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Abstract— This paper proposes a control strategy for power
systems with a two-layer structure that achieves global stabiliza-
tion and, at the same time, delimits the transient frequencies
of targeted buses to a desired safe interval. The first layer
is a model predictive control that, in a receding horizon
fashion, optimally allocates the power resources while softly
respecting transient frequency constraints. As the first layer
control requires solving an optimization problem online, it only
periodically samples the system state and updates its action. The
second layer control, however, is implemented in continuous
time, assisting the first layer to achieve frequency invariance
and attractivity requirements. Furthermore, through network
partition, they can be implemented in a distributed fashion,
only requiring system information from neighboring partitions.
Simulations on the IEEE 39-bus network illustrate our results.

I. INTRODUCTION

Power network frequency is used as a key performance
metric in designing load shedding schemes [1]. In simu-
lations, this frequency refers to a weighted average of the
frequencies of all synchronous generators; however, in prac-
tice, due to the lack of availability of measurements for all
generators, only a few of them are selected and sampled for
monitoring and control design [2]. From the point of view of
contingency recovery, even if the power supply and demand
are re-balanced after a failure, due to the interconnected
dynamics and inertia of power networks, individual buses
may still be isolated from the network due to overheating
relay protection. Therefore, there is a need of designing
control schemes to restrict single bus transient frequency
to evolve within an allowable range under disturbances and
contingencies. This is the problem we address in this paper,
paying attention to the distributed character of the controller
and the reduction of the control effort through cooperation.

Literature review: The works [3], [4] propose sufficient
conditions for power network synchronization; however,
as bus transient frequency limits are not considered as
constraints, the ideal synchronization condition may not
hold due to possible violation in frequency transients. The
work [5] studies the relation between power injection dis-
turbance and frequency overshoot of individual bus without
active control to regulate frequency transients. On the other
hand, to actively control power network transients, several
strategies have been investigated, including inertial place-
ment [6], power system stabilizer [7], and power supply
re-allocation [8]. Yet, these strategies, aiming at improving
system transient behaviors, cannot rigorously constrain the
evolution of frequency to stay within a safe region. In our
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previous work [9], [10], we have developed two different
control frameworks to achieve synchronization and frequency
safety. The work [9] proposed a distributed controller, which
is further enhanced in [10] to enable cooperation among
neighboring buses in order to reduce the overall control effort
in a receding horizon fashion. However, this control frame-
work faces practical challenges for practical implementation
because it takes a long period of time to find the optimal
control trajectory and this must be done at every time instant.
These limitations motivate our design here of a framework
that can be implemented in real time while maintaining the
advantage of cooperation.

Statement of contribution: This paper proposes a control
strategy that achieves the following requirements through
a dynamical state-feedback control design: (i) The closed-
loop system is asymptotically stable. (ii) For every targeted
bus, under perturbation from power injections or network
dynamical interactions, its whole frequency trajectory stays
within a given safe region, provided its initial frequency lies
in the same region. (iii) If this is not the case, then the
frequency trajectory should enter the safe region within a
finite time and never leaves it afterwards. (iv) The control
strategy is distributed by only requiring local state and
network information. Hereby, we propose a double-layered
control structure; by relaxing the frequency constraints and
restricting the possible control trajectory from arbitrary to
constant signal, the second-layer controller only needs to pe-
riodically (instead of continuously) solve an optimal control
trajectory, and the time consumption for seeking the optimal
one is greatly reduced and almost negligible. The first layer
controller only slightly tunes the output of the second layer
control signal so that the overall signal rigorously ensures
requirement (i)-(iv). We also show that the proposed control
is Lipschitz in state and continuous in time. For space
reasons, all proofs are omitted and will appear elsewhere1.

