formula for a feedback controller for
safe stabilization, constructed from the given CLF and CBF.
In doing so, we guarantee the smoothness of the controller.
Also noteworthy, unlike a minimum-norm controller does,
our proposed controller does not need to sacrifice the stability
of the origin for the controller’s Lipschitzness. The third
contribution of this paper is the extension of Artstein’s
theorem for the existence of a smooth controller under the
existence of a differentiable CLF. Particularly, we consider
multiple control-affine inequalities in addition to the CLF. We
provide an example to demonstrate our results. All proofs are
omitted for reasons of space and will appear elsewhere.

II. PROBLEM STATEMENT

Consider1 a nonlinear control-affine system of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state and u ∈ Rm is the input. The
system vector fields f : Rn → Rn and g : Rn → Rn×m

are assumed to be smooth, and f(0) = 0 so that the origin
is an equilibrium of the unforced system. The goal of this
paper is to find a control feedback k : Rm → Rn such that
u = k(x) guarantees both the global asymptotic stability of
the origin and the safety of the trajectories for the closed-
loop system. We address the problem of asymptotic stability

1Throughout the paper, we use the following notation. We denote by N,
R, and R≥0 the set of natural, real, and nonnegative real numbers, resp. We
write P(S), int(S), S̄c and ∂S for the power set, the interior, the closure,
and the boundary of the set S, resp. For n ∈ N, we use the notation [n] to
denote the set {1, . . . , n}. Given x ∈ Rn, ‖x‖ denotes its Euclidean norm.
Im and 0m denote the identity matrix of size m and the m-dimensional
zero vector, resp. For a function ψ : Rn → R, we use supp(ψ) as the
support of the function, i.e., the set {x ∈ Rn | ψ(x) 6= 0}. We use the
notation U : Rn →→ Rm to denote a set-valued map, which is equivalent to
U : Rn → P(Rm), i.e., a map that assigns a subset in Rm to each point
in Rn. We say a function k : Rn → Rm is Cl on an open set X ⊆ Rn if
all its derivatives up to l-th order are continuous on X , and we loosely call
the function smooth on X . For functions f : X → Y and g : Y → Z , we
use g ◦ f : X → Z to denote its composition, i.e., g ◦ f(x) = g(f(x)).
Also, we use × to denote the Cartesian product, and we extend its usage for
pointwise Cartesian product for functions with same domain; for example,
f : X → Y and h : X → Z has the Cartesian product f×h : X → Y×Z
where (f ×h)(x) = f(x)×h(x). We use the notation LfV to denote the
Lie derivative of a differentiable function V : Rn → R along the vector
field f : Rn → Rn. A function β : R → R is of class-K if β(0) = 0
and β is strictly increasing. A function V : Rn → R is positive definite if
V (0) = 0 and V (x) > 0 otherwise.

and safety with a control Lyapunov function and a control
barrier function, resp., whose definitions we recall next.

Definition 2.1: (Control Lyapunov Function): Given a
function δ : Rn → R≥0, a continuously differentiable
function V : Rn → R is a δ-relaxed Control Lyapunov
Function (δ-CLF) for the system (1) if

(i) V is proper, i.e., {x ∈ Rn | V (x) ≤ c} is a compact
set for all c > 0;

(ii) V is positive definite;
(iii) For each x ∈ Rn \ {0}, ∃u ∈ Rm such that

LfV (x) + LgV (x)u < δ(x). � (2)
The standard notion of CLF (cf. [13, Section 3.3.1])

corresponds to δ(x) = 0 in this definition when applied
specifically to the system (1), and we refer to it by 0-CLF.
One can indeed find in the literature different variations
of this notion: for example, the right-hand side of the
inequality (2) may include a negative definite function [17]
or the function V might only be continuous, in which case
the monotonic property in (iii) is expressed in terms of direc-
tional derivatives [18]. Throughout the paper, we focus the
definition above, even though our results are generalizable to
other cases as well. Similarly, we define a CBF as follows.

