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Abstract—This paper presents one of the first real-life demon-1

strations of coordinated and distributed resource control for2

secondary frequency response in a power distribution grid. A3

series of tests involved up to 69 heterogeneous active distributed4

energy resources consisting of air handling units, unidirectional5

and bidirectional electric vehicle charging stations, a battery en-6

ergy storage system, and 107 passive distributed energy resources7

consisting of building loads and solar photovoltaic systems. The8

distributed control setup consists of a set of Raspberry Pi end-9

points exchanging messages via an ethernet switch. Actuation10

commands for the distributed energy resources are obtained by11

solving a power allocation problem at every regulation instant12

using distributed ratio-consensus, primal-dual, and Newton-like13

algorithms. The problem formulation minimizes the sum of14

distributed energy resource costs while tracking the aggregate set-15

point provided by the system operator. We demonstrate accurate16

and fast real-time distributed computation of the optimization17

solution and effective tracking of the regulation signal over18

40 min time horizons. An economic benefit analysis confirms19

eligibility to participate in an ancillary services market and20

demonstrates up to $53k of potential annual revenue for the21

selected population of distributed energy resources.22

I. INTRODUCTION23

Many recent efforts seek to integrate renewable energy re-24

sources with the power grid to reduce the carbon footprint. The25

high variability associated with wind and solar power can be26

balanced using distributed energy resources (DERs) providing27

ancillary services such as frequency regulation. Consequently,28

there is a growing interest among market operators in DER29

aggregations with flexible generation and load capabilities30

to balance fluctuations in grid frequency and minimize area31

control errors (ACE). The fast ramping rate and minimal32

marginal standby cost put many DERs at an advantage against33

conventional generators and make them suitable for participa-34

tion in the frequency regulation market.35

The fast ramping rates reduce the required power capacity36

of DERs to only 10% of an equivalent generator to balance37
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a frequency drop within 30 s [1]. However, most individual 38

DERs have small capacities, typically on the order of kWs 39

compared to 10 s of MW for conventional frequency control 40

resources. Commanding the required thousands to millions 41

of DERs to replace existing frequency regulation resources 42

over a large balancing area entails aggregating DERs that 43

are distributed at end points all over the grid on customer 44

premises. The dynamic nature, large number, and distributed 45

location of DERs requires coordination. This is in contrast to 46

existing frequency regulation [2] implementation with conven- 47

tional energy resources. For example, California Independent 48

System Operator (CAISO) requires all generators to submit 49

their bids once per regulation interval. Then, the setpoints 50

are assigned centrally to all resources every 2-4 s without 51

any consideration of operational costs [3]. While distributed 52

control has the potential to enable DER participation in the 53

frequency regulation market (e.g., [4]), there is a general lack 54

of large-scale testing to prove its effectiveness for widespread 55

adoption by system operators. The 2017 National Renew- 56

able Energy Laboratory Workshop on Autonomous Energy 57

Grids [5] concluded that “A major limitation in developing new 58

technologies for autonomous energy systems is that there are 59

no large-scale test cases (...). These test cases serve a critical 60

role in the development, validation, and dissemination of new 61

algorithms”. 62

The results of this paper are the outcome of a project under 63

the ARPA-e Network Optimized Distributed Energy Systems 64

(NODES) program1, which postulates DER aggregations as 65

virtual power plants that enable variable renewable penetra- 66

tions of at least 50%. The vision of the NODES program was 67

to employ state-of-the-art tools from control systems, com- 68

puter science, and distributed systems to optimally respond 69

to dynamic changes in the grid by leveraging DERs while 70

maintaining customer quality of service. The NODES program 71

required testing with at least 100 DERs at power. Here, we 72

demonstrate the challenges and opportunities of testing on a 73

heterogeneous fleet of DERs for eventual operationalization of 74

optimal distributed control at frequency regulation time scales. 75

Literature Review. To the best of our knowledge, real-world 76

testing of frequency regulation by DERs has been limited. 77

A Vehicle-to-Grid (V2G) electric vehicle (EV) [6] and two 78

Battery Energy Storage System (BESS) [7] provided frequency 79

regulation. 76 bitumen tanks were integrated with a simplified 80

power system model to provide frequency regulation via a 81

decentralized control algorithm in [8]. In buildings, a decen- 82

tralized control algorithm controlled lighting loads in a test 83

1https://arpa-e.energy.gov/arpa-e-programs/nodes
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room [9], centralized frequency control was applied to an air84