1Throughout the paper, we employ the following notation. Let N, R,
and R> denote the set of natural, real, and nonnegative real numbers, resp.
Variables belong to the Euclidean space unless specified otherwise. 1n and
0n in Rn are the vector of all ones and zeros, resp. For a∈R, dae denote its
ceiling. ‖ ·‖ denotes the 2-norm on Rn. For b ∈Rn, bi denotes its ith entry.
For A∈Rm×n, let [A]i and [A]i, j denote its ith row and (i, j)th element, resp.
For any c,d ∈N, let [c,d]N =

{
x ∈ N

∣∣c 6 x 6 d
}

. Denote the sign function
sgn : R→ {0,1} as sgn(a) = 1 if a > 0, and as sgn(a) =−1 if a < 0. The
saturation function sat :R→R with limits amin < amax is sat(a;amax,amin) =
amax if a> amax, sat(a;amax,amin)= amin if a6 amin, and sat(a;amax,amin)=
a otherwise. An undirected graph [11] is a pair G = (I ,E ), where I
is the vertex set and E ⊆ I ×I is the edge set. An induced subgraph
Gβ = (Iβ ,Eβ ) of G satisfies Iβ ⊆I , Eβ ⊆ E , and (i, j) ∈ Eβ if (i, j) ∈ E
with i, j ∈ Iβ . We denote by E ′

β
⊆ Iβ × (I \Iβ ) the edges connecting

Gβ and the rest of the network. A graph is connected if there exists a
path between any two vertices. For each edge ek ∈ E with vertices i, j, an
orientation specifies either i or j as the positive end and the other as the
negative end. The incidence matrix D = (dki) ∈ Rm×n associated with G is
defined as dki = 1 if i is the positive end of ek , dki =−1 if i is the negative
end of ek , and dki = 0 otherwise.



II. PROBLEM STATEMENT

In this section we introduce the dynamics of the power
network and the control requirements.

A. Power network model

The power network is modeled by a connected undirected
graph G = (I ,E ), where I = {1,2, · · · ,n} stands for the
collection of buses (nodes) and E = {e1,e2, · · · ,em} ⊆I ×
I represents the collection of transmission lines (edges). For
every bus i ∈I , let ωi ∈ R, pi ∈ R, Mi ∈ R>, and Ei ∈ R>

denote the nodal information of shifted voltage frequency
relative to the nominal frequency, active power injection,
inertial, and damping coefficient, resp. For simplicity, we
assume that the latter two are strictly positive. Given an
arbitrary orientation on G , for any edge with positive end
i and negative end j, let fi j be its signed power flow and
bi j ∈R> the line susceptance. Let I u ⊂I be the collection
of buses with exogenous control inputs. To stack this notation
in a more compact way, let f ∈ Rm, ω ∈ Rn and p ∈ Rn

denote the collection of fi j’s, ωi’s, and pi’s, resp. Let Yb ∈
Rm×m be the diagonal matrix whose kth diagonal entry is the
susceptance of the transmission line ek connecting i and j,
i.e., [Yb]k,k = bi j. Let M , diag(M1,M2, · · · ,Mn)∈Rn×n, E ,
diag(E1,E2, · · · ,En) ∈Rn×n, and D ∈Rm×n be the incidence
matrix. The linearized network dynamics is [12], [13],

ḟ (t) = YbDω(t), (1a)

Mω̇(t) =−Eω(t)−DT f (t)+ p(t)+α(t), (1b)

where α(t) ∈ A ,
{

y ∈ Rn
∣∣ yw = 0 for w ∈I \I u

}
. For

convenience, we use x , ( f ,ω) ∈ Rm+n. We adopt the
following assumption on the power injections.

Assumption 2.1: (Finite-time convergence of active power
injection). For each i ∈I , pi is piece-wise continuous and
becomes constant (denoted by p∗i ) after a finite time, i.e.,
there exists 0 6 t̄ < ∞ such that pi(t) = p∗i for every i ∈I
and every t > t̄. Furthermore, the constant power injections
are balanced, i.e., ∑i∈F p∗i = 0.

