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Aerial slung-load position tracking
under unknown wind forces

Pedro Pereira, Jorge Cortés, and Dimos V. Dimarogonas

Abstract—We propose a dynamic controller for position track-
ing of a point-mass load attached to an omni-directional aerial
vehicle by means of a cable. Both the load and the aerial
vehicle are subject to unknown wind forces. We model the
dynamics of the slung-load system and put it into canonical
form, i.e., a form which is independent of the system’s physical
parameters. Following a backstepping strategy, we design a
dynamic control law for the canonical system that contains four
estimators, since each of the two wind disturbances has two
separate effects: an effect on the linear acceleration and another
on the angular acceleration. Loosely speaking, the difference
between the wind forces is an input-additive disturbance, while
the wind force on the load is not, which makes removing the
wind force on the load non-trivial. We identify conditions on the
desired position trajectory and on the wind on the load which
guarantee that a well-defined equilibrium trajectory exists. The
designed controller guarantees simultaneously that (i) the latter
trajectory is asymptotically tracked and (ii) the cable remains
taut, provided that the system is initialized in a suitable set.
Simulations illustrate our results.

I. INTRODUCTION

Vertical take off and landing rotorcrafts with hover capa-
bilities, hereafter UAVs, are vehicles whose popularity stems
from their ability to be used in small spaces, their reduced
mechanical complexity, and inexpensive components. Slung-
load transportation consists of a UAV physically coupled to a
point-mass load. The general aim is to make the load position
track a given desired trajectory. Slung-load transportation
has been considered in prior work, but not while formally
accounting for the presence of unknown wind forces acting
on the load and on the aerial vehicle, which is an inevitable
reality if such a transportation is to be accomplished outdoors.

Different solutions to slung-load transportation can be found
in the literature [1]–[15]. Different modeling approaches have
been pursued, such as Euler-Lagrange formulations, Hamil-
tonian formulations, or Kane’s method [1]–[5]. The slung-
load system, as a mechanical system, is known to be under-
actuated. Most works rely on local parametrizations of the
configuration space, while others provide a coordinate-free
modeling as well as a coordinate-free control law [6]–[9].
Some works have focused on the simpler problem of position
stabilization [3], [4], [7], [8], while others have examined
simplified two-dimensional settings [4], [16]. Vision has been
used to estimate the load position with respect to the UAV [1],
[10], [15], and a force sensor on the rope has been used to
compensate and/or estimate the tension on the cable [1], [14].
Dynamic controllers, considering model uncertainties and/or
input disturbances, are found in [2], [8], [9], with some relying
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on a discrete-time model, and a flexible cable has also been
considered [7], [8]. Trajectory planning has been considered by
exploring (hybrid) differential flatness [7], [16], or by minimiz-
ing the allowed swing motion [2], [3]. Implementations with
partial-state or visual feedback are developed at the cost of
some assumptions, such as the absence of wind, the restriction
to planar motions, or by making use of simplified models [17],
[18]. Finally, slung-load transportation with multiple UAVs
has also been considered [1], [11]–[13]. In the coordinate-
free works cited above, the desired attitude for the cable is
computed, which involves the normalization of a designed
three-dimensional vector. This normalization is only valid if
the latter vector is non-zero: in this paper, we guarantee this
normalization is valid for any state, which includes the internal
states of the dynamic controller. Our solution to achieve this
involves using a bounded linear acceleration control law and a
bounded disturbance estimator. Also, the latter works assume,
without guarantees, that the cable remains taut – this constraint
must be satisfied, otherwise the load behaves as a free-falling
unactuated point-mass: instead, in this paper, the designed
control law guarantees that the latter physical constraint is
satisfied along a closed-loop trajectory, provided that the state
is initialized in a set we identify in the paper.

Position tracking for the slung-load system shares similar-
ities with position tracking for a standard UAV [19], [20].In
this paper, we use differential flatness [21] to compute the
desired state and input trajectory and to describe feasible
position trajectories. In designing a controller, we then follow
a backstepping procedure, similar to that found in [22]–[26],
but we do not feedback linearize the system by dynamic
augmentation of the thrust (in our case, tension), as done
in [24]–[26]. In position tracking, it is known that an a priori
bounded linear acceleration control law is necessary [9], [23],
[24], a problem we tackle; we also improve on these works
by providing a smooth projector operator. Moreover, when
controlling a UAV, one must guarantee that the thrust remains
positive (either because the UAV rotors can only spin in one
direction; or because dynamic augmentation of the thrust so
requires), and [26] provides a region of initial states for which
such a constraint is satisfied. In a similar fashion, in a slung-
load system, one must guarantee that the cable remains taut,
which is the case if the tension on the cable remains positive.
Finally, we assume that the UAV – performing the slung
load transportation – is an omni-directional UAV, i.e., it can
generate thrust force in any direction [27]–[29].

II. STRATEGY AND CONTRIBUTIONS

We summarize our problem solving strategy and the main
contributions of the paper. In Section III, we present the
model of an aerial slung-load system in the presence of winds
acting on the UAV and on the load, which are unknown by
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the controller1. In Section IV-A, we show that the system
is differentially flat with respect to the load’s position and,
given some desired load’s position trajectory, we compute
the (two) desired system’s trajectories, and the (two) desired
input trajectories (one solution is physically feasible – cable
is under tension – while the other is unfeasible – cable is
under compression). In the same section, we introduce the
notion of feasible trajectories as those where the load is not
buoyant in the air at any time instant. In Section IV-B, we
provide a coordinate transformation that puts the system’s
vector field in a canonical form: this form is agnostic to
the system’s physical parameters and displays a characteristic
cascaded structure, which we exploit in the controller design.
We find out that there are two types of disturbances, where
one is input additive (associated with the difference between
the winds on the UAV and on the load), while the other
is not (associated with the wind on the load). Dealing with
the latter motivates us to introduce a smooth projection that
guarantees that a disturbance estimator remains in a pre-
specified domain and whose derivatives, of any order, can
be computed. In Section V, we provide our main result,
which establishes sufficient conditions for inferring stability
and attractivity of equilibria sets, a result which is particularly
useful for non-contractible state spaces and where some form
of disturbance removal needs to be considered. In Section VI,
we provide a strategy for designing a smooth update law,
accompanied with an appropriate Lyapunov function, and
which does not grow unbounded in an unbounded domain
(i.e., if the load starts far away from its desired position, the
estimators do not immediately saturate). In Section VII, we
follow a six-step backstepping procedure which exploits the
cascaded structure of the transformed problem. In the initial
steps, the disturbances are assumed known, and these steps
are immediately followed by steps where estimators for those
disturbances are designed. In Section VII-A, we provide a
bounded analytic control law for a double integrator, with
a companion analytic Lyapunov function whose derivative is
negative definite. Also, at each step, we present the equilibria
sets and we formally characterize their stability and attractivity
properties, which follow from an application of the results
presented in Section V. Finally, at those steps where an
estimator is designed, we follow the procedure presented in
Section VI. Ultimately, given some feasible trajectory, we
verify that the final dynamic controller guarantees that both the
system’s position and input trajectories converge to their de-
sired trajectories, even if the estimators do not converge to the
corresponding unknown disturbances. When the disturbances
are only partially estimated, we can show attractivity while,
when the disturbances are correctly estimated, we can also
show stability. We also provide an excitation criterion which,
if satisfied, guarantees that the estimator of the non-input-
additive disturbance converges to the unknown disturbance.
Finally, we show that the proposed controller guarantees that
the cable remains taut along a closed-loop trajectory, given
that its initial condition lies in a set, which we characterize.

1We consider a fully-actuated UAV, given that we wish to focus on unknown
wind forces. Full actuation is available for an omni-directional UAV or it may
be assumed for a UAV with a fast attitude inner loop.
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Fig. 1: Modeling of the aerial slung-load system subject to wind forces. Left:
system of two point-masses physically coupled by a cable. Right: distribution
of forces on each point-mass (the tension formula is discussed after (5)).

III. PROBLEM DESCRIPTION

We consider2 a UAV and a point-mass load physically
coupled to each other by a massless cable, which behaves as
a rigid link, cf. Fig. 1. For simplicity, we assume the UAV is
fully-actuated, a simplification that is necessary due to space
constraints (in our extended report [30], we deal with the
under-actuated case). The system be described by the state

z ∈ R12 :⇔ (p, P, v, V ) ∈ R3 × R3 × R3 × R3, (1)
where p and P stand for the linear positions of the load and the
UAV, while v and V stand for their linear velocities. The cable
connecting the load and the UAV imposes two constraints
described by f(z) = 02, where f : R12 → R2 is given by

f(z) := (l−2‖P − p‖2 − 1, 2l−2〈P − p, V − v〉) . (2)
The first component describes a geometric constraint, requiring
the positions of the load and of the UAV to be apart by
the length of the cable. The second component describes a
holonomic constraint and it follows from differentiating the
geometric constraint composed with the kinematics of the
system. The constraint map f in (2) allows us to define the
state space as well as its tangent space, namely,

Z := {z ∈ R12 : f(z) = 02}, (3a)
TzZ := {δz ∈ R12 : df(z)δz = 02}, for z ∈ Z. (3b)

The linear accelerations of the load and the UAV may be

2Here we introduce basic notation used throughout the paper. Let S :
R3 3 x 7→ S (x) ∈ R3×3 be the map that yields a skew-symmetric matrix
satisfying S (x) y = x × y, for any y ∈ R3. S2 := {x ∈ R3 : ‖x‖ = 1}
denotes the set of unit vectors in R3. The map Π : S2 → R3×3, defined as
Π(x)y := y − 〈y, x〉x for any y ∈ R3 and x ∈ S2, yields a matrix that
represents the projection of y onto the subspace orthogonal to x. For n ∈ N,
we denote by en1 , · · · , enn ∈ Rn the canonical basis vectors in Rn. Let n ∈ N
and r > 0, and denote Bnr := {x ∈ Rn : ‖x‖ < r} as the open ball in Rn

of radius r, and Cnr := {x ∈ Rn : ‖x‖ > r} = Rn\B̄nr as the complement
of a closed ball in Rn of radius r, respectively. A map α : [0,∞)→ [0,∞)
belongs to K∞ if α is continuous, strictly increasing, and α(0) = 0. Next,
let A and B be manifolds, and consider a differentiable map f : A→ B. For
any point a ∈ A, df(a) : TaA→ Tf(a)B denotes the derivative (which is a
linear map) of the map f at the point a. dif(a1, · · · , ai, · · · , an) denotes
the derivative of f with respect to its ith entry. If B = R, ∇f denotes the
gradient of f , i.e., 〈∇f(a), δa〉 = df(a)δa for any δa ∈ TaA; If N = R,
and for some r ∈ R, f≤r := {a ∈ A : f(a) ≤ r} denotes the sublevel
set of value r of the map f ; f?r , for ? ∈ {<,≤,=,≥, >}, is similarly
defined. Finally, we define logv0 ∈ K

∞ as (normally, logv0 stands for the
logarithm in base v0 for some v0 > 0, which is not, however, the meaning
of logv0 in this paper.) the map given by logv0 (v) := v0 log

(
1 + v

v0

)
for

some v0 > 0, and, as such, log′
v0

(v) = 1
1+ v

v0

> 0; when v0 = ∞, then
logv0 = id[0,∞) and log′

v0
= 1.
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found by considering the net force applied on each point-mass.
Fig. 1 shows the distribution of forces: u ∈ R3 denotes the
input force that the UAV can apply and (w,W ) ∈ R3 × R3

denotes the pair of wind forces applied on each point-mass.
w is the wind force applied on the load and W is the wind
force applied on the UAV. For the purposes of control design,
the wind forces are assumed to be constant (i.e., ẇ = 03 and
Ẇ = 03), but we provide a simulation where this assumption
is violated. Finally, T (z, u) is the tension on the cable, which
depends on the state z, the input u (as well as the wind forces).

Combining the system kinematics (velocity equations) with
the dynamics (acceleration equations), we have that the system
is described by Zw,W : R12 × R3 → R12 as3

ż=Zw,W (z, u):⇔


ṗ

Ṗ
v̇

V̇

=


v
V

T̄ (z,u)
m

P−p
l − ge3 + w

m
u
M −

T̄ (z,u)
M

P−p
l − ge3 + W

M

,(4)

where the tension T̄ : R12 × R3 → R is given by

T̄ (z, u) :=
〈

mu
m+M + mW−Mw

m+M , P−pl

〉
+ mM‖V−v‖2

(m+M)l . (5)

Note that the set Z in (3a), hereafter the state space, is invariant
for solutions of the vector field Zw,W in (4), for any pair
of wind forces (w,W ) ∈ R3 × R3: this follows by noting
that Zw,W (z, u) ∈ TzZ ⇔ df(z)Zw,W (z, u) = 02 for any
(z, u) ∈ Z × R3, which actually leads to the expression (5).
This conclusion is valid for time-varying wind forces too.