Definition 2.2: (Control Barrier Function [2], [3]): Given
a open set D ⊂ Rn, a function h : Rn → R, continuously
differentiable on Rn\D is a control barrier function (CBF)
for the system (1) if

(i) h(x) = 0 for all x ∈ ∂D;
(ii) h(x) < 0 for all x ∈ Rn \ D;

(iii) For each x ∈ Rn \ D, ∃u ∈ Rm such that

Lfh(x) + Lgh(x)u ≤ β(−h(x)) (3)

where β is a Lipschitz class-K function. �
The set D is referred to as the unsafe set. The purpose of

a CBF is to guarantee that all trajectories with an initial
condition outside of D will not enter it. For instance,
when the right-hand side of inequality (3) is zero, then the
condition guarantees that the value of the function h does
not increase along the trajectory. Therefore, if the initial
condition is outside D, where the value of h is negative, then
the function will remain negative, and the trajectory will not
enter the set D. The function β in the right-hand side allows
for the value of h to actually increase on points in the interior
of Rn \ D. As a result, the trajectory still avoids the set D.

We assume for the rest of the paper that the system (1)
admits a 0-CLF and a CBF. With these functions, one can
deduce particularly that, if there exists a feedback u = k(x)
satisfying inequalities (2) and (3), global asymptotic stability
of the origin and safety of the trajectories can be guaranteed.
This motivates us to introduce the concept of compatibility.

Definition 2.3: (Compatibility): We refer to a collection of
inequalities of the form a(x)+b(x)u < 0 or a(x)+b(x)u ≤ 0
as (strictly) compatible on X ⊂ Rn if, for each x ∈ X , there
exists a corresponding u ∈ Rm satisfying all inequalities
(strictly). We call a δ-CLF V and a CBF h compatible if their
inequalities (2) and (3) are compatible on Rn \ (D∪{0}). �



Given a 0-CLF V and a CBF h, we want to emphasize the
importance of their compatibility. If they are not compatible,
this means that there exists at least a state x where there
is no control u that can satisfy inequalities (2) and (3)
simultaneously, and either stability or safety needs to be
sacrificed. In the literature, it is common to sacrifice stability
by allowing δ(x) 6= 0 to ensure compatibility. We come back
to this point later in Section VI.

On top of compatibility, it is also important that the control
as a feedback function is at least Lipschitz continuous, to
guarantee the existence and uniqueness of solutions. This
motivates the formulation of the main problem.

Problem 2.4: (Feedback Safe Stabilization): Assume we
are given a 0-CLF V : Rn → R and a CBF h : Rn → R for
the system (1) which are compatible. Find a smooth control
feedback k : Rm → Rn such that u = k(x) satisfies both
inequalities (2) and (3) for all x ∈ Rn \ (D ∪ {0}).

In what follows, we show that the problem above has a
solution when the 0-CLF and a CBF are strictly compatible,
and provide a constructive formula for the feedback.

III. EXISTENCE OF A SMOOTH CONTROL FEEDBACK

In this section, we examine the existence of the solution
to Problem 2.4. The work [8] shows that it is possible to
construct a smooth control feedback when stability is our
only concern. Prior to providing its formula for universal
stabilization, the work suggests that the existence of a
smooth feedback controller can be derived through extend-
ing Artstein’s Theorem for the existence of a continuous
feedback controller (cf. [7]) by considering a partition of
unity. Incidentally, using the same concept, we can extend
Artstein’s Theorem even further to when more than one
control-affine inequalities are considered.

Proposition 3.1: (Extension of Artstein’s Theorem): Con-
sider a collection of n inequalities of the form a(x)+b(x)u <
0 or a(x)+ b(x)u ≤ 0 each defined on the domain Xi ⊆ Rn

with ai : Xi → R and bi : Xi → Rm continuous. If the
inequalities are strictly compatible on ∩i∈[n]Xi, then there
exists a C∞ selection function k : ∩i∈[n]Xi → Rm such that
u = k(x) satisfy all the inequalities for all x ∈ ∩i∈[n]Xi. �

In the context of safe stabilization, Proposition 3.1 pro-
vides a non-constructive statement suggesting that there
exists a smooth control feedback for a given 0-CLF and any
number of CBFs as long as they are all strictly compatible.

