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Abstract—We propose a distributed data-based predictive
control scheme to stabilize a network system described by linear
dynamics. Agents cooperate to predict the future system evolution
without knowledge of the dynamics, relying instead on learning
a data-based representation from a single sample trajectory. We
employ this representation to reformulate the finite-horizon Lin-
ear Quadratic Regulator problem as a network optimization with
separable objective functions and locally expressible constraints.
We show that the controller resulting from approximately solving
this problem using a distributed optimization algorithm in a
receding horizon manner is stabilizing. We validate our results
through numerical simulations.

Index Terms—Data-based control, network systems, predictive
control of linear systems

I. INTRODUCTION

W ITH the growing complexity of engineering systems,
data-based methods in control theory are becoming

increasingly popular, particularly for systems where it is too
difficult to develop models from first principles and param-
eter identification is impractical or too costly. An important
class of such systems are network systems, which arise in
many applications such as neuroscience, power systems, traffic
management, and robotics. Without a system model, agents
must use sampled data to characterize the network behavior.
However, the decentralized nature of the system means that
agents only have access to information that can be measured
locally, and must coordinate with one another to predict the
network response and decide their control actions. These
observations motivate the focus here on distributed data-based
control of network systems with linear dynamics.

Literature Review: Distributed control of network sys-
tems is a burgeoning area of research, see e.g., [1]–[3] and
references therein. In general, designing optimal controllers
for network systems is an NP-hard problem, but under certain
conditions optimal distributed controllers for linear systems
can be obtained as the solution to a convex program [4]. When
these conditions do not hold, suboptimal controllers can be
obtained by convex relaxations [5], [6] or convex restrictions
[7] of the original problem. Although these methods produce
distributed controllers, the computation of the controller itself
is typically done offline, in a centralized manner, and requires
knowledge of the underlying system model. Reinforcement
learning (RL) is an increasingly popular approach for con-
trolling robots [8] and multi-agent systems [9]. However, RL
approaches typically require a very large number of samples
to perform effectively [10] and their complexity makes it
difficult to get stability, safety, and robustness guarantees as is
standard with other control approaches. For applications where
safety assurances are required, model predictive control (MPC)
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is widely used since performance and safety constraints can
be directly incorporated into an optimization problem that is
solved online. Several distributed MPC formulations are avail-
able for multi-agent systems where the dynamics of the agents
are coupled, such as [11], [12] where each agent implements a
control policy minimizing its own objective while accounting
for network interactions locally, or [13] where agents coop-
erate to minimize a system-wide objective using a network
optimization algorithm. Data-based approaches to predictive
control have also been proposed. System identification [14]
is often leveraged to learn a parameterized model which can
then be used with any of the MPC formulations previously
mentioned. Methods for implementing a controller directly
from sampled data without any intermediate identification also
exist. The fundamental lemma from behavioral systems theory
[15], which characterizes system trajectories from a single
sample trajectory, has recently gained attention in the area of
data-based control [16]–[18], and has been used for predictive
control in the recently developed DeePC framework [19], [20].
Our work here extends the DeePC framework to network
systems where each node only has partial access to the data.

Statement of Contributions: We develop distributed data-
based feedback controllers for network systems1. A group of
agents whose state evolves according to unknown coupled
linear dynamics each have access to their own state and those
of their neighbors in some sample trajectory. Their collective
objective is to drive the network state to the origin while
minimizing a quadratic objective function without knowledge
of the system dynamics. The approach we use computes the
control policy online and in a distributed manner by extending
the DeePC formalism to the network case. Building upon the
fundamental lemma, we introduce a new distributed, data-
based representation of possible network trajectories. We use
this representation to pose the control synthesis as a network
optimization problem, without state or input constraints, in
terms of the data available to each agent. We show that

1Throughout the paper, we make use of the following notation. Given
integers, a, b ∈ Z with a < b, let [a, b] = {a, a + 1, . . . , b}. Let
G = (V, E) be an undirected graph with N nodes, where V = [1, N ] and
E ⊂ V × V . The neighbors of i ∈ V are Ni = {j : (i, j) ∈ E}. Given
S = {s1, s2, . . . , sM} ⊆ [1, N ] and a vector x = [xT