At this point, we state the problem that we wish to solve.
Problem 1: Let R 3 t 7→ p?(t) ∈ R3 be some given desired

position trajectory, and consider the (open-loop) vector field
Zw,W in (4), for some unknown (by the controller) wind forces
(w,W ) ∈ R3 × R3. Design a control law R × Z 3 (t, z) 7→
ucl(t, z) ∈ R3 such that limt→+∞(p(t)−p?(t)) = 03 along the
trajectory of ż(t) = Zw,W (z(t), ucl(t, z(t))) with z(0) ∈ Z.

Remark 3.1: We assume that the wind force applied on the
load does not match the weight of the load; i.e., (w,W ) ∈
(R3\{mge3}) × R3. If w = mge3, then the load is buoyant
in the air, and this makes it impossible to stabilize (with a
continuous control law) the load around any point in space.�

Throughout the paper, we impose the following constraints
on the desired trajectory,

inf
t∈R
‖mp(2)

? (t) +mge3 − w‖ > 0, (6a)

p? ∈ C5(R), sup
t∈R

‖p(i)

? (t)‖ <∞ for i ∈ {2, 3, 4, 5}. (6b)

We say that a desired trajectory is feasible if (6a) is satisfied,
and not feasible otherwise. In particular, if the wind applied
on the load does not match the load’s weight (cf. Remark 3.1),
then trajectories with small accelerations are feasible: i.e., (6a)
is satisfied if supt∈R ‖p(2)

? (t)‖ ≤
∥∥ge3 − w

m

∥∥ 6= 0. As a special
case, we thus have that constant-speed trajectories are feasible.
The condition on the left in (6b) is required, because we rely
on the position trajectory and its first five derivatives (velocity,
acceleration, jerk, snap and crackle) in our discussion; and the
condition on the right in (6b) is required later when studying
the stability and attractivity of the equilibrium trajectory.

3We index the vector field with the wind forces w and W to emphasize the
fact that it depends on those unknown forces, while the control law, which
we design later, does not.

IV. DYNAMICAL PROPERTIES OF SLUNG-LOAD SYSTEM

In this section, we describe two important properties of
the slung-load system. First, we show in Section IV-A that
the system is differentially flat with respect to the load’s
linear position. Next, we introduce a change of coordinates
in Section IV-B that yields a canonical form for describing
any slung-load system. This form highlights the cascaded
structure of the dynamics and is particularly well suited for
our control design purposes. We build on these developments
in Section IV-C to refine the problem statement.

A. Differential Flatness of Slung-Load System

We show that the system is differentially flat, cf. [21].
Proposition 4.1: The slung-load system is differentially flat

with respect to the load’s linear position, if the wind forces
are known.

Proof: Recall p? in Problem 1. If we require that p(t) =
p?(t) for all time instants t ∈ R, then we can determine
uniquely4 the whole system trajectory R 3 t 7→ z(t) ∈ Z.
With this in mind, and given a feasible trajectory p?, define
the pairs (z?+, u?+) and (z?−, u?−), with z?± : R → Z given by

p?(t)

P?±(t)

v?(t)

V?±(t)

 :=


p(0)
? (t)

p(0)
? (t)± l a(t)

‖a(t)‖
p(1)
? (t)

p(1)
? (t)± lΠ

(
a(t)
‖a(t)‖

)
mp(3)

? (t)
‖a(t)‖


︸ ︷︷ ︸

with a(t)≡mp(2)
? (t)+mge3−w

, (7a)

and u?± : R → R3 given by
u?±(t) :=MV (1)

?± (t)+mv(1)

? (t)+(M +m)ge3−(W+w).(7b)
It is now clear from the definition of (z?±, u?±) why we re-
quire (6) to be satisfied. Condition (6a) guarantees that the unit
vector a(t)

‖a(t)‖ with a(t) = mp(2)
? (t)+mge3−w is well defined

for any time instant t ∈ R; while condition (6b) guarantees that
(z?±, u?±) is well-defined and continuous on R. It is simple to
verify that t 7→ z?±(t) satisfies ż?±(t) = Zw,W (z?±(t), u?±(t))
for all t ∈ R, which concludes the proof.

Note that (z?±, u?±) can be thought as the two equilibria
options (equilibrium state trajectory, and equilibrium open-
loop input trajectory) that guarantee that the load tracks the
desired position trajectory. However, given the tension function
in (5), it follows that T̄ (z?±, u?±) = ±‖mp(2)

? (t)+mge3−w‖,
which means that (z?+, u?+) is feasible (cable is taut), while
(z?−, u?−) is not feasible (cable is slack5).

We use differential flatness, and in particular (z?+, u?+), to
refine our problem statement in this section: indeed, instead
of requiring that p(t) − p?(t) → 03 (cf. Problem 1), we will
require that z(t)− z?+(t)→ 012.

B. Canonical Form of Slung-Load System

Here we introduce a change of coordinates, illustrated in
Fig. 2, that puts the slung-load system in canonical form. The

4We obtain two solutions: however, only one is feasible, which is the one
that satisfies the requirement that the cable remains taut.

5For this case, the cable would need to be under compression, which is
not possible, unless the cable is replaced by a massless rigid rod; for all pairs
(z, u) where T (z, u) < 0, the cable is slack.
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ż = Zw,W (z, u) ẋ = Xd,D(t, x, (T, τ))φt(z)νx(T, τ)
x x(T, τ)

input transformation coordinate changeoriginal vector field vector field of interest

one can go back and forward between solutions to these vector fields

u z
=

(T, τ)

Fig. 2: Change of coordinates that allows us to obtain the vector field Xd,D
in (13), for which the controller design is simpler.

resulting form of the equations is particularly useful in the
controller design stage. Consider the state space

X := {x=(e, ν, n, ω) ∈ (R3)×4 :〈n, n〉 = 1, 〈n, ω〉 = 0}.(8)
Given a time instant t ∈ R, consider the change of coordinates
φt : Z→ X and φ−1

t : X→ Z defined as

φt(z) :=


p− p(0)

? (t)
v − p(1)

? (t)
P−p
l

S
(
P−p
l

)
V−v
l

 , φ−1

t (x) :=


e+ p(0)

? (t)
e+ ln

ν + p(1)
? (t)

ν + lS (ω)n

 . (9)

The maps φt and φ−1
t are analytic, and it is easy to verify

that φt ◦ φ−1
t = idX and that φ−1

t ◦ φt = idZ. As such φt
and φ−1

t are diffeomorphisms, and each one is the inverse of
the other. Given x ∈ X, consider the input transformation
νx : R × TnS2 → R3,

νx(T, τ):=((m+M)T −Ml〈ω, ω〉)n−MlS (n) τ,(10)
where T and τ are new inputs. Consider the notation

d :=
w

m
and D :=

M

M +m

(
W

M
− w

m

)
, (11)

Φ(n) :=
1

l

M +m

M
S (n) ∈ R3×3, (12)

where we emphasize that d,D = 03 when w,W = 03, and
that d,D have the physical dimensions of linear accelerations.

The vector field (4) in the new coordinates and with the
new inputs takes the form

ẋ =

(
d

dt
φt(z) + dφt(z)Zw,W (z, u)

)
|z=φ−1

t (x),u=νx(T,τ)︸ ︷︷ ︸
=:Xd,D(t,x,(T,τ))

⇔


ė
ν̇
ṅ
ω̇

 =


ν

(T + 〈n,D〉)n− g(t) + d
S (ω)n

Π (n) (τ + Φ(n)D)

 (13)

where g : R → R3, hereafter called time-varying gravity
acceleration, is defined as

g(t) := p(2)

? (t) + ge3. (14)
The vector field Xd,D has a cascaded structure, cf. Fig. 3. This
is the canonical vector field for the slung-load system since it
does not depend on the system’s physical parameters6. These
parameters need to be known when controlling the vector field
of the real physical system (but they do not need to be known
when controlling the canonical vector field).

6Note that Φ(n) := γS (n), with γ = 1
l
M+m

M
, depends on the physical

parameters, thus, formally speaking, two slung-load systems have the same
canonical form only if the constant γ is the same for both. In a true canonical
form, we would replace ω̇ = Π (n) (τ+Φ(n)D) in (13) with ω̇ = Π (n) (τ+
S (n) D̃) where D̃ := γD is considered as a third unknown disturbance
(in addition to d and D), which has the physical dimensions of an angular
acceleration. However, and for simplicity, we stick to the formulation in (13).

ė = νν̇ = T̃ n− g̃(t)ṅ = S(ω)nω̇ = Π(n)τ̃
v

T 〈n,D〉

+ +

T̃

+ −

g(t) d

g̃(t)

τ Φ(n)D

+ +

τ̃

disturbance (not known)known time-varying gravity (g(t) := p̈?(t) + ge3)

disturbance (not known)

linear acceleration inputangular acceleration input

nω e

Goal: e = 0

linear positionlinear velocityangular positionangular velocity

Goal: ν = 0Goal: n = g(t)−d
‖g(t)−d‖Goal: ω = S

(
g(t)−d
‖g(t)−d‖

)
ġ(t)−ḋ
‖g(t)−d‖ |ḋ=03

τ cl2 (x6)
T cl3 (x4)

d̂τ , D̂τ

d̂T , D̂T

˙̂
dτ = Qδ,τ(x5, d̂τ)

˙̂
Dτ = Q∆,τ(x5, D̂τ)

˙̂
dT = Qδ,T (x2, d̂T )

˙̂
DT = Q∆,T (x3, D̂T )

Estimators

=
=

Fig. 3: Cascaded structure of the vector field in (13). Note that if we set
p = 0 (which is our goal) then the disturbance d propagates backwards: i.e.,
it propagates to n and ω (part of the state), and it propagates to τ (part of
the input), even though τ is not immediately affected by d.

C. Refined Problem Statement

The result on differential flatness of the slung-load system
(cf. Proposition 4.1) naturally extends to the system in the
new coordinates. For that reason, given the definition of the
equilibrium trajectories and inputs t 7→ (z?±(t), u?±(t)) in (7),
we can also define the equilibrium trajectories and inputs in
the new coordinates, namely

t 7→ x?±(t) := φt(z?±(t))
(7a),(9)
:⇔ (15a)

t 7→


e?(t)
ν?(t)

n?±(t)

ω?(t)

 :=


03

03

± g(t)−d
‖g(t)−d‖

S
(

g(t)−d
‖g(t)−d‖

)
ġ(t)−ḋ
‖g(t)−d‖

 |ḋ=03
,

and

t 7→

T?±(t)

τ?±(t)

:=

±‖g(t)− d‖ −
〈
± g(t)−d
‖g(t)−d‖ , D

〉
ω(1)
? (t)− Φ

(
± g(t)−d
‖g(t)−d‖

)
D

 |
ḋ=03

d̈=03

(15b)

as illustrated in Fig. 3.
We can then restate Problem 1 in the new coordinates.
Problem 2: Let (d,D) ∈ R3 × R3 be some unknown

disturbances, and g : R → R3 be some time-varying gravity
acceleration satisfying

inf
t∈R
‖g(t)− d‖R3 > 0, and (16a)

g ∈ C3, sup
t∈R

‖g(i)(t)‖R3 <∞ for i ∈ {0, 1, 2, 3}. (16b)

Consider then the vector field Xd,D in (13), and the desired tra-
jectory R 3 t 7→ x?+(t) ∈ X as defined in (15). Design control
laws (T cl, τ cl) : R×X→ R×R3 such that, along the solution
t 7→ x(t) of ẋ(t) = Xd,D(t, x(t), (T cl(t, x(t)), τ cl(t, x(t))))
with x(0) ∈ X0 ⊂ X, it follows that limt→∞ ‖x(t) −
x?+(t)‖R12 = 0 for some dense set of initial conditions X0.

Note that the conditions in (16) are equivalent to the condi-
tions in (6), which guarantee well-posedness of the equilibrium
trajectories. Also, we do not expect to have X0 = X because
there are two equilibrium trajectories. Finally note that (16a),
from a controller design perspective is not useful, since it
depends on the unknown disturbance d. This leads us to further
refine our problem statement as follows.

Problem 3: Let the unknown disturbance d ∈ R3 be upper
bounded in norm by some known d̄ ≥ 0, i.e., ‖d‖R3 ≤ d̄. We
seek to solve Problem 2 with (16a) replaced by

inf
t∈R
‖g(t)‖R3 > d̄. (16c)
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Fig. 4: Phase plot for system described in Example 5.1 with d = 1. Illustration
of equilibria sets X?± and X??± : X??+ is stable, but not attractive; there is a
subset of X?+ which is attractive; X?− and X??− are neither stable nor attractive;
there is a subset of X?− which is attractive. This illustrates the different stability
and attractivity properties of the equilibria sets that emerge when attempting
to accomplish slung-load transportation with unknown wind forces. We also
refer to Remark 5.6 for some further comments on the stability and attractivity
of the latter sets, i.e., X?± and X??± .