Corollary 3.2: (Existence of Smooth Safe Stabilizing Con-
trol Feedback): For the system (1) with continuous f and g,
Let the system admit a 0-CLF and a CBF that are compatible.
If Lgh(x) = 0m =⇒ Lfh(x) < β(−h(x)), then there
exists a control feedback k : Rn \ (D ∪ {0})→ Rm, C∞ on
Rn \ (D∪{0}) such that u = k(x) satisfies both (2) and (3)
for each x ∈ Rn\(D∪{0}), and hence, global asymptotically
safely stabilizes the closed-loop system (1) when δ = 0. �

This result shows that there is a solution to Problem 2.4
under the additional assumption that Lgh(x) = 0m =⇒
Lfh(x) < β(−h(x)). Although we have not yet worked
out a counterexample, we suspect there is one when the
condition does not hold. Therefore, we require this condition

to hold. Note that in the literature (e.g., minimum-norm
controller [2], [3]), it is common to require that Lgh(x) 6= 0,
a condition stricter than what we require. The result above
does not give a constructive formula. Here, we follow [8] and
shall construct a formula based on the available 0-CLF and
CBF. As a result, the smoothness of the controller will rely
heavily on the smoothness of the mentioned functions. As
opposed to finding a C∞ function given only a continuously
differentiable 0-CLF and a continuously differentiable CBF,
much like Sontag’s universal formula in [8], we will require
that the two functions are Cl+1 for which we will give a Cl
control feedback formula.

Sontag’s universal formula provides, in addition to the
smoothness of the controller, continuity at the origin under
the small control property of the admissible control set. We
shall do the same here for our formula, so we provide the
following definition.

Definition 3.3: (Small Control Property): Given an admis-
sible control set-valued function U : Rn →→ Rm. Small
control property holds with U if for every ε > 0, there
exists ω > 0 so that there exists ‖u‖ < ε such that u ∈ U(x)
for all ‖x‖ < ω. �

Note that the usual definition of small control property is
tied directly to the control set associated with inequality (2)
of a 0-CLF. However, since we deal in this paper not only
with a 0-CLF, but also an additional condition from a CBF,
we give above definition to suit our purpose.

IV. ALTERNATIVE UNIVERSAL FORMULA FOR SMOOTH
STABILIZATION

In finding a constructive control feedback formula, one
might want to begin by building on Sontag’s universal
formula for stabilization (cf. [8]) because it already handles
smooth stabilization by satisfying inequality (2). We will
briefly mention here the trouble in generalizing the formula
to the case with multiple inequalities. Sontag’s formula relies
on the fact that the roots of a quadratic function behave
analytically with respect to the function’s parameters and
the fact that function must be decreasing at one of the roots.
To guarantee the satisfaction of inequality (2), a function
quadratic in u is constructed so that the condition for the
function decreasing at the root is precisely inequality (2).
The root is the desired input, and can be computed using the
quadratic formula. To develop a universal formula for the
case with two inequalities (2) and (3) to satisfy, one would
have to consider a 2-dimensional quadratic function, and
find a formula to the root at which its function’s derivative
describes both inequalities. Unlike the one-dimensional case,
finding such a root can be problematic and its analyticity with
respect to the function’s parameters is unclear. This motivates
the alternative formula proposed here.

Assume V : Rn → R is a 0-CLF for the system (1). The
inequality (2) limits the choice of admissible controls for
stabilization. Because of the dependency on x, we write the
admissible inputs as a set-valued function U1 : Rn →→ Rm,

U1(x) = {u ∈ Rm | LfV (x) + LgV (x)u < 0}.



Clearly, if we select u = k(x) ∈ U1(x) for each x ∈ Rn \
{0}, then (2) is satisfied. However, this is not enough to
guarantee stabilization, because the continuity properties of
the control might not be enough to guarantee the existence
and uniqueness of solutions. To do so, we need a control
feedback that is at least Lipschitz continuous. To define this,
we rely on the function µ : P(Rm)× R≥0 → Rm,

µ(S, σ) =
∫
S u exp(−u

>u/(2σ2))du∫
S exp(−u>u/(2σ2))du

. (4)

The function can be interpreted as the mean of a set S with
weights from a zero-mean, σ2-variance Gaussian probability
density distribution. We are now ready to propose our
alternative universal formula for stabilization.