handling unit (AHU) [10], [11], an inverter and four household85

appliances [12], and four heaters in different rooms [13]. A86

laboratory home with an EV and an AHU, and a number87

of simulated homes were considered for demand response88

in [14] through an aggregator at a 10 s level. Technologies for89

widespread, but centrally controlled, cycling of air condition-90

ers directly by utilities cf. [15] and aggregators are common91

place for peak shifting, but occur over time scales of minutes92

to hours. Industrial solutions enabling heterogeneous DERs to93

track power signals also exist, but they are either centralized,94

cf. [16] or require all-to-all communication [17].95

Our literature review exposes the following limitations: (i)96

centralized control or need for all-to-all communication [6],97

[7], [10]–[17], which does not scale to millions of DERs;98

(ii) small numbers of DERs [6], [7], [10]–[14]; (iii) lack of99

diversity in DERs [6]–[11], [13], with associated differences in100

tracking time scales and accuracy. No trial has been reported101

that demonstrated generalizability to a real scenario with (i)102

scalable distributed control and a (ii) large number of (iii)103

heterogeneous DERs.104

Statement of Contributions. To advance the field of real-105

world testing of DERs for frequency control, we conduct a106

series of tests using a group of up to 69 active and 107107

passive heterogeneous DERs on the University of California,108

San Diego (UCSD) microgrid [18]. To the best of the authors’109

knowledge, this is the first work to consider such a large, di-110

verse portfolio of real physical DERs for secondary frequency111

response. As such, the major contributions of this work are:112

• A detailed account of the testbed, including the DER113

actuation and sampling interfaces, the distributed opti-114

mization setup, and communication framework.115

• A description of techniques to work around technical116

barriers, provision of lessons learned, and suggestions for117

future improvement.118

• Evaluation of the performance of both the cyber and119

physical layers, including an evaluation of eligibility120

requirements for and the economic benefit of participating121

in the ancillary services market.122

Paper Overview. Frequency regulation is simulated on the123

UCSD microgrid using real controllable DERs (Section III-C)124

to follow the Pennsylvania-New Jersey-Maryland Interconnec-125

tion (PJM) RegD signal [19] interpolated from 0.5Hz to 1Hz126

(Sections III-B). The DER setpoint tracking is formulated127

as a power allocation problem at every regulation instant128

(Section III-A), and uses three types of provably convergent129

distributed algorithms from [20]–[23] to solve the optimization130

problem; see Appendix A of [24], removed from this version131

for brevity. Setpoints are computed distributively on multiple132

Raspberry Pi’s communicating via ethernet switches (Section133

III-D). The setpoints are implemented on up to 176 DERs at134

power using dedicated command interfaces via TCP/IP com-135

munication (Section III-E), the DER power outputs monitored136

(Section III-F), and their tracking performance evaluated (Sec-137

tion III-G). Results (Section V) for the various test scenarios138

described in Section IV show that the test system tracks the139

signal with reasonable error despite delays in response and140

inaccurate tracking behavior of some groups of DERs, and141

qualifies for participation in the PJM ancillary services market 142

. 143

II. PROBLEM SETTING 144

This paper validates real-world DER controllability for par- 145

ticipation in secondary frequency regulation through demon- 146

stration tests implemented on a real distribution grid. The 147

tests showcase the ability of aggregated DERs to function as 148

a single market entity that responds to frequency regulation 149

requests from the independent system operator (ISO) by opti- 150

mally coordinating DERs. The goal is to monitor and actuate 151

a set of real controllable DERs to collectively track a typical 152

automatic generation control (AGC) signal issued by the ISO. 153

Three different distributed coordination schemes optimize 154

the normalized contribution of each DER to the cumulative 155

active power signal. Unlike simulated models, the use of real 156

power hardware exposes implementation challenges associated 157

with measurement noise, sampling errors, data communica- 158

tion problems, and DER response. To that end, precise load 159

tracking is pursued at timescales that differ by DER type 160

consistent with individual DER responsiveness and commu- 161

nication latencies, yet meet frequency regulation requirements 162

in aggregation. 163

The 69 kV substation and 12 kV radial distribution system 164

owned by UCSD to operate the 5 km2 campus was the 165

chosen demonstration testbed. It has diverse energy resources 166

with real-time monitoring and control capabilities, allowing 167

for active load tracking. This includes over 3 MW of solar 168

photovoltaic (PV) systems, 2.5 MW/5 MWh of BESS, building 169

heating ventilation and air conditioning (HVAC) systems in 170

14 million square feet of occupied space, and over 200 171

unidirectional V2G (V1G) [25] and V2G EV chargers. The 172

demonstration tests used a representative population of up to 173

176 such heterogeneous DERs to investigate tracking behavior 174

of specific DER types as well as their cooperative tracking 175

abilities. While the available DER capacity at UCSD far 176

exceeds the minimum requirements for an ancillary service 177

provider set by most ISOs (typically ∼ 1 MW), logistical 178

considerations and controller capabilities dictated the choice 179

of a DER population size with less aggregate power capacity 180

(up to 184 kW) for this demonstration. Since this magnitude 181

of power is insufficient to measurably impact the actual grid 182

frequency, we chose to simulate frequency regulation by 183

following a frequency regulation signal. 184

III. TEST ELEMENTS 185

Here, we elaborate on the different elements of the vali- 186

dation tests. These include the optimization formulation em- 187

ployed to compute DER setpoints (Section III-A), the ref- 188

erence AGC signal (Section III-B) and types of DERs used 189

to track it (Section III-C), the computing platform (Section 190

III-D), the actuation (Section III-E) and monitoring interfaces 191

(Section III-F), the performance metrics used to assess the cy- 192

ber and physical layers, and eligibility for market participation 193

(Section III-G). 194
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A. Optimization Formulation195

The optimization model for AGC signal tracking using196

DERs can be mathematically stated as a separable resource197

allocation problem subject to box constraints as follows:198

min
p∈Rn

f(p) =

n∑
i=1

fi(pi),

s.t.
n∑

i=1

pi = Pref,

pi ∈ [p
i
, pi], ∀i ∈ N = {1, . . . , n}.