Condition (16c) implies the satisfaction of condition (16a),
and is hence more restrictive on the set of trajectories that the
load can track. Such a conservativeness is unavoidable, since
the disturbance d is unknown.

V. STABILITY AND ATTRACTIVITY OF EQUILIBRIA SETS

In solving Problem 3, we follow a backstepping procedure.
At the end of each step of this, we wish to infer the stability
and attractivity properties of the respective equilibria sets. The
main result presented in this section (cf. Theorem 5.5) serves
exactly this purpose (simpler versions of the result could be
used for the first steps of the backstepping procedure, but
its complete version is necessary in the final steps). Let us
provide an illustrative example, which sheds intuition into the
definitions we present in this section.

Example 5.1: Consider the system θ̇ = ω+ sin(θ)d, where
one may think of θ ∈ R as an angular position one wishes
to stabilize at {. . . ,−2π, 0,+2π, . . .}; think of d ∈ R as an
unknown disturbance; and think of ω ∈ R as an input angular
velocity. Consider then the (controlled) system[

θ̇
˙̂
d

]
=

[
− sin(θ) + sin(θ)(d− d̂)

sin(θ)2

]
,

[
θ(0) ∈ R

d̂(0) ∈ R

]
, (17)

where one may think of d̂ ∈ R as an estimator for the
unknown disturbance d ∈ R, whose update-law constitutes
the dynamics of the internal state of the dynamic control
law ω = − sin(θ)(1 + d̂). Consider then the Lyapunov func-
tion V (θ, d̂) := 1− cos(θ) + 1

2 (d− d̂)2 ≥ 0 and its derivative
W (θ, d̂) := d1V (θ, d̂)θ̇ + d2V (θ, d̂)

˙̂
d = − sin(θ)2 ≤ 0. Con-

sider then the sets X?± := {(θ, d̂) ∈ R × R : cos(θ) = ±1} and
X??± := {(θ, d̂) ∈ R × R : cos(θ) = ±1 and d̂ = d}, which are
illustrated in Fig. 4. It then follows that X??+ is stable, that
part of X?+ is attractive, and that X?− and X??− are neither stable
nor attractive. The latter can be proven by following the steps
discussed in this section. �

Let X,E be some manifolds, and consider a system in X,
ẋ(t) = X(x(t), e(t)) with x(t0) ∈ X and t0 ∈ R, (18)

where X : X× E 3 (x, e) 7→ X(x, e) ∈ TxX is some smooth
vector field and e : R → E is some exogenous input (the vector
field is time-varying, and its dependence on a time instance t

comes encapsulated in the form of the exogenous input e(t)).
Let us then provide a useful definition.

Definition 1: Consider a smooth map f : X→ Rn, and the
vector field X in (18). If ḟ(x) = df(x)X(x, e) is independent
of e ∈ E for every x ∈ X, we say that f ∈ C1

X(Rn) and we
define

d1

Xf : X→ Rn, d1

Xf(x) := df(x)X(x, e) (independent of e).

Moreover, note that dXf : X → Rn is itself a smooth map.
Finally, we say that f ∈ CkX(Rn) if dXf ∈ Ck−1

X (Rn), for
k ∈ {2, 3, . . .} (i.e., the kth time derivative of f is independent
of e), and we define dkXf accordingly. �
The previous definition means that f ∈ C1

X(Rn) if the time
derivative of t 7→ f(x(t)), along solutions of (18), is indepen-
dent of the exogenous input. As a simple example, consider
the vector field (ẋ1, ẋ2) = (x2, x1 + e) =: X(x, e) and the
function f(x) := x1: then f ∈ C1

X(R) and d1
Xf(x) = x2. The

next result makes use of the previous definition.
Proposition 5.2: (Barbalat’s Lemma) Let x : [t0,+∞)→ X

be a complete solution of (18), which remains in a compact
subset of X, and where the exogenous input e : [t0,+∞)→ E
also remains in a compact subset of E. Finally, consider a map
f ∈ C1

X(Rn) for which the limit limt→+∞ f(x(t)) exists. Then,
limt→+∞ ḟ(x(t)) = limt→+∞ d

1
Xf(x(t)) = 0n.

Proof: The proof follows from an application of Bar-
balat’s lemma [31, Lemma 4.2], which can be invoked if one
concludes that [t0,+∞) 3 t 7→ ḟ(x(t)) ∈ Rn is uniformly
continuous. In particular, that is the case if [t0,+∞) 3 t 7→
f̈(x(t)) ∈ Rn is bounded, which is the case, since

sup
t≥t0

‖f̈(x(t))‖ = sup
t≥t0

∥∥∥∥ ddtd1

Xf(x(t))

∥∥∥∥
= sup

t≥t0

‖d(d1

Xf)(x(t))X(x(t), e(t))‖

≤ sup
x∈compact subset of X
e∈compact subset of E

‖d(d1

Xf)(x)X(x, e)‖ <∞,

where the final inequality follows since d1
Xf ∈ C1(X) and

since X ∈ C0(X× E).
Now, let there be a candidate Lyapunov function
V : X→ [0,+∞), (19)

such that V ∈ C1
X(R) and with a non-positive derivative along

solutions of (18), i.e.,
W : X→ (−∞, 0],W (x) := d1

XV (x) ≤ 0. (20)
In addition, let there exist a function w ∈ CkX(Rn), for some
positive integers n and k, such that7

W (x) = 0⇒ w(x) = 0n. (21a)
Then, let there be two disjoint sets X?+,X

?
− ⊂ X,8 such that

X?+ ∪ X?− ⊇

x ∈ X :


V̇ = d1

XV (x) = 0

w(1) = d1
Xw(x) = 0n
...

w(k) = dkXw(x) = 0n

 , (22a)

7 Note that limt→+∞W (x(t)) = 0 6⇒ limt→+∞ w(x(t)) = 0n,
but if t 7→ x(t) lies in a compact set then limt→+∞W (x(t)) = 0 ⇒
limt→+∞ w(x(t)) = 0n.

8By disjoint, we mean that infa∈A,b∈B dist(a, b) > 0; i.e., if the sets A
and B are not compact, then they cannot “approach each other”.
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and such that
X(x, e) ∈ X?+ for all (x, e) ∈ X?+ × E, (23a)
X(x, e) ∈ X?− for all (x, e) ∈ X?− × E. (23b)

The idea, as illustrated in Fig. 4, is that X?+ and X?− correspond
to two disjoint equilibria sets. Finally, let there be two sets
X??+ ⊆ X?+ and X??− ⊆ X?−, such that{

V (x) = 0⇔ x ∈ X??+
V (x) > 0 for all x ∈ X?+\X??+

, (24a){
V (x) =: V ?

− for all x ∈ X??−
V (x) > V ?

− for all x ∈ X?−\X??−
, (24b)

for some positive V ?
− > 0. Again, we refer the reader to Fig. 4

and Example 5.1, for an intuition on the sets X??+ and X??− .
We are interested in inferring stability of the set X??+ , which

begs the question on whether the Lyapunov function V can
be used for that purpose. The next result, whose proof can be
found in [32, Proposition 2.2], sheds some light into it.

Proposition 5.3: Let (1) M be a manifold; (2) V : M →
[0,∞) be a continuous map, and denote M? := {m ∈
M : V (m) = 0} as the set where V vanishes; (3) for any
V0 ≥ 0, the sub-level set V≤V0

is a compact subset of M .
Then, there exists α ∈ K∞ such that α (distM(m,M?)) ≤
V (m) for each m ∈M.

We are also interested in inferring attractivity of the set X?+,
and the next remark sheds some light into the latter.

Remark 5.4: (21a) and (22a) provide conditions for estab-
lishing attractivity of the set X?+ ∪ X?−. If we can infer that
V , w1, . . . , wk all converge to some constants, then, by
invoking Barbalat’s lemma, we can conclude that V̇ , ẇ1, . . . ,
ẇk vanish asymptotically; if a solution is, in addition, trapped
in a compact set, then the latter suffices to conclude that a
solution approaches X?+ ∪ X?−. Also, (24b) implies that if the
Lyapunov function is ever “below” the threshold V ?

− , then a
solution cannot converge to the set X?−, since the Lyapunov
function is non-increasing along any solution. �

With all the above in mind, we can then state our main
theorem, which we invoke several times later in this paper.

Theorem 5.5: Consider the system with the vector field X
in (18), the Lyapunov function V in (19), and the sets X?±,X

??
± ,

satisfying the conditions listed in (20)–(24). Finally,
• let e : R → {compact subset of E};
• let U ⊆ X be some invariant subset w.r.t. (18);
• let V≤V0

∩ U form a compact subset of X for any V0 ≥ 0.
For brevity, denote X̃ := X ∩ U , X̃?± := X?± ∩ U and X̃??± :=
X??± ∩ U . Finally, consider the differential equation

ẋ(t) = X(x(t), e(t)) with x(t0) := x0 ∈ X̃,

for some t0 ∈ R. Then, (below, V ?
− is as described in (24b))

1) there exists a unique and complete solution [t0,+∞) 3
t 7→ x(t) ∈ X̃ to the differential equation above;

2) the sets X?+ and X?− are invariant;
3) the set X̃?+ ∪ X̃?− is globally attractive, i.e.,

limt→+∞ dist(x(t), X̃?+∪ X̃?−) = 0, for all (t0, x0) ∈ R× X̃;
4) the set X̃??+ is stable;
5) for any ε ∈ (0, V ?

− ], the set X̃?+ ∩ V≤ε is attractive, i.e.,
limt→∞ dist(x(t), X̃?+∩V≤ε) = 0 for all (t0, x0) ∈ R×V≤ε;

6) the sets X̃??− and X̃?− are neither stable nor attractive;

7) if X?± = X??± , the set X̃?+ is (locally) asymptotically stable
and limt→+∞ dist(x(t), X̃?+) = 0 for all (t0, x0) ∈ R×V<V ?− ;
and the set X?− is unstable.

Proof: (1) Define V0 := V (x0) ∈ [0,∞), and note that
V≤V0

is positively invariant since d1
XV is non-positive. Thus,

V≤V0
∩ U defines a positively invariant compact subset of X.

Since e is contained in a compact subset of E, and since the
vector field is Lipschitz continuous (X ∈ C1(X×E)), the first
conclusion follows immediately.

(2) This follows immediately from (23a) and (23b), and the
fact that X ∈ C1(X× E).

(3) To prove that the set X̃?+ ∪ X̃?− is globally attrac-
tive, recall (22a) and consider the solution [t0,+∞) 3
t 7→ x(t) ∈ X̃. Then, note that (a) the solution is
contained in V≤V0

∩ U , which is a compact subset of
X; (b0) since V is lower bounded, and since V̇ (x(t)) =
W (x(t)) ≤ 0, it follows that limt→+∞ V (x(t)) exists; (c0)
we can then invoke Proposition 5.2 (Barbalat’s lemma) to
conclude that limt→+∞ d

1
XV (x(t)) = limt→+∞W (x(t)) =

0. (b1) recall (21a); combining (a) (containment in com-
pact subset) and (c0) (limt→+∞W (x(t)) = 0) it fol-
lows that limt→+∞ w(x(t)) = 0n; (c1) we can then in-
voke Proposition 5.2 (Barbalat’s lemma) to conclude that
limt→+∞ w

(1)(x(t)) = limt→+∞ d
1
Xw(x(t)) = 0n. We then

“repeat” the later steps ((b1) and (c1)) several times, culmi-
nating in the ones that follow: (bk) recall (21a); combining
(a) (containment in compact subset) with (c0), (c1), . . . , (ck−1)
it follows that limt→+∞ w

(k−1)(x(t)) = 0n; (ck) we can then
invoke Proposition 5.2 (Barbalat’s lemma) to conclude that
limt→+∞ w

(k)(x(t)) = limt→+∞ d
k
Xw(x(t)) = 0n. (d) finally,

combining (a) (containment in compact subset) with (c0), (c1),
. . . , (ck), it follows that limt→+∞ dist(x(t), X̃?+ ∪ X̃?−) = 0.