Note that Assumption 2.1 generalizes the power injec-
tion profile from the commonly used time-invariant case
(e.g. [14], [15]) to the finite-time convergent case. Also,
as our controller design here lies in the scope of primary
and secondary control, we assume that the power injection
designed by the tertiary control through economic dispatch
is balanced after a finite time. Under Assumption 2.1, one
can show [9] that, for the open-loop system (i.e., (1) with
α ≡ 0n), the trajectories ( f (t),ω(t)) globally converges to
the unique equilibrium point ( f∞,0n), where f∞ is uniquely
determined by the power injection profile and network pa-
rameters.

B. Control requirements

Given any non-empty subset I ω of I u, the designed
closed-loop system should meet the following requirements.

(i) Frequency invariance: For each i ∈ I ω , let ω i ∈ R
and ω̄i ∈ R be lower and upper safe frequency bounds,
with ω i < ω̄i. The trajectory of ωi must stay inside [ω i, ω̄i],
provided that its initial frequency ωi(0) lies inside [ω i, ω̄i].

This requirement guarantees that every targeted frequency
always evolves inside the safe region.

(ii) Frequency attractivity: For each i ∈ I ω , if ωi(0) 6∈
[ω i, ω̄i], then there exists a finite time t0 such that ωi(t) ∈
[ω i, ω̄i] for every t > t0. This requirement guarantees safe
recovery from an undesired initial frequency.

(iii) Asymptotic stability: The controller should only reg-
ulate the system’s transients, i.e., the closed-loop system
should globally converge to the same equilibrium point
( f∞,0n) of the open-loop system.

(iv) Lipschitz continuity: The controller must have Lip-
schitz in its state argument. This suffices to ensure the
existence and uniqueness of solution for the closed-loop
system and, furthermore, guarantees that the control action
is robust to state measurement errors.

(v) Economic cooperation: The individual controllers αi,
i ∈ I u, should cooperate with each other to reduce the
overall control effort measure by two norm.

(vi) Distributed nature: Every individual controller can
only utilize the state and power injection information within
a local region designed by operator. This reflects a practical
requirement for implementation in larger-scale power net-
works, in which case centralized control strategies depending
on global information may face critical challenge for real-
time execution.

III. CENTRALIZED DOUBLE-LAYERED CONTROLLER

In this section, we introduce a centralized controller that
achieves the requirements (i)-(v) identified in Section II-B.
Based on this design, we later propose a distributed version
that also achieves requirement (vi).

Network dynamics (1)

MPCStability filterLow-pass filter

Direct feedback control

( ( ), ( ), ( ))f t t p t

MPC

DF

ˆ
MPCu MPCu

Fig. 1. Block diagram of the closed-loop system.

We adopt the centralized control structure depicted in
Figure 1. The control signal α consists of two parts

α = αDF +αMPC. (2)

We next describe the role played by each part. The bottom
layer solves an optimization problem online. To do so, it
combines an MPC component cascaded with a stability filter
and a low-pass filter. The MPC component periodically and
optimally allocates control resources, while roughly adjusting
the frequency trajectories as a first step to achieve frequency
invariance and attractivity. Its output is designed to be a



piece-wise constant signal uMPC, which becomes a piece-
wise continuous signal ûMPC after passing through the sta-
bility filter. The low-pass filter ensures that the output αMPC
of the bottom layer control is continuous in time to avoid any
discontinuous change in control signal. Using real-time state
information, the stability filter guarantees that αMPC does
not jeopardize system stability. The bottom layer controller
achieves economic cooperation and stabilization, but does
not guarantee frequency invariance and attractivity. The top
layer controller is called direct feedback control since, unlike
the bottom layer control, can be directly computed in real
time. This layer slightly modifies the control generated by the
bottom layer to ensure frequency invariance and attractivity
while maintaining stability of the system.

A. Bottom layer controller design via MPC and filters

Here we formally describe each component in the bottom
layer control and analyze their properties.