(1)

The agents i ∈ N each have local ownership of a decision199

variable pi ∈ R, representing an active power generation or200

consumption quantity (setpoint), a local convex cost function201

fi, and local box constraints [p, p], representing active power202

capacity limits. Pref is a given active power reference value203

determined by the ISO and transmitted to a subset of the agents204

as problem data, see e.g. [26]. Pref is a signal that changes205

over time, so a new instance of (1) is solved in real-time 1 s206

intervals corresponding to these changes. Note that with just207

1 s difference between the instances, the box constraints might208

also change due to the limited ramp rates of DERs. In this209

work we consider them constant and assume (1) is feasible.210

For the validation tests, we used two types of cost functions:211

constant and quadratic. Constant functions were used for the212

Ratio-Consensus (RC) solver [20], which turns the optimiza-213

tion into a feasibility problem. Quadratic functions were used214

for the primal-dual based (PD) [21], [22] and Distributed215

Approximate Newton Algorithm (DANA) [23] methods. In216

short, RC prescribes dynamics which seek to achieve consen-217

sus on a ratio of operating capacity with respect to p
i
, pi so218

that the agents achieve
∑

i pi = Pref. PD and DANA each219

are Lagrangian-based dynamics; in particular, PD is gradient-220

based (“first-order”) and DANA is Newton-based (“second-221

order”). See Appendix A of the extended version [24] for more222

technical detail on these algorithms. The quadratic functions223

were artificially chosen to produce satisfactorily diverse and224

representative solutions to (1) for each DER population. Costs225

associated with a physical or economic metric (e.g. deviation226

from a building setpoint for AHUs, user-specified charging227

demands for V1G and V2Gs, and resistive losses in a BESS)228

are of great interest, but are far from trivial to model and thus229

not the focus of this study. We split the total time period of230

the signal, Pref into three equal segments, and implemented231

RC, PD, and DANA in that order. Box constraints [p
i
, pi] are232

given in Table I and were centered at zero for simplicity; for233

example, an AHU i with 2 kW capacity has [p
i
, pi] = [−1, 1],234

while a V2G j with ±5 kW capacity has [p
j
, pj ] = [−5, 5].235

B. Regulation Signal236

The 40 min RegD signal published by PJM [19] served as237

the reference AGC signal for the validation tests, and was used238

to obtain the value for Pref in (1). The normalized RegD signal,239

contained in [−1, 1] (see Figure 1), was interpolated from240

0.5 Hz to 1 Hz. The signal was then treated by subtracting the241

normalized contributions of building loads and PV systems,242

cf. Section III-C. Finally, the normalized signal was scaled by243

a factor proportional to the total DER capacity
∑

i(pi − pi) 244

before sending to the optimization solvers. More precisely, 245

Pref = β

∑
i(pi − pi)

‖PRegD + PPV − Pb‖∞
(PRegD + PPV − Pb) , (2)

where PRegD refers to the normalized RegD signal data, PPV 246

and Pb respectively refer to the normalized PV generation and 247

building load data obtained from the UCSD ION server as 248

described in Section III-F, and 0 < β < 1 is an arbitrary 249

scaling constant. Note that this results in a different target 250

signal Pref for the different test scenarios considered in Sec- 251

tion IV due to the different power ratings of the DERs (cf. 252

Section III-C) used across the tests. For most test scenarios, 253

β = 0.75 to prevent extreme set points that would require 254

all DERs to operate at either pi or p
i

simultaneously, which 255

may be infeasible in some time steps due to slower signal 256

update times, see Table II. Each P in (2) is a vector with 257

2401 elements corresponding to each 1 s time step’s instance 258

of (1) over the 40 min time horizon. 259

0 5 10 15 20 25 30 35 40

Time (min)

-1

-0.5

0

0.5

1

Fig. 1: Normalized PJM RegD signal.