(4) To prove that the set X̃??+ is stable, note that X??+ = V≤0

(i.e., X??+ corresponds to the sublevel set of value 0 of the
Lyapunov function V ) and where we emphasize that V is non-
negative and continuous. We can then invoke Proposition 5.3,
with M = X̃, M? = X̃??+ and V = V |X̃, to conclude that there
exists α ∈ K∞ such that α (distM(m,M?)) ≤ V (m) for all
m ∈M . (That is, {x ∈ X̃ : V (x) ≤ ε} defines a neighborhood
around the equilibrium set X̃??+ , which coincides with the latter
iff ε = 0, and which is positively invariant for any ε ≥ 0.) This
suffices to conclude that the set X̃??+ is stable.

(5) We know from (3) that the set X̃?+ ∪ X̃?− is globally
attractive, and we also know that V (x) ≥ V ?

− for x ∈ X?−.
This suffices to conclude that X̃?+∩V≤ε is attractive for any ε ∈
(0, V ?

− ]: i.e., for all (t0, x0) ∈ R×V≤ε, limt→+∞ dist(x(t), X̃?+∩
V≤ε) = 0. (Technically speaking, X̃?+ ∩ V≤ε is not attractive
since we can pick x0 ∈ X̃?+∩V>ε, arbitrarily close to X̃?+∩V≤ε,
whose solution does not necessarily approach X̃?+ ∩ V<ε.)

(6) If we prove that X̃??− is neither stable nor attractive, then
we prove also that X̃?− is neither stable nor attractive (since
X̃??− ⊆ X̃?−). The idea is to find an initial condition, arbitrarily
close to the set X̃??− , such that the corresponding complete
solution does not stay arbitrarily close to the set (not stable)
and it does not approach the set (not attractive). Consider the
state space X which can be partitioned in two parts, namely
X = V<V ?− ∪ V≥V ?− . Moreover, recall from (24b) that V (x) =
V ?
− for any x ∈ X??− . Pick then x0 ∈ V<V ?− and note that we
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can pick x0 arbitrarily close to the set X̃??− ⊂ V=V ?−
. Since

V̇ (x(t)) ≤ 0, it follows immediately that X̃??− is not attractive
(we found an initial condition arbitrarily close to X̃??− whose
corresponding solution does not approach this set). Moreover,
we know from (3) that X̃?+∪X̃?− is globally attractive, and thus,
given that x0 ∈ V<V ?− , it follows that limt→+∞ dist(x(t), X̃?+) =
0; since X?+ and X?− are disjoint sets (by assumption), it then
follows that X̃??− is unstable (we found an initial condition
arbitrarily close to X̃??− whose corresponding solution does not
stay arbitrarily close to this set).

(7) If X?+ = X??+ , it suffices to combine (4) and (5) to
conclude that X?± is asymptotically stable. The proof for the
indicated subset of the region of attraction is found in the
proof of (5). Lack of stability of X?− follows from (6).

Remark 5.6: We cannot prove stability of the set X̃?+ ∩ V≤ε
because the Lyapunov function V does not vanish at all points
of that set (it only vanishes at X̃??+ ); and, as such, sub-level sets
of that V (which would be positively invariant) do not define
neighborhoods around the set X̃?+. In fact there are subsets of
X̃?+ which may be unstable, as illustrated in Fig. 4 (one may
argue, by visual inspection, that X̃?+ ∩ V≤ε is stable, but this
conclusion cannot be made by using V ). The fact that X̃?− is
neither stable nor attractive does not mean that its region of
attraction is a set of zero measure, as shown in Fig. 4. �

VI. SMOOTH UPDATE LAW FOR DISTURBANCE REMOVAL

In our design, cf. Fig. 3, we rely on four disturbance
estimators. One can observe from (15) that only the dis-
turbance d ∈ R3 impacts the equilibrium trajectory, while
the disturbance D ∈ R3 does not (D is an input-additive
disturbance, while d is not). Since d ∈ R3 is not known, if we
replace it with an estimate d̂ ∈ R3, which is updated according
to some update-law, then such law must satisfy two important
criteria: (1) the estimate d̂ = d̂(0)(t) must remain in some ball
of pre-specified radius, so that inft∈R ‖g(t)−d̂‖ > 0 (and thus,
so that g(t)−d̂

‖g(t)−d̂‖
is well defined); (2) the update-law d̂(1) must

be at least C1 in its domain, so that both the state and input
are continuous (that is, we need t 7→ d̂(0)(t), d̂(1)(t), d̂(2)(t) to
be continuous). Similar issues have been tackled in [23], [24],
which have relied on sufficiently smooth update-laws [33],
while in this paper, we improve on those, by considering a
smooth update-law instead, which we address next.

Definition 2 (Projection operator): Let (1) q ∈ Rn be an
unknown disturbance, and q̄ ∈ R be a known upper-bound
on its norm, i.e., ‖q‖ ≤ q̄; (2) q̂ ∈ Rn be an estimate of the
unknown disturbance, and ¯̂q ∈ R be a pre-specified upper-
bound on its norm, i.e., ‖q̂‖ < ¯̂q, where ¯̂q > q̄. We assume
that a projection operator exists, of the form

Rn × Rn 3 (q̂1, q̂) 7→ Proj
q̄, ¯̂q

(
q̂1, q̂

)
∈ Rn, (28a)

which satisfies the following properties:

1) for any q̂1 : R → Rn and for some r ∈ (q̄, ¯̂q),
B̄nr is invariant for ˙̂q(t) = Proj

q̄, ¯̂q
(q̂1(t), q̂(t)). (28b)

2) for all q ∈ B̄nq̄ and for all (q̂1, q̂) ∈ Rn × Bn¯̂q ,
−〈q − q̂,Proj

q̄, ¯̂q
(q̂1, q̂)− q̂1〉 ≤ 0. (28c)

3) Proj
q̄, ¯̂q

is smooth, i.e., it belongs to C∞(Rn × Bn¯̂q ). �

Loosely speaking, Proj
q̄, ¯̂q

(q̂1, q̂) accepts q̂1 from a standard
update-law, and modifies q̂1 if the estimate q̂ exits the ball B̄nq̄
(within which the unknown disturbance q is known to belong
to), while ensuring the estimate q̂ remains in the pre-specified
ball Bn¯̂q (which is bigger than B̄nq̄ ).

Remark 6.1: The specific form of the projector function is
irrelevant in what follows, provided that the conditions in (28)
are satisfied. For completeness, we present here the chosen
projector: it is inspired by the one proposed in [33] but, unlike
it, in this paper it is smooth and given by

Proj
q̄, ¯̂q

(q̂1, q̂) := q̂1 − f
(
‖q̂‖2−q̄2

¯̂q2−q̄2

) 〈 q̂q̄ ,q̂1〉+
√
〈 q̂q̄ ,q̂1〉2+δ2

2
q̂
q̄ ,

for some δ > 0, and where f : R → R is a smooth function
given by f(x) := 0 if x ≤ 0 and f(x) := e

x−1
x if x > 0. �

With the concept of projection operator introduced, we now
describe the procedure for designing an update-law. The
strategy we follow is to close the loop assuming a disturbance
q is known, and leading to a closed-loop vector field Xq,
accompanied by a Lyapunov function Vq and equilibria sets
X?±,p (recall the discussion in the previous section, and let
X??±,p = X?±,p). All the closed-loop vector fields we consider in
this paper are affine in the disturbance, i.e., Xq = Xq̂+E(q−q̂)
(where E is some linear map), in which case the procedure
we describe next can be applied. Consider then the system[

ẋ
˙̂q

]
=

[
Xq̂(x, q)

0n

]
+

[
E(x)(q − q̂)
Q(x, q̂)

]
(29)

where q ∈ Rn is an unknown disturbance, q̂ ∈ Rn its estimate,
E(x) is a linear map (matrix) from Rn to TxX, and Q is
the update-law associated to the estimator. With the projection
operator in Definition 2 in mind, consider then the update-law
Q, accompanied by the Lyapunov function V and its derivative
W along (29), given by

Q(x, q) := Proj
q̄, ¯̂q

( =:Q̃(x,q̂)︷ ︸︸ ︷
k log′V̄ (Vq̂(x))E(x)T∇Vq̂(x), q̂

)
,

V(x, q̂) := logV̄ (Vq̂(x)) +
1

2k
‖q − q̂‖2, (30)

W(x, q̂) := log′V̄ (Vq̂(x))Wq̂(x)︸ ︷︷ ︸
≤0∵(20)

−〈q − q̂, Q(x, q̂)− Q̃(x, q̂)〉
k︸ ︷︷ ︸

≤0∵(28c)

.

where k > 0 is a positive gain (integral gain); where V̄ > 0 is
a positive constant and with the function logV̄ as introduced
in the Notation; and where Vq̂ is the Lyapunov function
associated to the vector field Xq̂ (satisfying the conditions
listed in the previous section).

The purpose of the projection function has already been
explained, so let us explain next the purpose of the function
logV̄ with a simple example: suppose, for example, that
Vq̂(x) = 1

2x
2, that we wish to steer x to the origin, and let

˙̂q = log′V̄ (Vq̂(x))∇Vq̂(x); if V̄ <∞, then ˙̂q = x(1 +
Vq̂(x)

V̄
)2,

which is bounded and vanishes as |x| → ∞; while, if V̄ =∞,
then ˙̂q = x, which is unbounded. That is, if V̄ =∞, when x
is far away from the origin, then the estimator q̂ changes too
quickly (and it saturates immediately if a projection operator
is used); on the contrary, if V̄ <∞, when x is far away from
the origin (i.e., when Vq̂(x) � V̄ ), the estimate q̂ remains
constant, and it only “starts working” when x is close enough
to the origin (i.e., when Vq̂(x) � V̄ ). The effect of V̄ is
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illustrated in the simulations at the end of this paper. Also,
there are circumstances when V̄ < ∞ is not a valid option.
If we pick V̄ = ∞, then logV̄ = id[0,∞) and log′V̄ (·) = 1, in
which case (30) reads as

Q(x, q) := Proj
q̄, ¯̂q

(
kE(x)T∇Vq̂(x), q̂

)
,

V(x, q̂) := Vq̂(x) +
1

2k
‖q − q̂‖2, (31)

W(x, q̂) := Wq̂(x)− 1

k
〈q − q̂, Q(x, q̂)− Q̃(x, q̂)〉.

The difference between (30) and (31) lies in the fact that
Q in (30) requires full knowledge of the Lyapunov function,
while Q in (31) does not, which is critical when the Lyapunov
function depends on some “unknown quantity”. For example,
let d be some unknown quantity, Vq̂(x) = 1

2x
2
1 + 1

2 (x2 − d)2

and E(x) = (1, 0) ∈ R2×1: then E(x)T∇Vq̂(x) = x1 does not
depend on d, which means the update-law in (31) can be
implemented, while the update-law in (30) cannot.

At this point we define the equilibria sets
Y?± = {(x, q̂) : x ∈ X?±,q̂, E(x)(q̂ − q) = 0 ∈ TxX},
Y??± = {(x, q̂) : x ∈ X?±,p, q̂ = q},

whose stability and attractivity properties we study by making
use of Theorem 5.5 (to invoke it, we need to introduce the
maps, which are specific to each step of the backstepping
procedure discussed next).

VII. BACKSTEPPING DESIGN

We follow a 6-step backstepping procedure, motivating the
necessity and relevance of each step. The presentation at
the end of each step, with the exception of step 1, always
proceeds by stating two propositions and one theorem: the
first proposition describes the set where the Lyapunov function
vanishes and the set where its derivative vanishes; the second
proposition establishes compactness of sublevel sets of the
Lyapunov function; finally, the theorem establishes stability
and attractivity properties of the equilibria sets. The technical
analysis at each step builds upon the results obtained in the
previous step. We present a detailed overview of the design in
the extended version [30]. Here, the section titles are meant
to function as a roadmap of our design.

Before proceeding, we introduce some constants: (1) we
pick g > 0 such that g < inft∈R ‖g(t)‖; (2) the disturbance
d ∈ R3 is bounded by some known upper bound d̄ > 09; and
we pick ¯̂

d such that ¯̂
d > d̄, which will be the upper bound on

the estimator we design for d; (3) we pick a constant ū > 0

such that g − (ū+
¯̂
d) > 010; (4) the disturbance D ∈ R3 also

is bounded by some known upper bound D̄ > 0; and we pick
¯̂
D such that ¯̂

D > D̄, which will be the upper bound on the
estimator we design for D; (5) the vector field Xd,D in (13)
depends on time through the exogenous input t 7→ g(t); as we
construct the control law, and close the loop, the vector field
will depend on several derivatives of that exogenous input,
i.e., on t 7→ g(0)(t), . . . , g(k)(t); we include those derivatives

9From the physical system (see (11)), we know that d = w
m

; thus, one
needs to know that the wind force on the load w ∈ R3 is bounded in norm
by some known upper bound w̄ > 0, in which case, d̄ = w̄

m
10The choice of constants g, ¯̂

d, ū is always feasible if inft∈R ‖g(t)‖− d̄ >
0, as required in Problem 3.

as part of the state by introducing components g0, . . . , gk, and
requiring

gi(t0) := g(i)(t0). (32)

A. Step 1: Control with thrust and angular position

Consider the state, state space and vector field
x1 ∈ X1 :⇔ (e, ν, g0) ∈ R3 × R3 × C3

g, (33)

ẋ1=X1,d,D(x1, (T, n, g
1)):⇔

 ėν̇
ġ0

=
 ν

(T + 〈n,D〉)n− g0 + d
g1


where e, ν are the linear position, velocity in (8); g0, g1

stand for the 0th, 1st derivative of the time-varying gravity
acceleration t 7→ g(t) in (14) (recall that C3

g := {g ∈
R3 : ‖g‖ > g}); and where the goal is to design a control
law for the thrust T and the angular position n, assuming
that the disturbances d and D are known, and such that
(e, ν) → (03, 03) (recall (15a)). For that purpose, denote the
equilibrium set by

X?1 := {x1 ∈ X1 : e = 03 and ν = 03}. (34)
Next, we list the tools we need to solve this problem.