1) MPC component: The MPC component operates on a
periodic time schedule. In each sampling period, the MPC
component aims to allocate control resources over controlled
nodes in an open-loop fashion based on the latest sampling
system state and forecasted power injection. Here, due to the
additional dynamics of the low-pass filter, the system state
consists of not only power network state ( f ,ω), but also the
state of low pass filter αMPC that we later explain. Formally,
let {∆ j} j∈N be the collection of sampling points. At time
t =∆ j, let a piece-wise continuous signal p f cst

t : [t, t+ t̃]→Rn

be the forecasted value of the power injection p for the first
t̃ seconds after t. We discretize the dynamics (1) and denote
N , dt̃/Te as the length of the predicted step with some
T > 0. At each t =∆ j, the MPC component updates its output
by solving the following optimization problem,

min
F̂ ,Ω̂,Â,û,β

g(û,β ), ∑
i∈I u

ciû2
i +dβ

2

s.t. f̂ (k+1) = f̂ (k)+TYbDω̂(k),

Mω̂(k+1) = Mω̂(k)+T
{
−Eω̂(k)−DT f̂ (k)+

p̂ f cst(k)+ û
}
, ∀k ∈ [0,N−1]N, (3a)

α̂i(k+1) = α̂i(k)+T{−α̂i(k)/Ti− ω̂i(k)+ ûi},∀i ∈I u,

α̂i ≡ 0, ∀i ∈I \I u, (3b)
û ∈ A, (3c)

f̂ (0) = f (∆ j), ω̂(0) = ω(∆ j), α̂(0) = αMPC(∆
j), (3d)

ω i−β 6 ω̂i(k+1)6 ω̄i +β ,∀i ∈I ω ,∀k ∈ [0,N−1]N, (3e)

|ûi|6 εi|αMPC,i(∆
j)|, ∀i ∈I u. (3f)

In this optimization problem, (3a) is the discretized dynam-
ics corresponding to (1) via first-order discretization, and
p̂ f cst(k), p f cst

∆ j (∆ j+kT ) for every k∈ [0,N−1]N; (3b) is the
discretized dynamics of the low-pass filter (explained below),
with Ti > 0 determining the filter bandwidth; (3c) indicates
the availability of control signal indexes; (3d) is the initial
state, where f (∆ j), ω(∆ j), and αMPC(∆

j) are sampled state
values at time t = ∆ j; (3e) represents the relaxed constraint
on frequency invariance, where we allow the discretized
frequency ω̂i with i ∈ I ω exceed its bounds ω i and ω̄i at

the cost of a penalty term β ; (3f) bounds the control input
ûi via a coefficient εi > 0 as a function of the state of the
low-pass filter to limit the sensitivity to changes in the latter;
the cost function g consists of the overall control effort as
well as a penalty term for frequency violation, where ci > 0
for each i ∈ I u and d > 0. In the above expression, we
use the compact notation F̂ , [ f̂ (0), f̂ (1), · · · , f (N)], Ω̂ ,
[ω̂(0), ω̂(1), · · · , ω̂(N)], Â , [α̂(0), α̂(1), · · · , α̂(N)], P̂ f cst ,
[p̂ f cst(0), p̂ f cst(1), · · · , p̂ f cst(N−1)].

We let R(G ,I u,I ω , p f cst
∆ j , f (∆ j),ω(∆ j),αMPC(∆

j)) de-
note the optimization problem (3) to emphasize its depen-
dence on network topology, nodal indexes with exogenous
control signals, nodal indexes with transient frequency re-
quirement, forecasted power injection, and state values at
the sampling time. If the context is clear, we simply use R.
We let (F̂∗,Ω̂∗, Â∗, û∗,β ∗) denote its optimal solution.

Given the open-loop optimization problem (3), the func-
tion uMPC corresponding to the MPC component in Figure 1
is defined as follows: for j ∈ N and t ∈ [∆ j,∆ j+1), let

uMPC(t)= û∗(G ,I u,I ω , p̂ f cst
∆ j , f (∆ j),ω(∆ j),αMPC(∆

j)),
(4)

where in the right hand side we emphasize the dependence
of û∗ on the seven arguments. Next, we characterize how the
controller depends on the state value at the sampling time
and predicted power injection.