C. DERs 260

The reference AGC signal was to be collectively tracked 261

using DERs consisting of HVAC AHUs, BESS, V1G and 262

V2G EVs, PV systems, and whole-building loads. Since PV 263

systems and (non-AHU) building loads were not controllable, 264

they participated in the test as passive DERs. Consequently, 265

the active DERs were commanded to track a modified target 266

signal derived by subtracting the net active power output of 267

passive DERs from the reference AGC signal and applying 268

appropriate scaling (cf. Section III-B). Table I lists the typical 269

net power capacity pi − pi of the different active DER types. 270

TABLE I: Typical power rating of active DER types

DER Type AHU V1G EV V2G EV BESS
Typical power

rating per DER type 2 kW 3.3 kW (Tests 0 & 1),
4.9 kW (Test 2) ± 5 kW ± 3 kW

The contribution of each active DER to the target signal 271

was defined with respect to a baseline power, around which 272

[p
i
, pi] was centered, to enable tracking of both positive and 273

negative ramps in the target signal. For DERs like V2G EVs 274

and BESS, which were capable of power adjustments in both 275

directions, the baseline was 0 kW. The baseline for V1G EVs 276

was defined to be halfway between their allowed minimum 277

and maximum charging rates, where the former was restricted 278

by the SAE J1772 charging standard to 1.6 kW. Similarly, the 279

baseline for AHUs was defined to be half of their power draw 280

when on. Further, since AHUs were limited to binary on-off 281

operational states, the continuous and arbitrarily precise AHU 282

setpoints obtained by solving (1) were rounded to the closest 283
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discrete setpoint obtained from a combination of on-off states284

before actuation.285

AHU control was restricted, by UCSD Facilities Man-286

agement, to specifying only DER setpoints and duration of287

actuation; since building automation controllers could not be288

modified, model-based designs were impossible. This was to289

avoid malfunctioning or disruptions to real physical infrastruc-290

ture in the networked building management system that also291

controls lighting, security, and fire protection systems.292

D. Computing Setup293

The DER active power setpoints were computed for the294

entire 40-min test horizon prior to any device actuation using295

a set of 9 Linux-based nodes. The nodes C1-C9 communicate296

with each other over an undirected ring topology, cf. Fig. 2.297

As one of the sparsest network topologies, where message298

passing occurs only between a small number of neighbors, the299

ring topology presents a challenging scenario for distributed300

control. Since there were more active DERs than computing301

nodes, the 9 nodes were mapped subjectively to the 69 active302

DERs such that nodes C1-C2 computed the actuation setpoints303

for the AHUs, C3 for V1G EVs, C4-C8 for V2G EVs and C9304

for the BESS.305

The computing steps are summarized in Algorithm 1. Each306

computing node generated actuation commands as CSV files307

containing the power setpoints for their respective group of308

DERs at a uniform update rate of 1 Hz. Preliminary testing309

revealed different response times across DER types, with310

AHUs and V1G EVs exhibiting slower response than other311

active DER types. DERs with response times greater than312

1 s were subject to a stair-step control signal with a signal313

update time consistent with DER responsiveness and constant314

setpoints during intermediate time steps. Table II lists the315

signal update times for the different DER types.316

Algorithm 1 Computing process

Require: Map f : Ci → DER-type
1: Initialize time of last solution update tsol-updatei

= 0,
initial setpoints for DERs mapped to computing node Ci

as Pf(Ci),∀i ∈ {1, . . . , 9}
2: for k = 0, . . . , 2400 do
3: for i = 1, . . . , 9 do
4: if k − tsol-updatei