Assumption 7.1: Consider a double integrator system
(ė, ν̇) = (ν, u), with e, ν, u as the position, the velocity, the
acceleration input; and recall the constant ū introduced at the
beginning of this section. We assume we have available

udi : R3 × R3 3 (e, ν) 7→ udi(e, ν) ∈ B3

ū, (35a)
Vdi : R3 × R3 3 (e, ν) 7→ Vdi(e, ν) ∈ [0,∞), (35b)

where udi is a bounded control law (B3
ū := {u ∈ R3 : ‖u‖ <

ū}) equipped with a Lyapunov function Vdi, and such that (1)
udi(03, 03) = 03 and Vdi(e, ν) = 0 ⇔ (e, ν) = (03, 03); (2)
udi, Vdi ∈ C∞(R3 × R3); (3) any sub-level set of Vdi defines a
compact set in R3×R3 (see Proposition 5.3); (4) “V̇di(e, ν)” =
Wdi(e, ν) := d1Vdi(e, ν)ν + d2Vdi(e, ν)udi(e, ν) < 0 for all
(e, ν) ∈ (R3 × R3)\{(03, 03)}. �
We emphasize that the description that follows in the next
backstepping steps is agnostic to the specific form of the
functions udi, Vdi in (35): we only require that they satisfy the
conditions in Assumption 7.1. However, in the next remark,
we present functions that satisfy those conditions.

Remark 7.2: Let kp, kd, σp, σd be positive numbers (pro-
portional and derivative gains and saturations), and let
satσ(x) := σ(σ2 + ‖x‖2)− 1

2x. Consider then the double
integrator control law udi, with ū = kpσp + kdσd, defined as
udi(e, ν) := −kpsatσp(e)−kdsatσd(ν), and the Lyapunov func-
tion Vdi defined as Vdi(e, ν) := kpσp

(√
〈e, e〉+ σ2

p − σp
)

+

β〈satσp(e), satσd(ν)〉 + 〈ν,ν〉
2 , for some positive number

β < kd (1 + k2
d(4kp)

−1)
−1 (gain that guarantees that Vdi has

compact sub-level sets, and that V̇di = Wdi is negative
definite). The functions udi and Vdi satisfy the conditions in
Assumption 7.1 [30]. �
Based on (35), let us then define what we label as the desired
three dimensional acceleration, i.e.,

T 3d : X1 × B3
¯̂
d
→ C3

ε , where ε := g − (ū+
¯̂
d) > 0 (36)

T 3d(x1, d) := udi(e, ν) + g0 − d,
where the meaning of the constants g, ū, ¯̂

d was discussed at
the beginning of this section. Note that T 3d never vanishes in
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its domain, and thus we can define the unit vector T 3d(x1,d)
‖T 3d(x1,d)‖

for any (x1, d) ∈ X1 ×B3
¯̂
d
. With the latter in mind, if we pick

the thrust control law T cl : X1 × B3
¯̂
d
× R3 → R as

T cl(x1, d,D) := ‖s‖ −
〈

s

‖s‖
, D

〉
|s=T 3d(x1,d), (37a)

and the angular position control law ncl : X1 × B3
¯̂
d
→ S2 as

ncl(x1, d) :=
T 3d(x1, d)

‖T 3d(x1, d)‖
, (38a)

it follows immediately that composing the vector field X1,d,D

in (33) with the control laws T cl and ncl in (37) yields
ẋ1 = X1,d,D(x1, (T

cl(x1, d,D), ncl(x1, d), g1))︸ ︷︷ ︸
=:Xcl1 (x1,g1) (independent of d and D)

:⇔

 ėν̇
ġ0

 =

 ν
udi(e, ν)
g1

 . (39)

Since we are in the first step (and to have a coherent notation
among all the sections/steps that follow), we define

X1 3 x1 7→ V1(x1) := Vdi(e, ν),W1(x1) := Wdi(e, ν),

as the Lyapunov function and its derivative at the end of
step 1. Stability and global attractivity of the equilibria set X?1
in (34) can be easily inferred from V1 and W1 (by invoking
the conditions in Assumption 7.1). Next, we introduce a
Proposition, which shall be invoked in the next step.

Proposition 7.3: Consider the time-varying gravity acceler-
ation t 7→ g(t) in (14), and let us define the set U1 := {x1 ∈
X1 : inft∈R ‖g(0)(t)‖ ≤ ‖g0‖ ≤ supt∈R ‖g(0)(t)‖}, where by
assumption g < inft∈R ‖g(0)(t)‖ and supt∈R ‖g(0)(t)‖ < ∞.
If (32) holds, then U1 is an invariant set. Consider also a sub-
level set of V1, i.e., (V1)≤V0

for some non-negative V0. Then
(V1)≤V0

∩ U1 defines a compact subset of the state space X1.

B. Step 2: Control with thrust and angular velocity
In the second step, we lift the assumption that we control the

angular position n and control the angular velocity ω instead.
Consider then the state, state space and vector field
x2 ∈ X2 :⇔ (x1, n, g

1) ∈ X1 × S2 × R3, (40)

ẋ2=X2,d,D(x2, (T, ω, g
2)):⇔

ẋ1

ṅ
ġ1

=

X1,d,D(x1, (T, n, g
1))

S (ω)n
g2

 ,
with x1,X1, X1 described in the previous step; where g2 stands
for the 2nd derivative of the time-varying gravity acceleration
t 7→ g(t) in (14); and where the goal is to design a control
law for the thrust T and the angular velocity ω, assuming
that the disturbances d and D are known, and such that
(e, ν, n)→

(
03, 03,± g0−d

‖g0−d‖

)
(recall (15a)). For that purpose,

denote the equilibria sets by

X?2± :=

{
x2 ∈ X2 : x1 ∈ X?1 and n = ± g0 − d

‖g0 − d‖

}
, (41)

as the two disjoint equilibria sets: later we show that X?2+ is
asymptotically stable, while X?2− is unstable.11

Because the angular position n is no longer an input (but
rather part of the state), we then pick a control law for the

11X?2± depends on the unknown disturbance d (it does not depend on the
disturbance D), and we should highlight that by denoting it instead as X?2±,d
(recall Section VI): however, we adopt the former notation to simplify the
exposition.

thrust T such that we minimize the error between the desired
vector field designed in the previous step (Xcl

1 in (39)) and
the current one: that is

inf
T∈R
‖X1,d,D(x1, (T, n, g

1))−Xcl

1 (x1, g
1)‖

R9 =

= inf
T∈R
‖(T + 〈n,D〉)n− T 3d(x1, d)‖

R3 , (42a)

where T 3d was designed in the previous step, in (36). Mo-
tivated by (42a), we define the thrust control law T cl1 :
X2 × B3

¯̂
d
× R3 → R as12

T cl1 (x2, d,D) := 〈n, T 3d(x1, d)−D〉. (42b)
Composing the linear acceleration (ν̇ in (33)) with the pro-
posed thrust control law yields

ν̇ = ((T + 〈n,D〉)n− g0 + d) |T=T cl1 (x2,d,D) (43)

= u(e, ν)− ‖T 3d(x1, d)‖Π (n)ncl(x1, d),

and, thus, it follows that composing the vector field X1,d,D

in (33) with the control law T cl1 in (42b) yields
ẋ1 = X1,d,D(x1, (T, n, g

1))|T=T cl1 (x2,d,D)︸ ︷︷ ︸
=:X̃1(x2,d) (independent of D)

(44)

= Xcl

1 (x1, g
1)−‖T 3d(x1, d)‖(e3

2 ⊗Π (n))ncl(x1, d)︸ ︷︷ ︸
error

,

where we emphasize the independence of X̃1 in (44) with
respect to the disturbance D (e3

2 = (0, 1, 0) is the second
canonical basis vector in R3, as described in the Notation).
Then, composing the vector field X2,d,D in (40) with the
control law T cl1 in (42b) yields

ẋ2 = X2,d,D(x2, (T
cl

1 (x2, d,D), ω, g2)) :⇔ (45)ẋ1

ṅ
ġ1

 =

Xcl
1 (x1, g

1)
03

03


︸ ︷︷ ︸

step 1

+

?(e3
2 ⊗Π (n))ncl(x1, d)
S (ω)n
g2


︸ ︷︷ ︸

where ?=−‖T3d(x1,d)‖

.

We are thus in conditions of applying a backstepping step.
Let kθ, γθ, V̄1 be positive gains, and let us then choose the
angular velocity control law
ωcl1 : X2 × B ¯̂

d × R3 3 (x2, d, ḋ) 7→ ωcl1 (x2, d, ḋ) ∈ TnS2

ωcl1 (x2, d, ḋ) := −kθS (ncl(x1, d))n+ (46a)

Π(n)S (ncl(x1, d)) d1T
3d(x1,d)X̃1(x2,d)+d2T

3d(x1,d)ḋ
‖T 3d(x1,d)‖ + (46b)

γ−1
θ ‖T 3d(x1, d)‖(e3

2 ⊗ S (n))T log′V̄1
(V1(x1))∇V1(x1), (46c)

and where we included the term ḋ (even though it is zero)
just to emphasize its importance: indeed, once we replace d
with its estimate (which is not constant and whose dynamics
we design) that term cannot be neglected. We note that
d2T

3d(x1, d̂T ) = −I3 (see (36)), but we kept it in (46b) just
for the sake of clarity. Let us provide a brief description on
the terms in (46) which, altogether, steer the angular position
n to the desired angular position ncl(x1, d): (46a) acts as
a proportional feedback term; (46b) is a feedforward term;
and (46c) is a backstepping term.

We then have that the closed-loop dynamics, at the end of

12The thrust control law goes through three iterations: that is, we define
T cl1 , T cl2 , and T cl3 ; and where a successor control law is constructed on top
of a predecessor control law.
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step 2, are given by
ẋ2=X2,d,D(x2, (T, ω, g

2))|T=T cl1 (x2,d,D),ω=ωcl1 (x2,d,03)︸ ︷︷ ︸
=:Xcl2,d(x2,g2) (independent of D)

,(47)

where we emphasize that they depend on the disturbance d but
not on D (that is the case, because the thrust input cancels the
effect of the disturbance D). We can then define the Lyapunov
function V2,d : X2 → [0,∞), and its derivative W2,d : X2 →
(−∞, 0] along the vector field Xcl

2,d in (47), as
V2,d(x2) := logV̄1

(V1(x1)) + γθ (1− 〈n, ncl(x1, d)〉) , (48)
W2,d(x2) := log′V̄1

(V1(x1))W1(x1)︸ ︷︷ ︸
≤0

−kθγθ ‖S (n)ncl(x1, d)‖2︸ ︷︷ ︸
≤0

,(49)

where we emphasize that V2,d,W2,d depend on the disturbance
d (but not on D). The purpose of the constant V̄1 is similar to
the purpose of V̄ in Section VI: the backstepping term only
starts working when V1(x1) � V̄1; and, when V1(x1) � V̄1,
the proportional and feedforward terms dominate.

We wish to invoke Theorem 5.5, which motivates the intro-
duction of the next two Propositions: the first is concerned with
checking conditions (21) and (24), and the second is concerned
with checking the second and third bullets in Theorem 5.5.

Proposition 7.4: Consider the functions V2,d,W2,d in (48)–
(49), and the sets X?2± in (41). It holds that

V2,d(x2) = 0⇔ x2 ∈ X?2+, (50a)
V2,d(x2) = 2γθ =: V ?