Lemma 3.1: (Piece-wise affine and continuous
dependence of optimal solution on sampling state and
predicted power injection). The optimization problem
R(G ,I u,I ω , p f cst

∆ j , f (∆ j),ω(∆ j),αMPC(∆
j)) in (3) has a

unique optimal solution (F̂∗,Ω̂∗, Â∗, û∗,β ∗). Furthermore,
given G , I u, and I ω , û∗ is a continuous and piece-wise
affine in (P̂ f cst , f (∆ j),ω(∆ j),αMPC(∆

j)), that is, there exist
l ∈ N,{Hi}l

i=1, {Si}l
i=1, {h}l

i=1, and {si}l
i=1 with suitable

dimensions such that

û∗ = Siz+ si, if z ∈
{

y
∣∣Hiy 6 hi

}
and i ∈ [1, l]N (5)

holds for every z ∈ R(N+2)n+m, where z is the collection of
(P̂ f cst , f (∆ j),ω(∆ j),αMPC(∆

j)) in a column vector form.
Notice that Lemma 3.1 implies that û∗ is globally Lip-

schitz in z (and hence in the sampled state f (∆ j),ω(∆ j),
and αMPC(∆

j)), with L , maxi∈[1,l]N ‖Fi‖ serving as a global
Lipschitz constant. Another interesting consequence of this
result is that it provides an alternative to directly solving
the optimization problem R. In fact, one can compute and
store offline {Hi}l

i=1, {Si}l
i=1, {h}l

i=1, and {si}l
i=1, and then

compute û∗ online using (5). However, this approach faces
practical difficulties regarding storage capacity [16], as the
number l grows exponentially with system order m+n, input
size |I u|, as well as the horizon length N.

2) Stability and low-pass filter: Next we introduce the
stability and low-pass filters. Note that for any time t ∈
(∆ j,∆ j+1), due to the sampling mechanism, uMPC(t) depends
on the old sampled state at time ∆ j, as opposed to the state
information at current time t. Since such a lack of update
may jeopardize system stability, we cascade a stability filter
that depends on the current state after the MPC component



to filter out the unstable part in uMPC. The goal of low-pass
filter is to simply ensure that the output of the bottom layer is
continuous in time. Formally, for every i ∈I u at any t > 0,
define the stability filter as

ûMPC,i(αMPC(t),uMPC(t))
= sat(uMPC,i(t);εi|αMPC,i(t)|,−εi|αMPC,i(t)|), (6)

and define the low-pass filter as

α̇MPC,i(t) =−
1
Ti

αMPC,i(t)−ωi(t)+ ûMPC,i(t), ∀i ∈I u,

αMPC,i ≡ 0, ∀i ∈I \I u. (7)

Note that the low-pass filter model matches the structure in
the discretized model (3b). Also, both (6) and (7) can be
implemented in a distributed fashion: αMPC,i depends on ωi
and ûMPC,i, and ûMPC,i only relies on αMPC,i and uMPC,i, both
of which are local information for node i. For simplicity, we
interchangeably use ûMPC,i(αMPC(t),uMPC(t)) and ûMPC,i(t).

The following result shows the Lipschitz continuity of
ûMPC and points out a condition it satisfies. This condition
ensures asymptotic stability.

Lemma 3.2: (Lipschitz continuity and stability condition).
For the signal ûMPC defined in (6), ûMPC is Lipschitz in
system state at every sampling time t = ∆ j with j ∈ N.
Additionally, it holds that uMPC,i(t) 6 εiα

2
MPC,i(t), ∀t >

0, ∀i ∈I .
By Lemma 3.2, since ûMPC is Lipschitz at every sampling

time, if the top layer controller is also Lipschitz (which is the
case, see Section III-B), then the solution of the closed-loop
system exists and is unique and continuous in time. By (6)
and noting that uMPC is piece-wise constant in time, one has
ûMPC is piece-wise continuous, which further implies that
αMPC is indeed continuous in time.