== tsignal-updatei
then

5: Solve (1) to update Pf(Ci)(k)
6: tsol-updatei

= k
7: end if
8: Pf(Ci)(k)← Pf(Ci)(tsol-updatei

)
9: if mod(k, 60) == 0 then

10: Send Pf(Ci)(k) to DER type, f(Ci)
11: end if
12: end for
13: end for

E. Actuation Interfaces and Communication Framework317

The actuation commands were issued using fixed IP com-318

puters through dedicated interfaces that varied by DER type319

as depicted in Fig. 2. The setpoints for AHUs were issued320

through a custom Visual Basic program that interfaced with 321

the Johnson Control Metasys building automation software. 322

The power rate of the BESS was set via API-based com- 323

munication with a dedicated computer that controlled the 324

battery inverter. The V1G and V2G EVs charging rates were 325

adjusted through proprietary smart EV charging platforms of 326

the charging station operators. EVs using ChargePoint R© V1G 327

stations were manually controlled via the load shedding feature 328

of ChargePoints station management software. The actuation 329

of EVs using PowerFlex R© V1G chargers and Nuvve R© V2G 330

chargers was automated and commands were issued via API- 331

based communication. 332

F. Power Measurements 333

The active power of all DERs was metered at a 1 Hz 334

frequency. The power outputs of individual PV systems and 335

building loads were obtained prior to the test from their 336

respective ION meters by logging data from the UCSD ION 337

Supervisory Control and Data Acquisition (SCADA) system 338

and aggregated to obtain the total power output of all PVs 339

and building loads. A moving average filter with a 20 s 340

time horizon was used to remove noise from the aggregate 341

measured data for these passive DERs. V2G EVs and BESS 342

power data were acquired using the same interfaces that were 343

used for their actuation, which logged data from dedicated 344

power meters. 345

Since neither AHUs nor the ChargePoint V1G EVs had 346

dedicated meters, they were monitored via their respective 347

building ION meters by subtracting a baseline building load 348

from the building meter power output. Assuming constant 349

baseline building load, any change in the meter outputs can be 350

attributed to the actuation of AHUs and V1G EVs. This as- 351

sumption is justifiable considering the tests were conducted at 352

0400 PT to 0600 PT on a weekend, when building occupancy 353

was likely zero and building load remained largely unchanged. 354

Noise in the ION meter outputs observed as frequent 15 - 355

30 kW spikes in the measured data for AHUs (Fig. 3) and 356

ChargePoint V1G EVs was treated by removing outliers and 357

passing the resulting signal through a 4 s horizon moving 358

average filter. Here, outliers refer to points that change in 359

excess of 50% of the mean of the 40 min signal in a 1 s 360

interval. 361

G. Performance Metrics 362

The performance of the distributed implementation (cyber- 363

layer) was measured by the normalized mean-squared-error 364

(MSE) between the distributed and true (i.e. exact) centralized 365

optimization solutions. The true solutions were computed 366

for each instance of (1) using a centralized CVX solver in 367

MATLAB [27]. The MSE was normalized by dividing by the 368

mean of the squares of the true solutions. 369

The tracking performance of the DERs was evaluated 370

through (i) the root-mean-squared-error (RMSE) in tracking 371

RMSE =

√√√√∑T
t=1(P

prov
t − P tar

t )2∑T
t=1(P

tar
t )2

, (3)

where P prov
t is the total power that was provided (measured), 372

and P tar
t is the target (commanded) regulation power at time 373
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Fig. 2: Communication architecture for computation and actuation of control policies.

step t ∈ {1, . . . , T = 2401}; and (ii) the tracking delay,374

computed as the time shift of the measured signal which yields375

the lowest RMSE between the commanded and measured376

signals. The sum of the delays due to local computation and377

communication between the computing nodes is capped by378

the algorithm computation time, and would be less than 1 s.379

Therefore, these delays are not explicitly considered in the380

tracking delay calculation, and the computed tracking delay381

only includes the device response times and measurement382

delays.383

The PJM Performance Score S following [28, Section 4.5.6]
was computed as a test for eligibility to participate in the
ancillary services market, and is given by the mean of a
Correlation Score Sc, Delay Score Sd, and Precision Score Sp:

Sc =
1

T − 1

T∑
t=1

(P prov
t − µprov)(P tar

t − µtar)

σprovσtar ,

Sd =

∣∣∣∣δ − 5 min
5 min

∣∣∣∣, Sp = 1− 1

T

T∑
t=1

∣∣∣∣P prov
t − P tar

t

µtar

∣∣∣∣,
S = 1/3(Sc + Sd + Sp),

where P prov
t and P tar

t are as in (3), µprov, µtar and σprov, σtar
384

denote their respective means and standard deviations, and δ is385

the corresponding maximum delay in DER response for when386

Sc was maximized. A performance score of at least 0.75 is387

required for participating in the PJM ancillary services market.388

IV. TEST SCENARIOS389

In this section, we describe the test scenarios carried out on390

the UCSD microgrid elaborating on the challenges we faced391

and the differences across the tests, summarized by type of392

DER in Table II.393

A. Commonalities394

A series of three tests were conducted on December 12,395

2018 (Test 0), April 14, 2019 (Test 1) and December 17, 2019396

(Test 2). All three tests involved a 40 min preparatory run 397

followed by a 40 min final test. Table II lists the type of 398

DERs across the tests. All tests were carried out during non- 399

operational hours (between 0400 PT and 0540 PT) to avoid 400

potential disruptions to building occupants with the exception 401

of V1G EVs in Test 2, which were tested at the start of the 402

work day (0900 - 1010 PT) to maximize fleet EV availability 403

(cf. Section IV-D). Day-time PV output data from February 24, 404

2019 was used as a proxy for an actual daytime PV signal. 405

TABLE II: Characteristics of each test by DER type.

DER Type AHU V1G EV V2G EV BESS
# DERs - Test 0 7 4 5 1
# DERS - Test 1 34 29 5 1
# DERs - Test 2 34 17 6 1

Signal updates 1 m

5 m
(Tests 0 & 1),

1 m
(Test 2)

1 s 20 s

DER Actuation

Synchronous
(Tests 0 & 1),

Two-stage: Stage 1
(Test 2)

Synchronous
(Tests 0 & 1),

Two-stage: Stage 2
(Test 2)

Operation Mode Automatic

Manual
(Tests 0 & 1),

Automatic
(Test 2)

Automatic

Time of test 0400 - 0500 PT 0400 - 0500 PT (Tests 0 & 1),
0900 - 1010 PT (Test 2)

Computing setup Semi-centralized using ROS (Tests 0 & 1),
Fully distributed using Raspberry Pi (Test 2)