1 , x
T
2 , . . . , x

T
N ], we

denote xS =
[
xT
s1

xT
s2

· · · xT
sM

]
. For xi ∈ Rdi with i ∈ [1,K],

we let col(x1, x2, . . . , xK) = [xT
1 , x

T
2 , . . . , x

T
K ]T. For positive semidefinite

Q ∈ Rn×n, we denote ‖x‖Q =
√

xTQx. For M ∈ Rn×m, we denote
by M† its Moore-Penrose pseudoinverse. The Hankel matrix of a signal
w : [0, T ]→ Rk with t ≤ T block rows is the kt× (T − t+ 1) matrix

Ht(w) =


w(0) w(1) · · · w(T − t)
w(1) w(2) · · · w(T − t+ 1)

...
...

. . .
...

w(t− 1) w(t) · · · w(T − 1)

 .

Given two signals v1 : [0, T − 1] → Rk1 and v2 : [0, T − 1] → Rk2 ,
let v = col(v1, v2) be the signal where v(t) = v1(t) for 0 ≤ t < T , and
v(t) = v2(t− T ) for T ≤ t < 2T .



this optimization problem is equivalent to the standard finite-
horizon Linear Quadratic Regulation (LQR) problem and
introduce a primal-dual method along with a suboptimality
certificate to allow agents to cooperatively find an approximate
solution. Finally, we show that the controller that results from
implementing the distributed solver in a receding horizon
manner is stabilizing.

II. PRELIMINARIES

We briefy recall here basic concepts on the identifiability of
Linear Time-Invariant (LTI) systems from data. Given t, Td ∈
Z≥0 with t < Td, a signal w : [0, Td−1]→ Rk is persistently
exciting of order t if rowrank Ht(w) = kt. Informally, this
means that any arbitrary signal v : [0, t − 1] → Rk can be
described as a linear combination of windows of width t in the
signal w. A necessary condition for persistence of excitation
is Td ≥ (k + 1)t− 1.

Lemma II.1. (Fundamental Lemma [15]): Consider the LTI
system x(t + 1) = Ax(t) + Bu(t), with (A,B) controllable.
Let ud : [0, Td−1]→ Rm, xd : [0, Td−1]→ Rn be sequences
such that wd = col(ud, xd) is a trajectory of the system and
ud is persistently exciting of order n + τ . Then for any pair
u : [0, τ − 1]→ Rm, x : [0, τ − 1]→ Rn, w = col(u, x) is a
trajectory of the system if and only if there exists g ∈ RTd−τ−1

such that Hτ (wd)g = w.

Lemma II.1 is stated here in state-space form, even though
the result was originally presented in the language of behav-
ioral systems theory. The result states that all trajectories of
a controllable LTI system can be characterized by a single
trajectory if the corresponding input is persistently exciting
of sufficiently high order, obviating the need for a model or
parameter estimation when designing a controller.

III. PROBLEM FORMULATION

Consider a network system described by an undirected
graph G = (V, E) with N nodes. Each node corresponds
to an agent with sensing, communication, and computation
capabilities. Each edge corresponds to both a physical coupling
and a communication link between the corresponding agents.
A subset of the nodes S ⊂ V , with |S| = M , also have
actuation capabilities via inputs ui ∈ Rmi . The system
dynamics are then

xi(t+ 1) =


Aiixi(t) +

∑
j∈Ni

Aijxj(t) +Biui i ∈ S,

Aiixi(t) +
∑
j∈Ni

Aijxj(t) i /∈ S,
(1)

where xi ∈ Rni , Aij ∈ Rni×nj and Bi ∈ Rni×mi .
Let n =

∑N
i=1 ni and m =

∑M
i=1mi and define x =

col(x1, x2, · · · , xN ) ∈ Rn and u = col(u1, u2, · · · , uM ) ∈
Rm. Let A ∈ Rn×n and B ∈ Rn×m be matrices so that (1)
takes the compact form x(t+ 1) = Ax(t) +Bu(t).