B. Top layer design through direct feedback

Although the bottom layer control attempts to achieve
frequency invariance and attractivity requirements by con-
straining the predicted frequency trajectory via (3e), it cannot
solely guarantee the two requirements. To address this aspect,
we construct the top layer control from [9] that is precisely
designed to correct potential violations of the frequency
requirements by kicking in as the margin of violations gets
smaller. Formally, for every i ∈ I ω , let γ̄i,γ i

> 0, and
ω thr

i , ω̄ thr
i ∈ R with ω i < ω thr

i < 0 < ω̄ thr
i < ω̄i. Define the

top layer controller αDF as in (8).
Note that the top layer control signal is only available for

node with index in I ω , and that αDF can be implemented
in a distributed way, in that for each αDF,i with i ∈ I ω

regulated at node i, it only requires its nodal frequency ωi,
aggregated power flow [DT ]i f , power injection pi, as well
as the local bottom layer control signal αMPC,i. In addition,
we have shown [9] that αDF is locally Lipschitz in its first
argument. If the context is clear, we may interchangeably use
αDF,i(x(t), p(t),αMPC(t)) (resp. vi(x(t),αMPC(t), p(t))) and
αDF,i(t) (resp. vi(t)).

C. Closed-loop stability, frequency invariance, and fre-
quency attractivity analysis

With both layers introduced, we are ready to analyze the
stability of the closed-loop system and show that it meets
the requirements (i)-(iii) in Section II-B. Notice that as we
individually introduce each component in the control scheme,
we have shown that all components are Lipschitz, and the
economic cooperation is encoded in the MPC component;
therefore, the requirements (iv) and (v) are met.

Theorem 3.3: (Centralized double-layered control with
stability and frequency guarantees). Under Assumption 2.1,
if εiTi < 1 for every i ∈ I u, then the system (1) with
controller defined by (2), (4), (6), (7), and (8) meets re-
quirements (i)-(iii). Furthermore, α(t), αMPC(t), and αDF(t)
converge to 0n as t→ ∞.

Since the centralized doubled-layered control scheme al-
ready meets requirements (i)-(v), in the next section, we deal
with the remaining distributed computation requirement.

IV. CONTROLLER DECENTRALIZATION THROUGH
NETWORK DIVISION

Going over the double-layered design in the previous
section, it is worth noticing that the only component of
the controller that requires global information is the MPC
component, all the others being local in nature. In this
section, we propose a distributed double-layered controller
design that addresses this point. The general idea is to split
the computation of the MPC component across different
regions, and have each region determine its own MPC
component based on its regional state and regional forecasted
power information.

We split the network into regions so that each controlled
node is contained in exactly one region. Formally, let {Gβ =
(Iβ ,Eβ )}β∈[1,d]N be induced subgraphs of G such that

I u ⊆
d⋃

β=1

Iβ , (9a)

Iη

⋂
Iβ

⋂
I u = /0, ∀η ,β ∈ [1,d]N with η 6= β . (9b)

For each subgraph Gβ , let I u
β
, I u⋂Iβ (resp. I ω

β
,

I ω
⋂

Iβ ) denote the collection of controlled node indexes
(resp. nodes indexes with transient frequency requirements)
within Gβ . Let ( fβ ,ωβ ,αMPC,β ) ∈ R2|Iβ |+|Eβ | be the col-
lection of states in Gβ . Let p f cst

t,β : [t, t + t̃]→ R|Iβ | be the
forecasted power injection for every node in Gβ starting
from time t to t̃ seconds later. Note that the dynamics of
Gβ is not completely determined by ( fβ ,ωβ ,αMPC,β ) due to
its interconnection with other parts of the network outside
Gβ through transmission lines with i ∈ Iβ and j ∈ I \Iβ

(equivalently, with (i, j) ∈ E ′
β

). Instead of considering the
flows fi j’s of these transmission lines as states for Gβ , we
model them as exogenous power injections. Formally, denote
for every i ∈Iβ ,

p f cst, f
t,β ,i (τ), ∑

j: j→i
( j,i)∈E ′

β

f ji(t)− ∑
j:i→ j

(i, j)∈E ′
β

fi j(t), ∀τ ∈ [t, t + t̃] (10)