B. Test 0 406

Test 0 was a preliminary calibration that was used to 407

examine the response times and tracking behavior of every 408

DER type and detect issues related to communication and 409

actuation. 410

1) DERs: Test 0 used only a representative sample of 17 411

DERs. The V1G and V2G population was composed of UCSD 412
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fleet EVs plugged in at ChargePoint and Nuvve charging413

stations, respectively.414

2) Computing Setup: 9 laptops running a Robotic Operat-415

ing System (ROS) communicated via local Wi-Fi hotspot to416

implement the distributed coordination algorithms and com-417

pute the DER setpoints.418

3) Actuation: All DERs were actuated synchronously.419

C. Test 1420

Test 1 was identical to Test 0 except in the number of DERs421

utilized.422

1) DERs: Test 1 used a larger population of 69 active DERs423

and 107 passive DERs.424

2) Computing Setup: The same semi-centralized ROS-425

based computing setup as in Test 0 was used in Test 1. Given426

that the available power capacity of fast-responding DERs such427

as V2G and BESS was smaller than slow-responding DERs,428

the steep ramping demands of the target signal were met by429

upscaling the power of the fast responding DERs in solving430

for the contribution of individual DERs. Another option would431

have been to reduce the number of slow responding DERs,432

but the funding agency stipulated prioritizing the number and433

types of heterogeneous DERs over accuracy in signal tracking.434

A real DER aggregator would instead require a more balanced435

capacity of slow and fast DERs to ensure feasibility of tracking436

these ramp features.437

3) Actuation: All DERs were actuated synchronously.438

Since the ChargePoint V1G EVs in Test 1 were operated via439

manual input of DER setpoints (an interface to their API had440

not been developed yet), to avoid overloading the (human)441

operators, they were grouped into three groups and actuated442

in a staggered fashion such that each of the three groups443

maintained a signal update time of 5 min but were commanded444

1 min apart from each other.445

D. Test 2446

Test 2 also used the entire population of DERs but sub-447

stituted the cumbersome V1G population with more capable448

V1G chargers and used a new distributed computing setup and449

method of actuation based on lessons learned from Test 1.450

1) DERs: The V1G EVs used in Test 1 performed poorly451

owing to an unreliable actuation-interface that experienced452

seemingly random stalling and lacked automated control ca-453

pabilities. Therefore, 17 PowerFlex V1G charging stations454

at one location replaced the distributed 29 V1G charging455

stations used in Test 1. Since the PowerFlex interface did not456

permit actuating individual stations, the 17 charging stations457

participated in the test as a single aggregate DER. The 0930458

1010 PT timing of the V1G EV part of the test coincided459

with the start of the workday and a V1G EV population460

that had only recently plugged in and therefore had ample461

remaining charging capacity. The EVs were contributed by462

UCSD employees and visitors randomly plugging in at the463

PowerFlex charging stations just before the start of the trial.464

An aggregate signal of 15 kW to 19 kW was distributed465

equally amongst the 17 EVs.466

In addition to the new V1G EVs, the V2G population in467

Test 2 was replaced with a different set of Nuvve chargers468

to resolve a tracking/noise issue during discharge-to-grid ob- 469

served in Test 1 and expanded to include an additional charger. 470

2) Computing Setup: Test 2 featured a fully distributed 471

architecture that consisted of a network of Raspberry Pis 472

that asynchronously communicated with each other via an 473

ethernet switch. In addition, a modified synchronization tech- 474

nique was implemented in the software which improved the 475

fidelity and robustness of message-passing. This upgraded 476

message-passing framework and synchronization technique for 477

both software and hardware resulted in significantly faster 478

communication between nodes. 479

3) Actuation: The order of AHU actuation was modified 480

in Test 2 to allow for device settling time and prevent in- 481

terference. In particular, in Tests 0 and 1, individual AHUs 482

were ordered and actuated using a protocol that was not 483

cognizant of settling times or building groupings, while the 484

protocol was revised in Test 2 to systematically command the 485

entire population of AHUs in a manner which maximized time 486

between consecutive actuations for an individual unit. 487

Test 2 also featured a two-stage approach of actuation 488

that was a result of the DER tracking behavior in Test 1. 489

Some DERs, such as BESS, V1G EVs and V2G EVs, tracked 490

quickly and accurately, whereas others, such as AHUs, tracked 491

poorly. The overall tracking performance in Test 2 was im- 492

proved by using “well-behaved” DERs to compensate for 493

AHU tracking errors by incorporating the error signal from 494

actuating AHUs in Stage 1 to the cumulative target signal 495

for BESS, V1G EVs and V2G EVs in Stage 2. Although 496

synchronous actuation of all participating DERs is preferred 497

in practice, the two-stage approach highlights the significance 498

of systematic characterization of DERs in minimizing ACE. 499

V. TEST RESULTS 500

A. Distributed Optimization/Cyber-Layer Results 501

In Table III, we present MSE results of our 1 s real-time 502

Raspberry-pi distributed optimization solutions (the “cyber- 503

layer” of the system). 504

TABLE III: Normalized mean-squared-error of distributed solutions
obtained from real-time 1 s intervals compared to centralized solver
solution for Test 2 (Section III-G)