To each node i ∈ V , we associate an objective of the
form Ji(xi, ui) =

∑T−1
t=0 ‖xi(t)‖Qi

+ ‖ui(t)‖Ri
when i ∈ S

and Ji(xi) =
∑T−1
t=0 ‖xi(t)‖Qi

otherwise. Here, each Qi ∈
Rni×ni is positive semidefinite, each Ri ∈ Ri×i is positive

definite, col(u, x) is a system trajectory, and T is the time
horizon of trajectories being considered.

Each node wants to drive its state xi to the origin while
minimizing Ji and satisfying the constraints. The resulting net-
work objective function is the sum of the objective functions
across the nodes. Letting Q = blkdiag(Q1, Q2, . . . , QN ) ∈
Rn×n and R = blkdiag(Rs1 , Rs2 , . . . , RsM ) ∈ Rm×m, this
objective can be written as

J(x, u) =
∑
i∈S

Ji(xi, u) +
∑
i∈V\S

Ji(xi)

so that J(x, u) =
∑T−1
t=0 ‖x(t)‖Q + ‖u(t)‖R. If the system

starts from x(0) = x0 ∈ Rn, the agents’ goal can be
formulated as the network optimization problem:

minimize
u,x

T−1∑
t=0

‖x(t)‖Q + ‖u(t)‖R (2)

subject to x(t+ 1) = Ax(t) +Bu(t), for t ∈ [0, Tlqr]

x(0) = x0, x(T ) = 0.

Note that the agents’ decisions on their control inputs are
coupled through the constraints. Since R � 0, if (2) is feasible,
its optimal state and input trajectories are unique.

A key aspect of this paper is that we consider scenarios
where the system matrices A and B are unknown to the
network. Instead, we assume that, for a set of given input
sequences {udi : [0, Td − 1] → Rmi}i∈S , the corresponding
state trajectories {xdi : [0, Td − 1] → Rni}i∈V are available,
and each node i ∈ V has access to its own state trajectory
as well as those of its neighbors. Actuated nodes i ∈ S also
have access to their own input udi , but this is unknown to its
neighbors Ni. Our aim is to synthesize a control policy that
can be implemented by each node in a distributed way with
data available to it. The resulting controller should stabilize
the system to the origin while minimizing J(x, u).

IV. DATA-BASED REPRESENTATION FOR OPTIMIZATION

Here, we introduce a data-based representation of system
trajectories that is employed to pose a network optimization
problem equivalent to (2). Throughout this section, we let xd :
[0, Td − 1] → Rn, ud : [0, Td − 1] → Rm be sequences such
that wd(t) = col(ud(t), xd(t)) is a trajectory of (1). Let

wdi (t) =

{
col(udi (t), x

d
Ni

(t), xdi (t)) if i ∈ S
col(xdNi

(t), xdi (t)) if i /∈ S
,

for each i ∈ V and 0 ≤ t < Td − 1. Then wdi is the data
available to each node. Let u : [0, τ ] → Rm, x : [0, τ ] → Rn
be arbitrary sequences where Td ≥ (n + m)τ − 1. Define
w(t) = col(x(t), u(t)) and

wi(t) =

{
col(ui(t), xNi

(t), xi(t)) if i ∈ S
col(xNi

(t), xi(t)) if i /∈ S
.

Let ki = niτ +
∑
j∈Ni

njτ + miτ for i ∈ S, and ki =

niτ +
∑
j∈Ni

njτ otherwise. We define Ei ∈ Rki×(m+n)τ

to be the matrix consisting of all ones and zeros such that
Eiw

d = wdi and Eiw = wi.



A. Data-Based Representation of Network Trajectories

Lemma II.1 states conditions under which the behavior of
the system can be described completely by the Hankel matrix
of the sampled data. Here we extend Lemma II.1 to the setting
of a network system to build a data-based representation of
network trajectories using the Hankel matrices of the data
available to each agent, Hτ (wdi ). We show that under certain
conditions the image of Hτ (wdi ) is the set of all possible
trajectories of node i.

Proposition IV.1. (Sufficiency of Date-Based Image Repre-
sentation): If for each i ∈ V there exists gi ∈ RTd−τ+1 with
Hτ (wdi )gi = wi, then w is a trajectory of (1).