∀i ∈I ω , let αDF,i(x(t), p(t),αMPC(t)) =


min{0, γ̄i(ω̄i−ωi(t))

ωi(t)−ω̄ thr
i

+ vi(x(t),αMPC(t), p(t))} ωi(t)> ω̄ thr
i ,

0 ω thr
i 6 ωi(t)6 ω̄ thr

i ,

max{0, γ i(ω i−ωi(t))

ω thr
i −ωi(t)

+ vi(x(t),αMPC(t), p(t))} ωi(t)< ω thr
i ,

(8a)

vi(x(t),αMPC(t), p(t)) , Eiωi(t)+ [DT ]i f (t)− pi(t)−αMPC,i(t), (8b)
∀i ∈I \I ω , let αDF,i ≡ 0. (8c)

as the forecasted exogenous power injection acting on node i
caused by transmission lines in E ′

β
, where { j : j→ i} is

shorthand notation for { j : j is the positive end of (i, j)}.
For simplicity, here we take the forecasted value starting
from time t to be constant within the time interval [t, t + t̃].
Denote by p f cst

t,β : [t, t+ t̃]→R|Iβ | the collection of all p f cst
t,i ’s

with i ∈ Iβ , and let p̄ f cst
t,β , p f cst

t,β + p f cst, f
t,β be the overall

forecasted power injection. We illustrate these definitions in
an example.

Example 4.1: (A network division in IEEE 39-bus net-
work). Fig. 2 shows a network division example with I ω =
{30,31,32,37} and I u = {3,7,25,30,31,32,37}. The set
I u consists of all nodes in I ω and all nodes capable of
adjusting their loads and within two hops of a node in I ω .
We split the network into three regions (d = 3) satisfying (9).
Each region Gβ contains the two-hop neighborhood for every
node in I ω

β
. We denote by G1 the upper left region in Fig. 2

and use it to illustrate related definitions. In G1, one has I1 =
{1,2,3,25,26,30,37}, I ω

1 = {30,37}, I u
1 = {3,25,30,37},

E1 = {(1,2),(2,30),(2,25),(3,25),(25,37),(26,37)}, and
E ′1 = {(1,39),(3,4),(3,18),(26,27),(26,28),(26,29)}. For
every i ∈ I1, one can compute p f cst, f

t,β ,i by (10), and it is

easy to see that p f cst, f
t,β ,i ≡ 0 for i ∈ {2,3,25,30,37}, as these

nodes are not ends of any edge in E ′1. •
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Fig. 2. IEEE 39-bus power network.

The key idea of designing the distributed MPC component
is to consider each region as an single network and separately
implement the centralized MPC on it. Formally, for every
β ∈ [1,d]N, let {∆ j

β
} j∈N be its sampling sequence. For every

i ∈I u, select the unique β such that i ∈Iβ , and at every
t ∈ [∆ j

β
,∆ j+1

β
) with j ∈ N, let

uMPC,i(t)

= û∗i (Gβ ,I
u

β
,I ω

β
, p̄ f cst

∆ j ,β
, fβ (∆

j),ωβ (∆
j),αβ (∆

j)). (11)

Compared to the centralized MPC in (4), the distributed
version (11) transforms all global information, including
network topology, forecasted power injection and system
state, into local information. Their structural difference is
that, in the distributed MPC, the overall forecasted power
injection p̄ f cst

∆ j ,β
includes an additional term (10) to account for

the interconnected dynamics between the region of interest
and the rest of the network. Next, we characterize the closed-
loop stability and performance of the system under the
distributed controller.

Proposition 4.2: (Distributed double-layered control with
stability and frequency guarantee). Under Assumption 2.1
and assume that εiTi < 1 for every i ∈I u, system (1) with
controller defined by (2), (6), (7), (8), and (11) meets re-
quirements (i)-(iii). Furthermore, α(t), αMPC(t), and αDF(t)
converge to 0n as t→ ∞.