DER Type RC PD DANA all
AHU 0 1.4× 10−7 2.8× 10−9 4.6× 10−8

V1G EVs 0 7.0× 10−8 1.7× 10−9 2.3× 10−8

V2G EVs 0 6.6× 10−5 5.0× 10−7 2.1× 10−5

BESS 0 2.0× 10−6 9.1× 10−8 6.5× 10−7

Total 0 1.8× 10−5 1.1× 10−7 4.9× 10−6

RC converged to the exact solution in all instances. This is 505

unsurprising, as the RC problem formulation does not account 506

for individual DER costs and thus, is a much simpler problem 507

with a closed-form solution. For PD and DANA, we obtained 508

excellent convergence, with errors on the order of 0.001% 509

in the worst cases. In general, DANA tended to converge 510

faster than PD in the sense that the obtained solutions were 511

more accurate under the same fixed 1 s computation time. 512

For our application with 1 s real-time windows, accuracy and 513

convergence differences did not affect the physical layer re- 514

sults in any tangible way, but applications with more stringent 515

accuracy or speed requirements may benefit from using a 516
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faster algorithm like DANA. The differences between DER517

populations can be largely attributed to the faster time scale518

of the V2G EVs (and to a lesser extent the BESS), see Table II.519

Since the V2G EVs were responsible for the high-frequency520

component of Pref, the solver was required to converge to521

new solutions at every time step, which induced more error522

compared to the slow V1G EVs and AHUs with relatively523

static solutions.524

B. Physical-Layer Test Results525

We now present the results of the tracking performance526

pertaining to the physical-layer of the experiment. We provide527

only some selective plots for Test 0 and Test 1 in Fig. 3, and a528

complete set of plots for each Test 2 DER population in Fig. 4.529

Error and tracking delay data defined in Section III-G is given530

in Table IV for Test 1 and Test 2. Data for Test 0 is omitted531

due to its preliminary nature. The optimal shift described in532

Section III-G is applied to each time series and hence some533

areas in plots may appear like the provided signal anticipated534

the target.535
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Fig. 3: Selected plots from Tests 0 and 1. Top: AHU response
in Test 0. Note the poor tracking and spikes in the measured
response. Middle: V2G response in Test 1. Note the inaccuracy in
tracking during discharge-to-grid phases. Bottom: Total response in
Test 1. Note the large-magnitude, low-frequency features demonstrat-
ing some broad tracking behavior, but overall poor performance.

Signal tracking accuracy in Test 0 was generally poor536

despite the small number of DERs employed, largely due to537

inexperience in actuating the AHUs and V1Gs. In particular,538

Fig. 3 reveals some oscillations in the AHU response. It539

is overall difficult to determine if even large-feature, low-540

frequency components of the signal were tracked. Further,541

data gathering for V1Gs and AHUs was done via noisy and542

unreliable building ION meters, which motivated the need for543

outlier treatment (Section III-F) in Tests 1 and 2, and resulted544

in the smoother and better tracking signal in the top plot of545

Fig. 4.546

Test 1 yielded a 111% RMSE for AHUs. We speculate that547

the small 4 s delay in Test 1 is not representative of the actual548

AHU delay due to random correlations dominating the time549

shift for this large error. This is confirmed by a much better550

AHU response in Test 2 with RMSE 12%, where a 105 s551
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Fig. 4: Test 2 results. From top to bottom, AHU, V2G EVs, V1G
EVs, BESS, and total responses. Note the substantially improved
AHU, V2G, and total tracking performance compared to Figure 3.

delay is more likely to be representative of the true AHU 552

actuation delay. Given the poor visibility into AHU and V1G 553

controllers explained in Section IV, it is challenging to identify 554

the source of the poor tracking behavior. We speculate that 555

DER metering at the building level rather than the DER level 556

was a major source of error for AHU and V1G in Test 1. 557

This was largely resolved in Test 2 by utilizing a different 558

population of V1Gs with dedicated meters and by modifying 559

the actuation scheme for AHUs to be less susceptible to 560

metering errors as described in Section IV-D. Additionally, 561

the actuation-interface stalling for V1G EVs, described in 562

Section IV-C, was dominant in Test 1, resulting in the poor 563

tracking for V1Gs. Actuating-interface issues were resolved in 564

Test 2 by utilizing an automated control scheme for the V1Gs, 565

which led to significantly lower error. 566

The BESS emerged as the star performer achieving very 567

accurate tracking across all tests with no delay. The V2G EVs 568

also performed relatively well aside from a signal overshoot 569

issue observed during the discharge cycle in Test 1 seen in 570

Fig. 3. The issue was resolved in Test 2 by using V2G EV 571

charging stations from a different manufacturer (Princeton 572

Power), as described in Section IV-D. The V2G charging 573

stations deployed for these tests were pre-commercial or early 574

commercial models that had a few operating issues, such as 575

the overshoot issue during Test 1. 576

The inability of the AHUs to respond to steep, short ramps 577

(Fig. 4) could be due to slow start-up sequences programmed 578

into the building automation controllers to increase device 579

longevity or due to transients associated with driving their AC 580

induction electric motors. Tackling this would require dynamic 581
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models and parameter identification of signal response and582