2− for all x2 ∈ X?2−, (50b)
X?2+ ∪ X?2− = {x2 ∈ X2 : W2,d(x2) = 0}. (50c)

Proposition 7.5: Define the set U2 := {x2 ∈ X2 : x1 ∈
U1 and ‖g1‖ ≤ supt∈R ‖g(1)(t)‖}, with U1 as described in
Proposition 7.3. If (32) holds, then U2 defines an invariant
set. Moreover, (V2,d)≤V0

∩ U2 defines a compact subset of X2

for any sub-level set (V2,d)≤V0
.

The proofs for both previous Propositions are straightforward,
and, thus, omitted here13. All the conditions in Theorem 5.5
are satisfied, which allows us to state the following result.

Theorem 7.6: Consider the vector field Xcl
2,d in (47), the

Lyapunov function V2,d in (48), the sets X?2± in (41), and
let t 7→ g(2)(t) be contained in a compact subset (of
R3). Finally, consider the differential equation ẋ2(t) =
Xcl

2,d(x2(t), g
(2)(t)) with x2(t0) ∈ X̃2. Then, all the conse-

quences stated in Theorem 5.5 follow.

C. Step 3: Step 2, with unknown disturbance d
In the third step, we lift the assumption that the disturbance

d is known in the thrust and angular velocity control laws, and
we replace it with an estimate d̂T . In this step, it will become
clear why a second estimator (d̂τ , introduced in step 6) for the
disturbance d is necessary. Consider then the state, state space
and vector field
x3 ∈ X3 :⇔ (x2, d̂T ) ∈ X2 × B3

¯̂
d
, (51)

ẋ3=X3,d,D(x2, (T, ω, g
2)):⇔

[
ẋ2

˙̂
dT

]
=

[
X2,d,D(x2, (T, ω, g

2))

Qδ,T (x2, d̂T )

]
,

with x2,X2, X2 described in the previous step; where d̂T stands
for the estimator of the disturbance d; and where the goal is

13We refer the reader to the proofs of Propositions 7.10 and 7.11, which
contain the same arguments that would need to be invoked here.

to reuse the thrust and angular velocity control laws from the
previous step, and design an update law Qδ,T for the estimator
d̂T , such that (e, ν, n)→

(
03, 03,± g0−d

‖g0−d‖

)
(recall (15a)), and

such that the estimator d̂T remains in the ball B3
¯̂
d

(this is very
important, as the control laws are not defined if the estimator
exits this domain) – we remind the reader, at this point, of
the discussion in Section VI. For that purpose, denote the
equilibria sets by

X?3± := {x3 ∈ X3 : x2 ∈ X?2± and d̂T = d} (52)
as two disjoint equilibria sets (X?2± in (41)).

Because the disturbance d is no longer known by the
controller, we must replace it by its estimate d̂T in the thrust
control law (T cl1 in (42b)) and in the angular velocity control
law (ωcl1 in (46)); i.e., we define the new thrust control law
T cl2 : X3 × R3 → R and the new angular velocity control law
ωcl2 : X3 → R3 as

T cl2 (x3, D) := T cl1 (x2, d̂T , D), (53a)

ωcl2 (x3) := ωcl1 (x2, d̂T ,
˙̂
dT ) with ˙̂

dT = Pδ,T (x2, d̂T ). (53b)

Remark 7.7: Note that the angular velocity control law ωcl2
in (53b) depends on ˙̂

dT = Pδ,T (x2, d̂T ), and, ultimately, one
wants ω = ωcl2 (x3) to hold. This is the reason why one should
not design an update-law for d̂T that depends on the angular
velocity ω: if one does so, then one designs a control law for
the angular velocity that depends on the angular velocity itself
– this leads to an implicit equation (ω = function(ω)) which
may, or may not, have a solution. This is the reason why a
second estimator for the disturbance d is necessary. �

Remark 7.8: Note that the angular velocity control law ωcl2
in (53b) depends on the estimator dynamics, and thus on the
projection function Proj

d̄,
¯̂
d

defined in Section VI. In step 5, we
will require the partial derivatives of ωcl2 , which then motivates
the necessity of the smoothness properties of Proj

d̄,
¯̂
d

(which
must be twice continuous differentiable in our case). �

Composing the linear acceleration (ν̇ in (33)) with the control
law in (53a) yields

ν̇ = ((T + 〈n,D〉)n− g0 + d) |T=T cl2 (x3,D) (54)

= u(e, ν)−Π (n)T 3d(x1, d̂T ) + (d− d̂T ) =: ν1(x3).

and, thus, it follows that composing the vector field X3,d,D

in (51) with the control laws in (53a)–(53b) yields
ẋ3 = X3,d,D(x3, (T

cl

2 (x3, D), ωcl2 (x3), g
2))︸ ︷︷ ︸

=:Xcl3,d(x3,g2) (independent of D)

:⇔ (55)

[
ẋ2

˙̂
dT

]
=

[
Xcl

2,d̂T
(x2, g

2)

03

]
︸ ︷︷ ︸

step 2 (independent of d and D)

+

[
(e5

2 ⊗ I3) (d− d̂T )

Qδ,T (x2, d̂T )

]
︸ ︷︷ ︸

top is linear in d − d̂T

,

Since the vector field in (55) fits with (29), we can then
proceed with the estimator design procedure described in
Section VI. As such, consider the update-law, the Lyapunov
function, and its derivative given by

Qδ,T (x2, d̂T ), V3,d(x3),W3,d(x3) as in (30), (56)

with p̄ = d̄, ¯̂p =
¯̂
d, k = kδ,T , V̄ = V̄2 and Vp̂ = V2,d̂. It follows

immediately from (28b) that d̂T remains in some closed subset
of B3

¯̂
d
, and therefore the control law in (53b) is well-defined

(along a solution of ẋ3 = Xcl
3,d(x3, g

2)).
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Remark 7.9: The update-law Qδ,T in (56) depends on the
estimate d̂T even if the projection operator Proj

d̄,
¯̂
d

were
omitted. This is related with the fact that the disturbance d
is not an input-additive disturbance. �
As in the previous step, we wish to invoke Theorem 5.5, which
motivates the introduction of the next two Propositions.

Proposition 7.10: Consider the functions V3,d,W3,d in (56),
the sets X?3± in (52), and, for brevity, denote ∪X̃?3± ≡ X̃?3+ ∪
X̃?3−. It holds that

V3,d(x3) = 0⇔ x3 ∈ X?3+, (57a)
V3,d(x3) = logV̄2

(V ?

2−) =: V ?

3− for all x3 ∈ X?3−, (57b)

∪X̃?3± =

{
x3 ∈ X3 :

{
“V̇3,d” = W3,d(x3) = 0

“ν̇” = ν1(x3) = 03

}
, (57c)

with V ?
2− and v1 defined in (50b) and (54), respectively.

Proof: Verifying (57a)–(57b) is simple, and we ver-
ify only (57c): (1) from (30), W3,d(x3) = 0 implies that
W2,d(x2) = 0; (2) from (49), W2,d(x2) = 0 implies that
(e, ν) = (03, 03) and that n = ± g0−d̂T

‖g0−d̂T ‖
; (3) combining (1)–

(2), it then follows that “ν̇” = d − d̂T = 03 ⇔ d̂T = d; (4)
combining (2)–(3), it then follows that n = ± g0−d

‖g0−d‖ .
Proposition 7.11: Define the set U3 := {x3 ∈ X3 : x2 ∈

U2, d̂T ∈ B̄3
r for a r ∈ (d̄,

¯̂
d)}, with U2 as described in

Proposition 7.5. If (32) holds, then U3 defines an invariant
set. Moreover, (V3,d)≤V0

∩U3 defines a compact subset of the
state space X3, for any sub-level set (V3,d)≤V0

.
The proof for the latter proposition is simple, and it hinges on
invoking (28b).

Remark 7.12: Note the subtlety: a sub-level set (V3,d)≤V0

guarantees that d̂T belongs to a compact subset of R3, but it
does not guarantee that d̂T belongs to a compact subset of B3

¯̂
d

(which is what is important, to guarantee that solutions do not
exit the domain of the functions we designed thus far). That
property is satisfied because the update-law, which makes use
of a projection operator, satisfies (28b). �
All the conditions required by Theorem 5.5 are satisfied, which
allows us to state the following result.

Theorem 7.13: Consider the vector field Xcl
3,d in (55), and

the Lyapunov function V3,d in (56), the sets X?3± in (52),
and let t 7→ g(2)(t) be contained in a compact subset
(of R3). Finally, consider the differential equation ẋ3(t) =
Xcl

3,d(x3(t), g
(2)(t)) with x3(t0) ∈ X̃3. Then, all the conse-

quences stated in Theorem 5.5 follow.

D. Step 4: Step 3, with unknown disturbance D

In the fourth step, we lift the assumption that the disturbance
D is known in the thrust control law, and we replace it with
an estimate D̂T . Lifting this assumption can only be done
at this point, because the update-law for D̂T depends on the
estimator d̂T (which was only introduced in the previous step):
this further explains why removing/estimating the disturbances
in one single step is not possible. Consider then the state, state
space and vector field
x4 ∈ X4 :⇔ (x3, D̂T ) ∈ X3 × R3, (58)

ẋ4=X4,d,D(x4, (T, ω, g
2)):⇔

[
ẋ3

˙̂
DT

]
=

[
X3,d,D(x3, (T, ω, g

2))

Q∆,T (x3, D̂T )

]
,

g0 −d̂T

−d

S2 3 n = g0−d
‖g0−d‖ =

g0−d̂T

‖g0−d̂T ‖

no excitation: the disturbance estimate −d̂T converges to the line

excitation: the disturbance estimate −d̂T converges to the real disturbance −d

no excitation: only d− d̂T + 〈n,D − D̂T 〉n = 03 with n = g0−d̂T

‖g0−d̂T ‖
excitation: d− d̂T + 〈n,D − D̂T 〉n = 03 and 〈n,D − D̂T 〉 = 0

n

Fig. 5: Illustration of equilibria sets X?4± in (59) with and without excitation.

with x3,X3, X3 described in the previous step; where D̂T

stands for the estimator of the unknown disturbance D;
and where the goal is to reuse the thrust and angu-
lar velocity control laws from the previous step, and de-
sign an update law Q∆,T for the estimator D̂T , such that
(e, ν, n)→

(
03, 03,± g0−d

‖g0−d‖

)
(recall (15a))14.

As in the previous steps, we need to define the equilibria
sets, but, at this point, the equilibria sets depend on an exci-
tation criterion. Consider then the limit ω∞? ≡ limt→+∞ ω?(t),
which may, or may not, exist (and where ω? is the desired
angular velocity defined in (15a)). If ω∞? = 03, let
X?4± :=

{
x4 ∈ X4 : x2 ∈ X?2±, d− d̂T = 〈n, D̂T −D〉n

}
, (59a)

otherwise, let
X?4± :=

{
x4 ∈ X4 : x2 ∈ X?2±, d̂T = d, 〈n,D − D̂T 〉 = 0

}
.(60a)

Finally, denote also
X??4± :=

{
x4 ∈ X4 : x2 ∈ X?2±, d̂T = d, D̂T = D

}
. (61a)

The sets above are equilibria sets, and they depend on the
satisfaction of limt→+∞ ω?(t) = 03. When the latter condition
is satisfied (“no excitation”), the disturbance estimate d̂T does
not necessarily converge to the real unknown disturbance
d. On the other hand, when the condition is not satisfied
(“excitation”), the disturbance estimate d̂T does converge to
the real unknown disturbance d (the latter ideas are illustrated
in Fig. 5). This is in contrast with the previous step, where the
disturbance D was assumed known, and where the disturbance
estimate d̂T converges to the real unknown disturbance d
regardless of any excitation criterion.

Remark 7.14: Recall the change of disturbances in (11):
we may think of the estimators (d̂T , D̂T ) as being associ-
ated to wind estimators (ŵT , ŴT ). Then, for n = mge3+w

‖mge3+w‖ ,
the condition d− d̂T + 〈n,D − D̂T 〉n = 03 is satisfied for
(ŵT , ŴT ) = (w + αn,W − αn), for any α ∈ R. Thus, in
a hovering scenario, where there is no excitation, the wind
estimators do not necessarily converge to the actual wind
forces: that is the case, because the winds cancel each other
along the cable direction. In a non-hovering scenario, instead
of n = mge3−w

‖mge3−w‖ , we have that n(t) =
m(ge3+p(2)

? (t))−w
‖m(ge3+p

(2)
? (t))−w‖

,
and provided that n(t) is always changing, we can show that
the estimators converge to the actual disturbances. �
As opposed to the previous step, the disturbance D is no longer
known; moreover, recall that, in the latter step, neither the
angular velocity ωcl2 , nor the update-law Qδ,T , depend on D.
Thus, it suffices that we amend the thrust control law T cl2

(see (53a)) by replacing the disturbance D with its estimate

14 Requiring that D̂T remains in some ball of pre-specified size is not as
for d̂T , as the control laws are well-defined for any D̂T in R3.
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D̂T , i.e., we define a new thrust control law as
T cl3 : X4 → R, T cl3 (x4) := T cl2 (x3, D̂T ). (62)

Composing ν̇ in (33) with the control law T cl3 (62) yields
ν̇ = ((T + 〈n,D〉)n− g0 + d) |T=T cl3 (x4) (63)

= u(e, ν)−Π (n)T 3d(x1, d̂T ) + d− d̂T + 〈n,D − D̂T 〉n︸ ︷︷ ︸
=:ν1(x4)

.