Proof: Writing gi = (gi(0), gi(1), . . . , gi(Td − τ))T so
for all 0 ≤ t < τ − 1, wi(t) =

∑Td−τ+1
k=0 gi(k)wdi (t + k), it

follows that xi(t+1) =
∑T−τ
k=0 gi(k)xdi (t+k+1) so for i /∈ S,

xi(t+ 1) =

Td−τ∑
k=0

gi(k)
(
Aiix

d
i (t+ k) +

∑
j∈Ni

Aijx
d
j (t+ k)

)
= Aiixi(t) +

∑
j∈Ni

Aijxj(t).

By a similar computation, we can show that for each i ∈ S,

xi(t+ 1) = Aiixi(t) +
∑
j∈Ni

Aijxj(t) +Biui(t),

which is consistent with (1).
Next we identify conditions for the converse of the above

result to hold, i.e., when the Hankel matrices of all the agents
characterize all possible network trajectories.

Proposition IV.2. (Necessity of Data-Based Image Represen-
tation): If (A,B) is controllable, wd is a trajectory of (1) and
either

(i) ud is persistently exciting of order n+ τ ;
(ii) col(udi (t), x

d
Ni

(t)) is persistently exciting of order ni + τ
for each i ∈ S, and xdNi

is persistently exciting of order
ni + τ for each i ∈ V \ S;

then for all i ∈ V there exists gi ∈ RTd−τ+1 such that
Hτ (wdi )gi = wi.

Proof: In the case of (i) we simply apply Lemma II.1
to obtain g ∈ RTd−τ+1 where Hτ (wd)g = w, and note that
for all i ∈ V , wi = Eiw = EiHτ (wd)g = Hτ (wdi )g, so the
result follows by letting gi = g. For case (ii), we think of xj
for j ∈ Ni as an input to node i. Letting k = |Ni|, where
Ni = {j1, j2, . . . , jk}, and defining

B̃i =


[
Aij1 Aij2 · · · Aijk Bi

]
i ∈ S[

Aij1 Aij2 · · · Aijk

]
i /∈ S

,

we have

xi(t+ 1) =

{
Aiixi(t) + B̃icol(xj1 , xj2 , · · · , xjk , ui) i ∈ S

Aiixi(t) + B̃icol(xj1 , xj2 , · · · , xjk ) i /∈ S

Let x0i ∈ Rni be arbitrary, and x0 ∈ Rn such that the ith block
component is x0i . Since (A,B) is controllable there exists an
input ū : [0, n]→ Rm such the corresponding state trajectory
x̄ : [0, n] → Rm with x̄(0) = x0 has x̄(n) = 0. Note that

if i ∈ S, then x̄i is the state trajectory corresponding to the
input col(ūi, x̄Ni

), and x̄i(0) = x0i and x̄i(n) = 0. Likewise, if
i /∈ S, x̄i is the state trajectory corresponding to the input x̄Ni

,
and x̄i(0) = x0i and x̄i(n) = 0. Hence (Aii, B̃i) is controllable
for all i ∈ V and the result follows from Lemma II.1.

Remark IV.3. (Feasibility of Identifiability Conditions):
Proposition IV.2 gives conditions on when the data is rich
enough to characterize all possible trajectories of the system.
Condition (i) gives conditions on the input sequence, ud, which
guarantee a priori the identifiability of the system from data.
This condition is generically true in the sense that the set
of sequences ud which are not persistently exciting of order
n + τ (even though for all i ∈ S, udi is) have zero Lebesgue
measure. In general, it is difficult to verify condition (i) in
a distributed manner. On the other hand, it is straightforward
to verify condition (ii) using only information available to the
individual agents. However this verification must be done in an
ad hoc manner, after the input has been applied to the system.
While the condition is sufficient for identifiability, there are
systems where for all inputs ud, the resulting trajectory wd

will never satisfy it. �

B. Equivalent Network Optimization Problem
Here, we build on the data-based image representation of

network trajectories in a distributed fashion to pose a network
optimization problem that can be solved with the data available
to each agent, which is equivalent to an LQR problem with
a time horizon of T . Each node can use this representation
along with Tini > 0 past states and inputs to predict future
trajectories assuming that the hypotheses of Proposition IV.2
are satisfied. Formally, let τ = Tini + T + 1 and let uini :
[0, Tini − 1]→ Rm and xini : [0, Tini − 1]→ Rn be sequences
such that col(uini, xini) is a Tini long trajectory of the system.
In the network optimization we introduce below, we optimize
over system trajectories col(u, x) of length τ , constrained so
the first Tini samples of u and x are uini and xini resp. This
plays a similar role to the initial condition constraint in (2).