Proposition 4.1: (Alternative Universal Formula for
Smooth Stabilization): Let V : Rn → R be a 0-CLF for
the system (1) and σ : Rn → R be a Cl positive definite
function. If LfV and LgV are Cl, then µ ◦ (U1 × σ)
is Cl on Rn \ {0}. In addition, the feedback control
u(x) = µ(U1(x), σ(x)) satisfies (2) for each x ∈ Rn \ {0}
and hence globally asymptotically stabilizes the origin.
Furthermore, if the small control property holds with U1,
the function k is also continuous at the origin. �

Proposition 4.1 provides an alternative design to Sontag’s
universal formula for exploiting the existence of a 0-CLF
for global feedback stabilization. Furthermore, as we show
in the forthcoming discussion, the construction behind the
proposed formula can be extended to accommodate satisfac-
tion of an additional inequality, particularly inequality (3)
corresponding to a CBF.

V. UNIVERSAL FORMULA FOR SMOOTH SAFE
STABILIZATION

In this section we build on the developments of Section IV
to deal with an additional inequality from a CBF. Before we
move on to give our formula, we first define here a useful
auxiliary function. The following function s : R → [0, 1] is
C∞, (cf. [19, Eq (3) in Lemma 1.10]),

s(t) =


0, t ≤ 0(
1 + e1/t

e1/(1−t)

)−1
, 0 < t < 1

1, t ≥ 1

(5)

The function above is strictly increasing from 0 to 1 in the
interval (0, 1). Notably, the function is flat (derivatives with
respect to t of all order are zeros) at t = 0 and t = 1.
As a result, the function is particularly useful for smoothly
transitioning from one function to another in a convex set.
Also, we denote with a shorthand notation the following

µ[1,2](x) = µ(U1(x) ∩ U2(x), σ(x)),
µ1(x) = µ(U1(x), σ(x)),
µ2(x) = µ(U2(x), σ(x)).

where U1 : Rn →→ Rm and U2 : Rn →→ Rm are defined as

U1(x) = {u ∈ Rm | Ineq. (2) holds},
U2(x) = {u ∈ Rm | Ineq. (3) holds}.

With above, we are ready to give our main result.
Theorem 5.1: (Universal Formula for Smooth Safe Stabi-

lization): Let V : Rn → R and h : Rn → R be a 0-CLF
and a CBF that are compatible for the system (1). Also let
σ : Rn → R be a Cl positive definite function. Define

k(x) = s(ρ(x))(µ1(x)+µ2(x))+[1−s(ρ(x))]µ[1,2](x) (6)

where ρ(x) = LgV (x)Lgh(x)
>

‖LgV (x)‖‖Lgh(x)‖ . If the following hold,

(i) LfV , LgV , Lfh, Lgh, and β are Cl on Rn\(D∪{0});
(ii) Lgh(x) = 0m =⇒ Lfh(x) < β(−h(x)),

then k is Cl on Rn \ (D ∪ {0}). In addition, the feedback
control u = k(x) satisfies both (2) and (3) for each x ∈
Rn \ (D ∪ {0}) and hence, global asymptotically safely
stabilizes the closed-loop system (1). Furthermore, if small
control property holds with U1 ∩ U2, the function k is also
continuous at the origin. �

Theorem 5.1 gives a constructive formula for a strict
compatible pair of 0-CLF and CBF. The control feedback
given by (6) will achieve smooth safe stabilization. The main
idea behind the construction of the controller is to exploit
weighted centroid µ[1,2], which is already smooth almost
everywhere. Note this is done by examining the closed form
solution (cf. [20], [21]). For the place where it is not smooth,
we can conveniently transition the controller into µ1 + µ2

because both µ[1,2] and µ1+µ2 become either µ1 or µ2 there.
Using the property of the weighted centroid, the proposed
controller can satisfy both control inequality constraints.

VI. DISCUSSION ON δ AND COMPATIBILITY

In this section, we have a further discussion on compat-
ibility and how we can obtain it through using a δ-CLF.
Our results rely heavily on the compatibility of the given
0-CLF and CBF. Here, we consider the scenario where
compatibility does not hold for the 0-CLF and the CBF with
the property Lgh(x) = 0 =⇒ Lfh < 0, i.e., there exists
an x where there exists no u satisfying both inequalities (2)
and (3). Particularly, we can reason with contraposition that
this scenario must occur when the unsafe set D is bounded
because there can be no smooth feedback control as proven
in [6]. In any case, the question remains: what can be done
when compatibility does not hold.