(We note that ν1 in (63) is not the same as that in (54), as
they have different domains – i.e., the former “depends” on
x4, while the latter “depends” on x3). For reasons that will
be made clear later, we also need to define the second time
derivative of the linear velocity (jerk), namely

ν̈ = dν1(x4)X4,d,D(x3, (T, ω, g
2))|T=T cl3 (x4),ω=ωcl2 (x3)︸ ︷︷ ︸

=:ν2(x4) (independent of g2 because ν1 does not depend on g1)

.(64)

Therefore composing the vector field X4,d,D in (58) with the
thrust control law T cl3 in (62) and the angular velocity control
law ωcl2 in (53b) yields

ẋ4 = X4,d,D(x4, (T
cl

3 (x4), ω
cl

2 (x3), g
2))︸ ︷︷ ︸

=:Xcl4,d,D(x4,g2)

:⇔ (65)

[
ẋ3

˙̂
DT

]
=

[
Xcl

3,d(x3, g
2)

03

]
︸ ︷︷ ︸

step 3

+

[
〈n,D − D̂T 〉(e6

2 ⊗ I3)n

Q∆,T (x3, D̂T )

]
︸ ︷︷ ︸

top is linear in D − D̂T

.

Since the vector field in (65) fits with (29), we can then
proceed with the estimator design procedure described in
Section VI. As such, consider the update-law, the Lyapunov
function, and its derivative given by

Q∆,T (x3, D̂T ), V4,d,D(x4),W4,d,D(x4) as in (30), (66)

with p̄ = D̄, ¯̂p =
¯̂
D, k = k∆,T , V̄ = ∞ and Vp̂ = V3,d.

We must pick V̄ =∞ as the Lyapunov function V3,d depends
on an “unknown quantity”. We emphasize that the update-
law Q∆,T is indeed well-defined and computable, as it is
equivalently expressed as

Q∆,T (x3, D̂T ) = Proj
D̄,

¯̂
D

(
?, D̂T

)
(67)

? = k∆,T 〈(e6

2 ⊗ I3)n, log′V̄2
(V2,d̂T

(x2))∇V2,d̂T
(x2)〉n,

i.e., it does not depend on any “unknown quantity”. As in
the previous step, we wish to invoke Theorem 5.5, which
motivates the introduction of the next two Propositions.

Proposition 7.15: Consider the functions V4,d,D,W4,d,D

in (66), the sets X?4±,X
??
4± in (59), and, for brevity, denote

∪X?4± ≡ X?4+ ∪ X?4−. It holds that{
V4,d,D(x4) = 0⇔ x4 ∈ X??4+

V4,d,D(x4) > 0 for all x4 ∈ X?4+\X??4+

, (68){
V4,d,D(x4) = V ?

3− =: V ?
4− for all x4 ∈ X??4−

V4,d,D(x4) > V ?
3− =: V ?

4− for all x4 ∈ X?4−\X??4−
,(69)

∪X?4±⊃

x4 ∈ X4 :


“V̇4,d” = W4,d,D(x4) = 0

“ν̇” = ν1(x4) = 03

“ν̈” = ν2(x4) = 03

 ,(70)

with V ?
3−, ν1 and ν2 defined in (57b), (63) and (64).

Verifying (68)–(69) is simple, and verifying (70) follows
similar steps to those in the proof of Proposition 7.10.

Proposition 7.16: Define the set U4 := {x4 ∈ X4 : x3 ∈

U3}, with U3 as described in Proposition 7.11. If (32) holds,
then U4 is an invariant set. Moreover, (V4,d,D)≤V0

∩U4 defines
a compact subset of X4 for any sub-level set (V4,d,D)≤V0

.
All the conditions required by Theorem 5.5 are satisfied, which
allows us to state the following result.

Theorem 7.17: Consider the vector field Xcl
4,d,D in (65),

the Lyapunov function V4,d,D in (66), the sets X?4±,X
??
4±

in (59), and let t 7→ g(2)(t) be contained in a compact
subset (of R3). Finally, consider the differential equation
ẋ4(t) = Xcl

4,d,D(x4(t), g
(2)(t)) with x4(t0) ∈ X̃4. Then, all the

consequences stated in Theorem 5.5 follow.

E. Step 5: Control with thrust and angular acceleration
In the fifth step, we lift the assumption that we control

the angular velocity ω and control the angular acceleration τ
instead; and we assume, once again, that d and D are known.
Consider then the state, state space and vector field
x5 ∈ X5 :⇔ (x4, ω, g

2) ∈ X4 × TnS2 × R3, (71)

ẋ5=X5,d,D(x5, (T, τ, g
3)):⇔

ẋ4

ω̇
ġ2

=

X4,d,D(x4, (T, ω, g
2))

Π (n) (τ + Φ(n)D)
g3

 ,
with x4,X4, X4 described in the previous step15; where g3

stands for the 3rd derivative of the time-varying gravity
acceleration t 7→ g(t) in (14); and where the goal is to design
a control law for the thrust T and angular acceleration τ ,
assuming that the disturbances d and D are known, and such
that (e, ν, n, ω)→

(
03, 03,± g0−d

‖g0−d‖ ,S
(

g0−d
‖g0−d‖

)
g1

‖g0−d‖

)
(recall (15a)). For that purpose, consider then the two disjoint
equilibria sets given by

X?5± :=
{
x5 ∈ X5 : x4 ∈ X?4±, ω = S

(
g0−d
‖g0−d‖

)
g1

‖g0−d‖

}
, (72a)

X??5± :=
{
x5 ∈ X5 : x4 ∈ X??4±, ω = S

(
g0−d
‖g0−d‖

)
g1

‖g0−d‖

}
. (72b)

This step follows the same spirit as that of the second step.
We construct the angular acceleration control law
τ cl1 : X5 × R3 × R3 → R3

τ cl1 (x5, d,D) := − kω(ω − ωcl(x3)) (73a)
+ Π (n) dωcl(x3)X3,d,D(x3, (T

cl

3 (x4, ω, g
2))) (73b)

+ γ−1

ω Π (n) (−e5

4 ⊗ S (n))T log′V̄2
(V2,d̂T

(x2))∇V2,d̂T
(x2)(73c)

−Π (n) Φ(n)D, (73d)
composed of a proportional term in (73a); of a feedforward
term in (73b); of a backstepping term in (73c); and of a
disturbance cancellation term in (73d). We emphasize that
the control law τ cl1 depends on both disturbances d and D: it
depends on d because of the feed-forward term, and it depends
on D because of the same feed-forward term and because of
disturbance cancellation term.

We then have that the closed-loop dynamics, at the end of
step 5, are given by

ẋ5 = X5,d,D(x5, (T, τ, g
3))|T=T cl3 (x4),τ=τcl1 (x5,d,D)︸ ︷︷ ︸

=:Xcl5,d,D(x5,g3)

, (74)

where we emphasize that they depend on both d and D. We
can then define the Lyapunov function V5,d,D : X5 → [0,∞),

15Technically speaking, the set X5 in (71) cannot be expressed as a Carte-
sian product. The correct formulation is {(p, v, g0, n, g1, d̂T , D̂T , ω, g2) ∈
(R3)×9 : g0 ∈ C3

g, n ∈ S2, ω ∈ TnS2}.
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and its derivative W5,d,D : X5 → (−∞, 0] along the vector
field Xcl

5,d,D in (74), as

V5,d,D(x5) := V4,d,D(x4) + γω
1

2
‖ω − ωcl2 (x3)‖2, (75a)

W5,d,D(x5) := W4,d,D(x4)− kωγω‖ω − ωcl2 (x3)‖2 ≤ 0.(75b)
At this point we could state similar conclusions to those
provided in Propositions 7.15 and 7.16, and in Theorem 7.17.

F. Step 6: Step 5, with unknown disturbances d and D

In the sixth and final step, we lift the assumption that
the disturbances d,D are known in the angular acceleration
control law, and replace them with corresponding estimators
d̂τ , D̂τ . Consider then the state, state space and vector field
x6 ∈ X6 :⇔ (x5, d̂τ , D̂τ) ∈ X5 × R3 × R3, (76)

ẋ6=X6,d,D(x6, (T, τ, g
3)):⇔

 ẋ5

˙̂
dτ
˙̂
Dτ

=

X5,d,D(x5, (T, τ, g
3))

Qδ,τ(x5, d̂T )

Q∆,τ(x5, D̂T )

 ,
with x5,X5, X5 described in the previous step; and where
the goal is to reuse the thrust and angular accelera-
tion control laws from the previous step, and design
update laws for the estimators, such that (recall (15a))
(e, ν, n, ω)→

(
03, 03,

±(g0−d)
‖g0−d‖ ,S

(
g0−d
‖g0−d‖

)
g1

‖g0−d‖
)
. For that

purpose, consider then the two disjoint equilibria sets
X?6± :=

{
x6 ∈ X6 : x5 ∈ X?5±

}
, (77a)

X??6± :=
{
x6 ∈ X6 : x5 ∈ X??5±, d = d̂τ , D = D̂τ

}
. (77b)

As opposed to the previous step, the disturbances d and
D are not known, and their knowledge was required by the
angular acceleration control law τ cl1 in (73). As such, we
replace those by their estimates, i.e., we define the new angular
acceleration control law τ cl2 : X6 → R3 given by

τ cl2 (x6) := τ cl1 (x5, d̂τ , D̂τ), (78)
where we emphasize that τ cl1 in (73) is affine with respect to
(d,D). The control law τ cl2 in (78) then leads to the closed-
loop vector field
ẋ6 = X6,d,D(x6, (T

cl

3 (x4), τ
cl

2 (x6), g
3)) =: Xcl

6,d,D(x6, g
3) (79) ẋ5

˙̂
dτ
˙̂
Dτ

 =

X
cl
5,d,D(x5, g

3)

03

03


︸ ︷︷ ︸

previous step

+

(e9
8 ⊗ I3)

∑
Eα(x3)(a− âτ)

Qδ,τ(x5, d̂τ)

Q∆,τ(x5, D̂τ)


︸ ︷︷ ︸

top is linear in (d − d̂τ ) and (D − D̂τ )

,

for some Eδ(x3), E∆(x3) ∈ R3×3 (which we omit here for
brevity), and where

∑
≡
∑

(a,α)=(d,δ) and (a,α)=(D,∆)
. Since the

vector field in (79) fits with (29), we can then proceed with
the estimator design procedure described in Section VI. As
such, consider the update-laws, the Lyapunov function, and
its derivative given by

Qα,τ(x5, âτ), V6,d,D(x6),W6,d,D(x6) as in (31), (80)
with p̄ = ā, ¯̂p = ¯̂a, kα = kα,T , V̄ = ∞ and Vp̂ = V4,d,D. We
must pick V̄ = ∞ as the Lyapunov function V4,d,D depends
on unknown quantities. We emphasize that the update-laws
Qδ,τ , Q∆,τ are indeed well-defined and computable, as they
are equivalently expressed as

Qα,τ(x5, âτ)=Proj
ā,¯̂a

(
kα,τEα(x3)

Tγω(ω − ωcl(x3)), âτ
)
.

ż = Zw,W (z, u) φt(z)νx(T, τ)
x(T, τ)

input transformation coordinate changeoriginal vector field
u z

(T cl3 (x4), τ
cl
2 (x6))

ξ̇ = Ξ(x6) :⇔


˙̂
dT
˙̂
DT

˙̂
dτ
˙̂
Dτ

 =


PδT (x2, d̂T )

P∆,T (x3, D̂T )

Pδ,τ(x5, d̂τ)

P∆,τ(x5, D̂τ)



f6,t(z, ξ) z: state
ξ: internal state of controller

state x6

controller internal state dynamics

dynamic controller

ẋ6 = Xcl
6 (x6, g

3(t))

analyzed vector field

time instant t state x6

there is a bijection between solutions of these systems

time instant t

Fig. 6: Dynamic controller in “original coordinates”, and, for each time instant,
there is a bijection between (z(t), ξ(t)) and x6(t), where the solution for
t 7→ x6(t) has been analyzed in Theorem 7.18.