For each node i ∈ V , define

Hi =

 Hτ (udi )
Hτ (xdNi

)
Hτ (xdi )

 if i ∈ S and Hi =

[
Hτ (xdNi

)
Hτ (xdi )

]
if i /∈ S.

(3)
Consider the following problem

minimize
gi,ui,xi

∑
i∈S

Ji(xi, ui) +
∑
i∈V\S

Ji(xi) (4)

subject to Higi = col(uini
i , ui, x

ini
Ni
, xNi , x

ini
i , xi), i ∈ S

Higi = col(xini
Ni
, xNi

, xini
i , xi), i /∈ S

xi(T ) = 0 i ∈ V.

Although (4) does not necessarily have a unique optimizer,
any optimizer (g∗, u∗, x∗) of (4) is such that u∗ and x∗ are the
optimal input and state sequences of (2), as formalized next.

Proposition IV.4. (Equivalent Network Optimization): Con-
sider the system (1) and sample trajectory wd satisfying the
hypotheses of Proposition IV.2 and let x0 = Axini(Tini − 1) +
Buini(Tini − 1). Then the following hold:



(i) If problem (2) is feasible, then it has a unique optimizer;
(ii) Problem (4) is feasible if and only if (2) is feasible;

(iii) If (4) is feasible, (u1,∗, x1,∗) is the optimizer of (2) and
(g∗, u2,∗, x2,∗) is an optimizer of (4), then u1,∗ = u2,∗

and x1,∗ = x2,∗.

We omit the proof for space reasons, but note that it is the
analogue of Theorem 5.1 and Corollary 5.2 in [19] for the
case of network systems once one invokes Propositions IV.1
and IV.2 above. Unlike the original network optimization
problem (2), for which agents lack knowledge of the system
matrices A, B, the network optimization problem (4) can be
solved in a distributed way with the information available to
them. The structure of the problem (aggregate objective func-
tions plus locally expressible constraints) makes it amenable to
a variety of distributed optimization algorithms, see e.g., [21],
[22]. In Section V-B below, we employ a primal-dual dynamic
to find asymptotically a solution of (4) in a distributed way.

Remark IV.5. (Scalability of Network Optimization): As the
number of nodes in the network increases so does the state
dimension, hence more data is required in order to maintain
persistency of excitation. A necessary condition is Td ≥ (n+
m+ 1)(Tini + T )− 1. Assuming that T ∼ O(n), Tini ∼ O(1),
we have Td ∼ O(n2 + mn). The decision variable for each
node is zi = col(gi, ui, xi) when i ∈ S and zi = col(gi, xi)
otherwise. The size of zi is O(n2 +mn). However, using the
distributed optimization algorithm of Section V-B, agent i only
needs to send messages of size O(ki) to agent j. �

V. DISTRIBUTED DATA-BASED PREDICTIVE CONTROL

Here we introduce a distributed data-based predictive con-
trol scheme to stabilize the system (1) to the origin, as
described in Section III. To do this, we solve the network op-
timization problem (4) in a receding horizon manner with uini

and xini updated every time step based on the systems current
state. The control scheme is summarized in Algorithm 1.

Algorithm 1 Distributed Data-Based Predictive Control

1: Input: Sample trajectory wd, performance indices
(Qi)

N
i=1, (Ri)

N
i=1

2: Initialize Hi as in equation (3), let uini and xini be the Tini
most recent states and inputs respectively, and set t = 0.

3: while ‖x‖ > 0 do
4: Use a distributed optimization algorithm to obtain an

approximate solution to (4), ẑ = col(ĝ, û, x̂), such that
‖û− u∗‖ ≤ δmin{1, ‖xini(Tini − 1)‖}.

5: Apply the input û(0).
6: Set t to t+ 1 and uini and xini to the Tini most recent

inputs and states respectively.