To answer the question, we review the literature to see
how the problem of incompatibility is dealt. We recall from
the literature the minimum-norm controller (cf. [2], [3]).
Given a 0-CLF and a CBF, a minimum-norm controller
kmin : Rm → Rn is computed through solving pointwise
the following quadratic programming[
kmin(x) δ(x)

]>
= argmin

ũ=[u>,w]>∈Rm+1

ũ>ũ

s.t. LfV (x) +
[
LgV (x) −1

]
ũ < 0,

Lgh(x) +
[
Lgh(x) 0

]
ũ ≤ β(−h(x)).

Notice that the first inequality constraint is no longer inequal-
ity (2) from the 0-CLF because of the relaxation input w.
Instead, it represents the inequality (2) associated with a δ-
CLF. Thus, stability of the origin is no longer guaranteed.



The reason behind this sacrifice is to guarantee the feasibility
of the quadratic programming. By introducing a relaxation
input w, there exists a ũ satisfying the inequality constraints
for each x because the coefficient of ũ from the two
inequalities are always linearly independent.

We can integrate the idea of introducing a relaxation input
to obtain compatibility into our universal formula. First, we
redefine U1 and U2 appropriately with the relaxation input

U1(x) = {ũ | LfV (x) +
[
LgV (x) −1

]
ũ < 0},

U2(x) = {ũ | Lfh(x) +
[
Lgh(x) 0

]
ũ ≤ β(−h(x))}.

where ũ =
[
u w

]> ∈ Rm+1. With µ[1,2], µ1, and µ2

redefined with the above set-valued functions, we find a
smooth control feedback,

Proposition 6.1: (Exploiting δ for Compatibility): Let the
system (1) V : Rn → R and h : Rn → R be a 0−CLF and
a CBF that are not necessarily compatible. If the following
assumptions hold,

(i) LfV , LgV , Lfh, Lgh, and β are Cl;
(ii) Lgh(x) = 0 =⇒ Lfh(x) < β(−h(x)),

then with a Cl positive definite function σ : Rn → R, and ρ
redefined as

ρ(x) =

[
LgV (x) −1

] [
Lgh(x) 0

]>
‖
[
LgV (x) −1

]
‖‖
[
Lgh(x) 0

]
‖
,

the function k defined as in (6) is Cl on Rn \ (D ∪ {0}). In
addition, the control feedback u =

[
Im 0m

]
k(x) satisfies

the inequality (3) for each x ∈ Rn \ (D ∪ {0}) and hence,
guarantees the safety of the trajectories for the closed-loop
system (1). Also, the control feedback u =

[
Im 0m

]
k(x)

satisfies the inequality (3) associated with the δ-CLF where
the relaxation function given by δ(x) =

[
0>m 1

]
k(x), for

each x ∈ Rn \ (D ∪ {0}). Furthermore, if small control
property holds with U1∩U2, the function k is also continuous
at the origin. �

Proposition 6.1 provides a feedback controller for when
the system (1) admits a CLF and a CBF that are not
compatible. The idea is to introduce a relaxation input w
and then apply the universal formula. As a result, we can
find that the new set of inequalities are compatible. The
downside of introducing a relaxation input is that we no
longer guarantee the stability of the origin. We satisfy instead
the condition for a δ-CLF. However, because δ is a smooth
function, it will be upper bounded on any compact domain.
Regardless, it must be noted again that stability is no longer
guaranteed. Nevertheless, this method eliminates the need to
search for a compatible δ-CLF and has been proven useful
in the literature.

VII. NUMERICAL EXAMPLE

In this section, we apply our results to an example.
Consider a unicycle dynamics subjected to a drift with the
following dynamics,ẋẏ

θ̇

 =

 0
−y
0

+

cos θ 0
sin θ 0
0 1

[u
v

]
.

For the states, we write z =
[
x y θ

]>
. One can check

that V (z) = 1
2‖z‖

2 is a 0-CLF. Next, suppose unsafe states
are given by the set D =

{
z ∈ R3 | y > (2x+1)2+1

}
. We

use the following CBF candidate.

h(z) = y − (2x+ 1)2 − 1

We find that h(z) = 0 on the boundary of the unsafe set and
h(z) < 0 on Rn \D. Next we check if the function is a CBF
by checking if there exists a u satisfying (3) for each x. We
pick the simplest class-K function for β(−h(z)) = −kh(z)
where k is a positive constant. Now we evaluate,

Lfh(z) + Lgh(z)u = −y − 4(2x+ 1)u cos θ + u sin θ.