V. SIMULATIONS

We illustrate the performance of the distributed controller
in the IEEE 39-bus power network described in Fig. 2. All
parameters in the network model (1) are taken from the
Power System Toolbox [17]. We assign a small rotational
inertia Mi = 0.1 to all non-generator nodes for simplicity.
Let ω̄i = −ω i = 0.2Hz, so that the safe frequency region
is [59.8Hz, 60.2Hz]. To set up the distributed MPC com-
ponent (11), we select t̃ = 2s and T = 0.02, so that the
predicted step N = 100; εi = 1.9 and Ti = 0.5 for every
i∈I u; ci = 1 if i∈I ω , while ci = 4 if i∈I u\I ω ; d = 100;
{∆ j

β
} j∈N = { j} j∈N for every β ∈ [1,d]N, i.e., in each region,

the MPC component samples and updates its output every
1s; p f cst

t (τ) = p(τ) for every τ ∈ [t, t + t̃]. To set up the top
layer controller (8), let γ̄i = γ

i
= 1 and ω̄ thr

i =−ω thr
i = 0.1Hz

for every i ∈I ω .
We first show that the distributed controller defined

by (2), (6), (7), (8), and (11) is able to maintain the targeted
nodal frequencies within the safe region without changing
the open loop equilibrium. We disturb all non-generator
nodes by some time-varying power injections. In detail, for
every i ∈ [1,29]N, let pi(t) = (1+ δ (t))pi(0), where δ (t) =
0.2sin(πt/50) if 0 6 t 6 25; δ (t) = 0.2 if 25 < t 6 125;
δ (t) = 0.2sin(π(t− 100)/50) if 125 < t 6 150; δ (t) = 0 if
t > 150. The deviation term δ (t)pi(0) first drops down at a
relatively fast rate and then remains steady for a long time
period, finally converges to 0. We have chosen this scenario
to test the capability of the controller against both fast and
slow time-varying power injection disturbances.



(a) (b) (c)

Fig. 3. Frequency and control input trajectories with and without distributed transient frequency control.

For simplicity, in the following we focus on the state and
control input trajectories in the left-top region in Fig. 2.
Fig. 3(a) shows the open-loop frequency responses of node
30 and 37, which have transient frequency requirements. The
two nodes have almost the same overlapping trajectories that
both exceed the safe lower frequency bound 59.8Hz. As a
comparison, in Fig. 3 (b), with the distributed controller,
their frequency responses stay within the safe region, and
also gradually come back to 60Hz after the disturbance
disappears. Given the selected coefficients c3 = c25 = 1 and
c30 = c37 = 4 in the optimization problem (3), the controller
tends to use α3 and α25 more than α30 and α37, and this is
reflected in the control trajectories in Fig. 3(c).

Lastly, to verify that the proposed controller meets fre-
quency attractivity requirement, we consider a case where
the initial frequency is outside the safe region and see how
the controller force the frequency back to the region. To do
so, we disable in the setup above the distributed controller for
the first 30s. In Fig. 4(a), one can see that the frequency of
node 30 quickly recovers once we switch on the distributed
controller. Fig. 4(b) shows the control signal of node 30.
Note that, after transients, αMPC,30 still dominates the overall
control signal.

(a) (b)

Fig. 4. Frequency and control input trajectories at node 30 with controller
available after t = 30s.

VI. CONCLUSIONS

We have proposed a distributed transient frequency control
framework for power networks that preserves the asymptotic
stability of the network and at the same time, guarantees
safe frequency interval invariance and attractivity for targeted
nodes. The controller possesses a double-layered structure,
with the bottom layer periodically sampling the state and
allocating control signals over a local region in a receding
horizon fashion. The top layer slightly tunes the bottom
layer signal in order to provably enforce frequency invariance

and attractivity guarantees. Implemented over a network
partition, both layers rely on local state and power injection
information. Future work will investigate the extension of the
results to nonlinear swing dynamics, the optimal selection
of sampling sequences in the bottom layer control design,
the analysis of the performance trade-offs of the parameter
selections, and the designs of distributed control schemes
that do not rely on network partitions.
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