The rest of the section proceeds by first showing that the
controller resulting from Algorithm 1 is stabilizing even when
the network optimization (4) is solved only approximately;
and then introducing a particular distributed solver for (4)
along with a suboptimality certificate to check, in a distributed
manner, the stopping condition in Step 4 of Algorithm 1.

A. Stability Analysis of Closed-Loop System

In the rest of the paper, we rely on the following assumption.

Assumption V.1. Consider the system (1),
(i) the collected data satisfies the hypotheses of Proposi-

tion IV.2;
(ii) the optimization problem (4) is feasible for all (uini, xini)

which is a valid Tini-sample long system trajectory.

Since the system is controllable (cf. (i)), a sufficient condi-
tion for guaranteeing the feasibility in (ii) is T ≥ n. In fact, in
such case, there exists a trajectory (u, x) such that x(T ) = 0.
It follows that (u, x) is feasible for (2), so by Proposition IV.4,
there exists some g such that (g, u, x) is feasible for (4).

Under Assumption V.1, the closed-loop system with the
controller corresponding to a receding horizon implementation
of (2) is globally exponentially stable, cf. [23, Theorem
12.2]. Unlike [19], we do not assume we have access to the
exact solution of (4) since distributed optimization algorithms
typically only converge asymptotically to the true optimizer
and must be terminated in finite time. Here we show that
Algorithm 1 still stabilizes the system when the tolerance δ is
sufficiently small.

Theorem V.2. (Distributed, Data-Based Predictive Control is
Stabilizing): For δ > 0, let φδ : Rn → Rm be the feedback
control corresponding to Algorithm 1. Under Assumption V.1,
there exists δ∗ > 0 such that for all δ < δ∗, the origin is
globally asymptotically stable with respect to the closed-loop
dynamics x(t+ 1) = Ax(t) +Bφδ(x(t)).

Proof: Let φmpc : Rn → Rm be the feedback correspond-
ing to a receding horizon implementation of (2). Consider
the system x(t + 1) = f(x(t), v(t)), where f(x, v) = A +
Bφmpc(x) + Bv. Let J∗(x0) = J(x∗, u∗), where (u∗, x∗) is
an optimizer of (2). Because (4) is nondegenerate, J∗ is con-
tinuously differentiable, cf. [23, Theorem 6.9], and the system
is input-to-state stable (ISS) with J∗ being a ISS-Lyapunov
function satisfying J∗(f(x, v))− J∗(x) ≤ −α ‖x‖2 + σ ‖v‖2
for constants α, σ > 0, cf. [24, Theorem 1] (albeit the result
is stated there for systems where A is Schur stable, the same
reasoning is valid when there are no state or input constraints
and A is unstable). Because the system x(t+ 1) = f(x(t), 0)
without disturbances is exponentially stable [25], it follows by
[26, proof of Lemma 3.5] that the gain function is linear, so
there exist γ > 0 and a class KL function β such that

‖x(t)‖ ≤ β(‖x(0)‖ , t) + γ sup
0≤τ≤t

‖v(τ)‖ ,

for all t ∈ Z≥0. Let x : Z≥0 → Rn be a trajectory
of the closed-loop dynamics of (1) with the controller de-
scribed by Algorithm 1 where δ < δ∗ = γ−1 and define
v(t) = φδ(x(t)) − φmpc(x(t)). It follows that x(t + 1) =
f(x(t), v(t)). Note that φmpc(x(t)) = u∗(0;uini, xini), where
uini = φδ(x(t − 1)) and xini = x(t − 1) so it follows that
‖v(t)‖ =

∥∥û(0;uini, xini)− u∗(0;uini, xini)
∥∥ ≤ δ ‖x(t− 1)‖ .

We claim that for all k ∈ N, there exists Tk ∈ N such that
‖x(t)‖ ≤ (k + 1)(γδ)k whenever t ≥ Tk. The case when
k = 1 follows by observing that ‖x(t)‖ ≤ β(‖x(0)‖ , t) + γδ
and there exists T1 such that β(‖x(0)‖ , t) < γδ for all t ≥ T1.