For k ≥ 1, we find that

−y ≤

{
−ky, y < 0

0, 0 ≤ y < (2x+ 1)2 + 1

<

{
−ky + k((2x+ 1)2 + 1), y < 0

−k(y − (2x+ 1)2 − 1), 0 ≤ y < (2x+ 1)2 + 1

< −kh(z), ∀z ∈ R3 \ D.

Therefore, for k ≥ 1, u = 0 satisfies (3) on R3 \ D, and h
is a CBF. We pick k = 5 for the simulation. Also note here
that with Lfh(z) < −kh(z), we can immediately satisfy the
assumption Lgh(z) = 0 =⇒ Lfh(z) < −kh(z).

Next, we examine the compatibility of the 0-CLF and CBF.
First, it is clear that u = 0 satisfy both (2) and (3) for y 6=
0, y 6∈ D. Then for y = 0, we can find that

LgV (z) =
[
x cos θ θ

]
Lgh(z) =

[
−(8x+ 4) cos θ + sin θ 0

]
.

We only need to consider when these two vectors are linear
dependent because otherwise there always exists a control
that can satisfy both (2) and (3). As such, we consider when
θ = 0. For compatibility, we need a u satisfying

xu < 0, − (8x+ 4)u ≤ 0

In other words, we want 0 < (7x − 4)u. Clearly, a u with
the same sign as 7x−4 exists, and we can pick it arbitrarily
small, so that small control property holds.

With initial conditions of
[
−1 2 π

]>
and

[
0 2 π

]>
,

we simulate our proposed controller given by (6) with
σ(z) = 1 − exp(z>z). The resulting trajectory is shown in
Figure 1 in a thin solid curve. In comparison to Sontag’s
universal formula, given in dashed curve, our proposed
controller results in a trajectory that avoids the unsafe
states as predicted. In addition, the minimum-norm controller
discussed Section VI in is plotted in a dotted line for com-
parison. For this controller, a relaxation input is introduced
to guarantee Lipschitzness of the controller. Also, we add
a negative definite function, −0.1z>z, on the right hand
side of the CLF inequality (2) to “force” control effort;
otherwise, the minimum-norm controller will be identically
zero. For its plot, although the trajectory appears to converge
towards the origin, there is no real guarantee that it will
do so. This is not to mention that the controller is not



differentiable at some point along the trajectory, which can
be an undesirable property. In contrast, the control signals of
our proposed formula are plotted in Figure 2. As guaranteed
by Theorem 5.1, the signals are smooth and go to zero

Fig. 1. Trajectories for different types of controllers with two different
initial conditions. Using Sontag’s universal feedback formula results in a
trajectory that violates the state constraint because it does not take safety into
account. Both the minimum-norm and our proposed controller produce safe
trajectories that progress towards the origin (however, there is no guarantee
that the minimum-norm controller will reach it).
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Fig. 2. The control inputs along trajectory using our control feedback
formula (6) with the two different initial conditions. Both control inputs
appear smooth in simulation as predicted. In addition, because the small
control property holds, the control both converges to zero as the state
converges towards the origin.

VIII. CONCLUSIONS

We have formulated a feedback controller for safe stabi-
lization. Given a CLF and a CBF, the formula considers the
associated admissible control set, and calculates the weighted
centroids with normal distribution weights of different sets.
By combining the centroids in a smooth way, the given feed-
back controller retains the smoothness property of the CLF-
CBF pair. Also, by manipulating the “standard deviation,”
the controller can be found continuous at the origin when
the small control property holds. In future work, we plan to
work on improving our results in two different ways. First,
we wish to extend the formula to the case with multiple
CBFs (which should exist as predicted by Proposition 3.1).
Second, we plan to refine the concept of compatibility to a
system level as opposed to defining it as a pointwise property.
In particular, we notice that even if compatibility does not

hold for a state, there may still exist a control that drives the
trajectory to where compatibility holds.
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