At this point we could state similar conclusions to those
provided in Propositions 7.15 and 7.16, and in Theorem 7.17.
For brevity, we state only the theorem.

Theorem 7.18: Consider the vector field Xcl
6,d,D in (79),

the Lyapunov function V6,d,D in (80), the sets X?6±,X
??
6±

in (77), and let t 7→ g(3)(t) be contained in a compact
subset (of R3). Finally, consider the differential equation
ẋ6(t) = Xcl

6,d,D(x6(t), g
(3)(t)) with x6(t0) ∈ X̃6. Then, all the

consequences stated in Theorem 5.5 follow.
The complete control strategy is shown in Fig. 3.

Remark 7.19: For an under-actuated UAV, one may, at
this point, lift the full-actuation assumption. One would then
need to add four more additional steps: two steps to address
the UAV attitude dynamics, and two more steps to design
estimators after each of the previous two steps. �

G. Complete strategy

We note the controller we constructed is a dynamic one,
and as such it has internal states of its own. With the latter in
mind, and for convenience, denote

ξ ∈ � :⇔ (d̂T , D̂T , d̂τ , D̂τ) ∈ B3
¯̂
d
× B3

¯̂
D
× B3

¯̂
d
× B3

¯̂
D
,

with ξ as the collection of all the internal states of the dynamic
controller, and � as the domain where ξ belongs to. Given any
time instant t ∈ R, consider then the map f6,t : Z × � → X6

that constructs the state x6 (see (76), . . . , (33)), defined as
f6,t(z, ξ) := (e, ν, g0, n, g1, d̂T , D̂T , ω, g

2, d̂τ , D̂τ)︸ ︷︷ ︸
(e,ν,n,ω)=φt(z) and (d̂T ,D̂T ,d̂τ ,D̂τ )=ξ

and gi=g(i)(t) for i∈{0,1,2}

. (81)

The map f6,t, for a given time instant t, takes a physical
state z and a controller internal state ξ, and constructs a state
x6 = f6,t(z, ξ) (we emphasize that this map is a bijection).
With the thrust control law T cl3 in (62) and the angular
acceleration control law τ cl2 in (78) in mind, we can then
define the complete control law to be applied on the slung-load
system, namely ucl : R × Z× �→ R3 given by

ucl(t, z, ξ) := νφt(z)(T
cl

3 (x4), τ
cl

2 (x6))|x6=f6,t(z,ξ), (82)
with the input transformation ν· defined in (10), the change of
coordinates map φt defined in (9), and the map f6,t defined
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in (81). The map ucl takes a time instant t, a physical state
z and a controller internal state ξ, and constructs a three-
dimensional force u = ucl(t, z, ξ) that the UAV must apply.

Next, we introduce a constant V ?
6 that allows us to construct

a sublevel set where the tension in the cable is guaranteed to be
positive. Note then that the tension in (5), when composed with
the proposed control law in (82), is given by T̄ (z, ucl(t, z, ξ))
which is equivalently expressed as

m

(
‖T 3d(x1, d̂T )‖︸ ︷︷ ︸

≥ε

〈n, ncl(x1, d̂T )〉︸ ︷︷ ︸
=1 if V6=0

+ 〈n,D − D̂T 〉︸ ︷︷ ︸
=0 if V6=0

)
,(83)

and thus the tension is positive (≥ mε) when the de-
sired trajectory is being tracked (V6 = 0), and, by con-
tinuity, it must remain positive when some tracking error
exists (V6 < V ?

6 ). Briefly, the tension is a function of
the state x6, and thus we can find a lower bound on the
tension on a sub-level set of the Lyapunov function V6,
i.e., Tension(v) := minx6∈(V6)≤v Tension(x6) (and where we
remind that Tension(0) ≥ mε > 0). With the latter in mind, we
can then define V ?

6 := minTension(v)≤0 v. The complete control
strategy is shown in Fig. 6, and, next, we present our final
result, which provides a solution to Problem 3.

Theorem 7.20: Given some desired position trajectory p? :
R → R3 (such that the conditions in Problem 3 are satisfied),
consider: (1) the slung-load vector field Zw,W as defined in (4)
for some, unknown by the controller, wind forces w,W ∈ R3;
(2) the control law ucl as defined in (82); (3) and the estimator
dynamics Ξ as defined in the diagram in Fig 6. Then, consider
the system[
ż(t)

ξ̇(t)

]
=

[
Zw,W (z(t), ucl(t, z(t), ξ(t)))

Ξ(f6,t(z(t), ξ(t)))

]
,

[
z(t0) ∈ Z
ξ(t0) ∈ �

]
. (84)

Consider also the map f6,t in (81), the Lyapunov function
V6,d,D in (80) and the constant V ?

6 . Then, for all initial
conditions (t0, z0, ξ0) ∈ R × Z× � such that

x6,0 := f6,t0
(z0, ξ0) ∈ (V6,d,D)<V ?6 , (85)

it follows that (recall the equilibrium solution z?+ in (7a),
and the equilibria set X?

6+ in (77)) (1) there exists a unique
and complete solution [t0,∞) 3 t 7→ (z(t), ξ(t)) ∈ Z × �;
(2) limdist(x6,0,X

?
6+)→0 supt≥t0 ‖z(t) − z?+(t)‖ = 0 (stability of

z?+); (3) limt→+∞ ‖z(t) − z?+(t)‖ = 0 (attractivity of z?+);
(4) inft≥t0 T (z(t), ucl(t, z(t), ξ(t))) > 0 (cable always taut).

Proof: Studying the solution to (84) is equivalent to
studying a solution to (79), where x6(t) := f6,t(z(t), ξ(t)) (for
any time instant t, there is a bijection between (z(t), ξ(t)) and
x6(t)). With the latter in mind, items (1), (2) and (3) in the
Theorem follow from Theorem 7.18. Item (4) follows from the
fact that any compact subset of the sub-level set (V6,d,D)<V ?6
is positively invariant, and the fact that the tension is strictly
positive inside that compact set.

VIII. SIMULATIONS

In this section, we provide simulations that validate our con-
vergence results and also test the robustness of the proposed
strategy.

In the simulation, the system has physical constants M =
1.1 kg, m = 0.4 kg, l = 1.1 m, and g = 9.81 m/s/s; and the
wind forces are W = 0.1Mg s

‖s‖ N with s = (2, 2, 1), and w =

0.1mg s
‖s‖ N with s = (1, 0,−1) (wind forces corresponding

to 10% of bodies’ weights). The load is required to track the
trajectory p? : R → R3 defined as

p?(t) := R1(25◦)R2(25◦)

(
r (sin(2ωt), cos(ωt), 0)

sin(ωt)2 + 1
+ he3

)
where Ri(α) stands for a positive rotation around the ith axis
by an angle α, r = 2 m, h = 0.5 m, and ω = 2π

12 Hz (period
of 12 s), which corresponds to an eight-like path in a tilted
plane – in particular, it follows that inft∈R ‖ge3 + p(2)

? (t)‖ ≈
9.0 m/s/s. For the simulations, we let the initial condition
be (p(0), P (0), v(0), V (0)) = (7 13, 7 13 + le3, 03, 03) and
(d̂T (0), D̂T (0), d̂τ(0), D̂τ(0)) = (03, 03, 03, 03). For the con-
troller parameters we take ū ≈ 0.72 m/s/s, ¯̂

d = 1.5 > d̄ =

1.2 ≥ ‖d‖ ≈ 0.98 m/s/s, ¯̂
D = 1.8 > D̄ = 1.5 ≥ ‖D‖ ≈ 1.21

m/s/s, V̄1 = 1.5 and V̄2 = 1.5. In particular, note that the
condition inft∈R ‖g(t)‖ − (ū+

¯̂
dT ) > 0 is satisfied.

We present several simulations. (1) Default/baseline simula-
tion, where all conditions assumed in the paper are respected.
(2) We assume the model is incorrectly known by the con-
troller (model mismatch), and we implement the controller
with mcontroller = 1.1mmodel and lcontroller = 1.1lmodel; because the
model is not known we increase (by a factor of ≈ 2) the
norms on the estimators, i.e., ¯̂

d = 2.7 > d̄ = 2.4 m/s/s,
¯̂
D = 3.3 > D̄ = 3.0 m/s/s. (3) We take ω ∈ { 2π

12 ,
2π
8 ,

2π
6 }

Hz (period of 12, 8 or 6 s), and we investigate the effect
of the excitation criterion on the convergence of the estima-
tors. (4) We take (p(0), P (0), v(0), V (0)) = (20 13, 20 13 +
le3, 5 13, 5 13), we take V̄1 = V̄2 ∈ {2, 20, 200}, and we
observe the effect on the disturbance estimators. (5) We let
the winds be non-constant, i.e., W = 0.1Mg s

‖s‖ N with
s = (2 + 0.1 cos(t), 2 + 0.1 sin(t), 1), and w = 0.1mg s

‖s‖ N
with s = (1+0.1 cos(t), 0+0.1 sin(t),−1), and we investigate
the tracking error.

Let us now comment on these simulations, starting with (1),
the baseline simulation. Figs. 7a and 7b illustrate the trajec-
tories of the dynamics in the environment, while Figs. 7c
and 7d show that the state and input (z, u) converge to the
equilibrium state and input (z?+, u?+) defined in (7). Fig. 7e
shows the inputs coming from the control law in (82), as well
as the tension on the cable (indicating that it remains taut).
Finally, Figs. 7f and 7g show the estimators d̂T , D̂T , d̂τ , D̂τ ,
which do not converge to the values of the real disturbances.
We note that tracking is always accomplished even if the
estimators do not converge to the real disturbances. The caveat
is that trajectories where the estimators do not necessarily
match the real disturbances are attractive but not necessarily
stable, while the trajectories where the estimators match the
real disturbances are.

Regarding (2): Fig. 7h shows that, despite the model
mismatch, the state and input still converge to their de-
sired trajectories, owing to the robustness added by the es-
timators. Regarding (3): Fig. 7i shows that, the bigger the
excitation is, the faster the estimators (we show only d̂T
and D̂T ) converge to the real disturbances (the excitation
criterion is understood as the average of t 7→ ω?(t), and
1
T

∫ T
0
‖ω?(t)‖dt ∈ {0.06, 0.19, 0.45} Hz for T ∈ {12, 8, 6} s).

Regarding (4): Fig. 7j shows that, the bigger V̄1, V̄2 are,
the quicker the estimators tend to saturate for “large” initial
conditions – this illustrates the importance of the function log·
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(a) Complete trajectory: load in blue; UAV
in gray.

(b) 5 sec – 12 sec: real system in opaque;
desired system in transparent.
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(c) Errors to equilibrium state and input
trajectories
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(d) Position and velocity tracking errors
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(e) Inputs to slung-load system, and cable
tension.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

-1.0

-0.5

0.5

1.0

1.5

(f) Disturbance estimates d̂T and D̂T
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(g) Disturbance estimates d̂τ and D̂τ
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(h) Sim (2) (model mismatch): position
and state tracking errors, and disturbance
estimates errors.
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(i) Sim (3) (excitation vs converge of
estimators): disturbance estimates errors.
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(j) Sim (4) (purpose of logV̄ ): Distur-
bance estimate d̂T
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(k) Sim (5) (time-varying winds): position
and state tracking errors, and disturbance
estimates d̂T and D̂T .

Fig. 7: Simulations (baseline simulation and simulations under conditions (2) to (5)).

in (30) and that V̄1, V̄2 determine when the estimators (integral-
action) should start working. Regarding (5): Fig. 7k shows
that, tracking still takes places for non-constant winds, owing
to the robustness added by the estimators, which rather than
settling down, try to estimate the time-varying winds.

IX. CONCLUSIONS

We have proposed a dynamic controller for position tracking
of a point-mass load, attached to an aerial vehicle by means
of a cable, and where both the load and the aerial vehicle are
subject to unknown wind forces. We have found a canonical
system, which all slung-load systems can be converted to, and
designed a stabilizing controller for this canonical form. By
imposing conditions on the desired position trajectory and on
the wind on the load, we have guaranteed that a well-defined
equilibrium trajectory exists. This has allowed us to design a
control law following a backstepping procedure, which con-
tains four estimators (each of the two wind disturbances has
two separate effects) and which guarantees that the equilibrium
state trajectory is asymptotically tracked. Finally, we have
established that the designed controller guarantees that the

cable remains taut, for a certain set of initial conditions.
Simulations show that the proposed controller is robust to
model mismatches and that tracking is still accomplished for
time-varying winds. In future work, we would like to study
and test the effects of measurement noise, state estimation,
unmodeled aerodynamic forces, and delays in actuation; we
would also like to consider other methods for the design of
the estimators and explore whether the use of fewer estimators
would be sufficient.
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