If the claim holds for some k, then for all t ≥ Tk + 1,

‖x(t)‖ ≤ β((k + 1)(γδ)k, t) + γ sup
Tk+1<τ≤t

‖v(τ)‖

≤ β((k + 1)(γδ)k, t) + (k + 1)(γδ)k+1,

so by choosing Tk+1 such that β((k + 1)(γδ)k, t) < (γδ)k+1

for all t ≥ Tk+1, then ‖x(t)‖ < (k + 2)(γδ)k+1 for
all t > Tk+1 and the claim follows by induction. Hence
lim supt→∞ ‖x(t)‖ ≤ lim supk→∞(k+1)(γδ)k = 0. To show
global Lyapunov stability, let η > 0 be arbitrary, and suppose
that ‖x(0)‖ is chosen so that β(‖x(0)‖ , 0) < (1 − γδ)η and
‖x(0)‖ < η. Then for all t > 0,

‖x(t)‖ ≤ (1− γδ)η + γ sup
0≤τ≤t

‖v(τ)‖

≤ (1− γδ)η + γδ ‖x(t− 1)‖ .

If ‖x(t− 1)‖ < η, then ‖x(t)‖ < η. It follows by induction
on t that ‖x(t)‖ < η for all η.

B. Primal-Dual Solver for Network Optimization

In this section we introduce a method for solving the
optimization problem (4) in a distributed way. We let

zi =

{
col(gi, ui, xi) i ∈ S,
col(gi, xi) i /∈ S,

and z = col(z1, . . . , zN ). Note zi ∈ Rdi , where di = T −
(Tini+T )+1+ni+mi for i ∈ S and di = T−(Tini+T )+1+ni
otherwise. Problem (4) can be written as

minimize
zi∈Rdi

∑
i∈V
‖zi‖2Qi

(5)

subject to AizNi = bi.

for suitableQi ∈ Rdi×di ,Qi � 0,Ai ∈ Rci×di ,, and bi ∈ Rci ,
with i, ci ∈ Z. The Lagrangian of (5) is

L(z, λ) =
∑
i∈V
‖zi‖2Qi

+ λTi (AizNi
− bi).

If λ∗ is an optimizer of the dual problem, then the pair (z∗, λ∗)
is a (min-max) saddle point of L, meaning that L(z∗, λ) ≤
L(z∗, λ∗) ≤ L(z, λ∗) for all z ∈ Rd and λ ∈ Rc. The saddle-
point property of the Lagrangian suggests that the primal-dual
flow, which descends along the gradient of the primal variable
and ascends along the gradient of the dual variable,[

żi
λ̇i

]
=

[
−∇ziL(z, λ, µ)
∇λi
L(z, λ, µ)

]
=

[
−2Qizi − FiiAT

i λi −
∑
j∈Ni

FijAT
j λj

AizNi + bi

]
,

(6)

can be used to compute the optimizer. Here, Fij ∈
R(di+

∑
j∈Ni

dj)×di is the matrix such that FijzNj = zi. By
[22, Corollary 4.5], the flow converges asymptotically to a
saddle point of L. This procedure is fully distributed, since the
flow equations in (6) can be computed with the information
available to each agent or its direct neighbors. In particular, if
j ∈ Ni, then the message agent j shares with agent i consists
of col(xj , λj) ∈ RnjT+kj , which is O(ki) (cf. Remark IV.5).

We conclude by providing a certificate that can be used to
verify the stopping condition of Step 4 in Algorithm 1.

Proposition V.3. (Suboptimality Certificate): Let u∗ and
x∗ denote the optimal input and state trajectories of
(2), y = col(z, λ), Q = diag(Q1,Q2, . . . ,QN ), A =
[FT

1 AT
1 , F

T
2 AT

2 , . . . , F
T
NAT

N ]T, b = col(b1, b2, . . . , bN ), and

M =

[
−2QT −AT

A 0

]
q =

[
0
b

]
.

Under Assumption V.1, and with the flow given by (6), if
‖col(żi, λ̇i)‖ < ρ for all i ∈ V , where ρ = δ2

N‖M†‖2 , then
‖u− u∗‖ < δ.