delay. With the new V1G EV population in Test 2, tracking583

delay reduced from 40 s to 10 s and the tracking accuracy584

improved significantly. The 1 kW bias seen in Fig. 4 is likely585

due to rounding errors arising from the inability of PowerFlex586

charging stations to accept non-integer setpoints.587

The superior performance of the BESS and V2Gs motivated588

the two-stage actuation scheme described in Section IV-D,589

which contributed to reducing the total RMSE from 50% in590

Test 1 to 10% in Test 2 (compare the bottom plots of Figs 3591

and 4). The two-stage approach allows a sufficiently large592

proportion of accurately tracking DERs to compensate for593

the errors of the first stage, where tracking is worse. In this594

way, poorly-tracking DERs, such as AHUs, can still contribute595

by loosely tracking some large-feature, low-frequency com-596

ponents of the target signal. The low-frequency contribution597

reduces the required total capacity of the strongly-performing598

DERs in the second stage leading to more fine-tuned signal599

tracking in aggregation. Some recommended rules of thumb600

for two-stage approach are: (i) Total capacity of first-stage601

DERs is less than or equal to total capacity of second-stage602

DERs. (ii) DERs in the first stage are capable of tracking603

with < 50% RMSE. (iii) DER cost functions are such that the604

deviation from the baseline is lower cost for first-stage DERs605

than for second-stage. (iii) allocates a significant portion of606

the target signal initially to first-stage DERs, freeing up DER607

capacity in the second-stage for error compensation.608

TABLE IV: Left: Relative root mean-squared-error of tracking error
by DER type. Right: Delay (optimal time-shift) of DER responses
in seconds.

DER Type Test 1 Test 2
AHU 1.11 0.12

V1G EVs 0.68 0.077
V2G EVs 0.30 0.060

BESS 0.054 0.018
Total 0.50 0.097

DER Type Test 1 Test 2
AHU 4 105

V1G EVs 40 10
V2G EVs 5 3

BESS 0 0
Total N/A N/A

C. Economic Benefit Analysis609

Here, we evaluate the economic benefit of the proposed test610

system, which is vital for wider scale adoption of DERs as611

a frequency regulation resource in real electricity markets.612

To this end, we take an approach similar to [10] to first613

demonstrate that the testbed is eligible to participate in the614

PJM ancillary services market. Following the PJM Manual615

12 [28] (Section III-G), we compute a Correlation Score Sc616

= 0.98, Delay Score Sd = 0.65, and Precision Score Sp =617

0.91 from data for Test 2, and obtain a Performance Score618

S = 0.85 ≥ 0.75, which confirms the eligibility to participate619

in the PJM ancillary service market.620

Next, we compute the estimated annual revenue assuming621

that the resources are available throughout the day. Using622

PJM’s ancillary service market data2 with our total (active)623

DER capacity of 184 kW and performance score of 0.85,624

the capability and performance credits for this population of625

resources (cf. [29, Section 4]) would respectively be $135626

and $11, for July 9, 2020. This gives an estimated amount627

2https://dataminer2.pjm.com/feed/reg prices/definition

of $53,290 as the total annual revenue. Note that the 184 kW 628

DER capacity employed in this work represents less than 5% 629

of the total DER capacity and less than 0.5% of the total 630

capacity of the UCSD microgrid, cf. [18]. As such, the revenue 631

would significantly increase if more microgrid resources are 632

utilized for regulation, even with reduced availability. 633

VI. CONCLUSIONS 634

We have presented one of the first real-world demonstrations 635

of secondary frequency response in a distribution grid using 636

up to 176 heterogeneous DERs. The DERs include AHUs, 637

V1G and V2G EVs, a BESS, and passive building loads and 638

PV generators. The computation setup utilizes state-of-the-art 639

distributed algorithms to find the solution of a power allocation 640

problem. We show that the real-time distributed solutions are 641

close to the true centralized solution in an MSE sense. Tests 642

with real, controllable DERs at power closely track the given 643

active-power reference signal in aggregation. Further, our 644

economic benefit analysis shows a potential annual revenue of 645

$53K for the chosen DER population. These tests highlight the 646

importance of dedicated and noise-free measurement sensors 647

and a well-understood and reliable DER control interface for 648

precise signal tracking. Extensions of this work are ongoing 649

under DERConnect3, a new project at UCSD that aims to 650

develop a testbed consisting of 2500 DERs that allows for 651

online implementation of various distributed algorithms. As 652

is already recognized by the power systems community and 653

federal funding agencies such as ARPA-e and National Science 654

Foundation, large-scale power-in-the-loop testing is needed 655

for transitioning distributed technologies to real distribution 656

systems. We hope that this work spurs further testing and ul- 657

timately widespread adoption of coordinated resource control 658

algorithms by relevant players in industry. 659
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