Proof: The set of saddle points of L is S = {y |My+q =
0}. Since the optimal input and state trajectories are unique,
all saddle points share the property that, for each i ∈ S,
the (ui, xi) components of their zi equal (u∗i , x

∗
i ). Given an

arbitrary y, we have ‖u− u∗‖ ≤ ‖y − w‖ for all w ∈ S , and
hence ‖u− u∗‖ ≤ infw∈S ‖y − w‖. The set of saddle points
can also be described as S = {ŷ} + kerM , for any ŷ ∈
S. Therefore, infw∈S ‖y − w‖ = infv∈kerM ‖y − ŷ − v‖.
Since I −M†M is the orthogonal projection onto kerM ,

inf
v∈kerM

‖y − ŷ − v‖ =
∥∥(y − ŷ)− (I −M†M)(y − ŷ)

∥∥
=
∥∥M†(My −Mŷ)

∥∥ =
∥∥M†(My + q)

∥∥ ≤ ∥∥M†∥∥ ‖ẏ‖ ,
and therefore,

‖u− u∗‖2 ≤
∥∥M†∥∥∑

i∈V
‖ẏi‖2 <

∥∥M†∥∥∑
i∈V

δ2

N ‖M†‖
= δ2.

The suboptimality certificate can be checked in a fully
distributed manner using information locally available to each
agent provided that

∥∥M†∥∥ is known. Because M depends only
on the objective Q and constraints A, which in turn comes
from the sample trajectory wd, it can be computed offline.
Finally, it is possible for each agent to compute a bound on∥∥M†∥∥ using the fact that, for M = [MT

1 ,M
T
2 , . . .M

T
N ]T, one

has
∥∥M†∥∥ ≤ ‖M†i ‖ for all i ∈ V . It follows that for all i ∈ V ,∥∥M†∥∥ ≤ ∥∥∥∥[2Qi FiiAT

i Fij1AT
j1
· · · Fij|Ni|

AT
j|Ni|

]†∥∥∥∥ ,
for {j1, j2, . . . , j|Ni|} = Ni, so each agent can compute a
bound on

∥∥M†∥∥ using data available to itself and its neighbors.

C. Numerical Simulations

We simulate the proposed distributed data-based predictive
controller on a Newman-Watts-Strogatz network [27] and a
star network. In each case, A and B are chosen at random so
that (A,B) is controllable. The input sequence is chosen as
ud(t) = Kxd(t)+w(t), where K is a matrix so that A+BK
is marginally stable (the data does not need to be generated
from a stable system, but this is done to avoid numerical
issues), and w(t) is a Gaussian white noise process. We use
Proposition IV.2 to ensure that the data is informative enough
for data-driven control. In both cases, condition (i) is satisfied.
Condition (ii) fails for the Newman-Watts-Strogatz network,
but is satisfied by the star network (cf. Remark IV.3). We



(a) Simulation of Newman-Watts-Strogatz network with T = n

(b) Simulation of star network with T = 5 < n

Fig. 1: State trajectories of Data-based Receding Horizon Controller
on various network topologies.

integrate the primal-dual flow using the stopping condition in
Proposition V.3 is used to terminate the flow. Fig. 1 shows the
closed-loop state trajectories and the number of iterations on
each time step with different values of ρ. For the Newman-
Watts-Strogatz network, cf. Fig. 1(a), the time horizon is
T = n. For the star network, cf. Fig. 1(b), the time horizon
is T = 5 < n, but the optimization at each time step is still
feasible. In both cases, the distributed data-based predictive
controller better approximates the exact MPC for smaller
values of ρ at the cost of more iterations per time step.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a distributed data-based predictive
controller for stabilizing network linear dynamics described
by unknown system matrices. Instead of building a dynamic
model, agents learn a non-parametric representation based on
a single trajectory and use it to implement a controller as
the solution of a network optimization problem solved in a
receding horizon manner and in a distributed way. Future
work will explicitly quantify the tolerance δ∗ in terms of
the available data and study ways to construct a terminal
cost without knowledge of the underlying model to guarantee
stability when the stabilizing terminal constraint is omitted. We
plan to extend the results to cases where there are constraints
on the state and input, characterize the robustness properties of
the introduced control scheme, investigate ways of improving
its scalability, and consider more general scenarios, including
the presence of noise in the data, inputs not persistently
exciting of sufficiently high order, and partial observations of
the network state. We also plan to explore improvements to
the primal-dual flow to solve the optimization problem with
fewer iterations and less communication between the agents.
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