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Abstract. Ambiguity sets of probability distributions are used to hedge against uncertainty5
about the true probabilities of random quantities of interest (QoIs). When available, these ambigu-6
ity sets are constructed from both data (collected at the initial time and along the boundaries of7
the physical domain) and concentration-of-measure results on the Wasserstein metric. To propagate8
the ambiguity sets into the future, we use a physics-dependent equation governing the evolution of9
cumulative distribution functions (CDF) obtained through the method of distributions. This study10
focuses on the latter step by investigating the spatio-temporal evolution of data-driven ambiguity11
sets and their associated guarantees when the random QoIs they describe obey hyperbolic partial-12
differential equations with random inputs. For general nonlinear hyperbolic equations with smooth13
solutions, the CDF equation is used to propagate the upper and lower envelopes of pointwise ambi-14
guity bands. For linear dynamics, the CDF equation allows us to construct an evolution equation15
for tighter ambiguity balls. We demonstrate that, in both cases, the ambiguity sets are guaranteed16
to contain the true (unknown) distributions within a prescribed confidence.17
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1. Introduction. Hyperbolic conservation laws describe a wide spectrum of en-20

gineering applications ranging from multi-phase flows [8] to networked traffic [19]. The21

underlying dynamics is described by first-order hyperbolic partial differential equa-22

tions (PDEs) with non-negligible parametric uncertainty, induced by factors such23

as limited and/or noisy measurements and random fluctuations of environmental at-24

tributes. Decisions based, in whole or in part, on predictions obtained from such mod-25

els have to account for this uncertainty. The decision maker often has no distributional26

knowledge of the parametric uncertainties affecting the model and uses data—often27

noisy and insufficient—to make inferences about these distributions. Robust stochas-28

tic programming [2] calls for a quantifiable description of sets of probability measures,29

termed ambiguity sets, that contain the true (yet unknown) distribution with high30

confidence (e.g., [24, 13, 28]). The availability of such sets underpins distribution-31

ally robust optimization (DRO) formulations [2, 27] that are able of hedging against32

these uncertainties. Ambiguity sets are typically defined either through moment con-33

straints [10] or statistical metric-like notions such as φ-divergences [1] and Wasser-34

stein metrics [13], which allow the designer to identify distributions that are close to35

the nominal distribution in the prescribed metric. Ideally, ambiguity sets should be36

rich enough to contain the true distribution with high probability; be amenable to37

tractable reformulations; capture distribution variations relevant to the optimization38

problem without being overly conservative; and be data-driven. Wasserstein ambigu-39

ity sets have emerged as an appropriate choice because of two reasons. First, they40

provide computationally convenient dual reformulations of the associated DRO prob-41

lems [13, 15]. Second, they penalize horizontal dislocations of the distributions [26],42

which considerably affect solutions of the stochastic optimization problems. Fur-43
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thermore, data-driven Wasserstein ambiguity sets are accompanied by finite-sample44

guarantees of containing the true distribution with high confidence [14, 11, 33], re-45

sulting in DRO problems with prescribed out-of-sample performance. Our recent46

work [4, 5] has explored how ambiguity sets change under deterministic flow maps47

generated by ordinary differential equations, and used this information in dynamic48

DRO formulations. For these reasons, Wasserstein DRO formulations are utilized in a49

wide range of applications including distributed optimization [9], machine learning [3],50

traffic control [20], power systems [16], and logistics [17].51

We consider two types of input ambiguity sets. The first is based on Wasser-52

stein balls, whereas the second exploits CDF bands that contain the CDF of the true53

distribution with high probability. Our focus is on the spatio-temporal evolution of54

data-driven ambiguity sets (and their associated guarantees) when the random quan-55

tities they describe obey hyperbolic PDEs with random inputs. Many techniques56

can be used to propagate uncertainty affecting the inputs of a stochastic PDE to its57

solution. We use the method of distributions (MD) [30], which yields a determinis-58

tic evolution equation for the single-point cumulative distribution function (CDF) of59

a model output [6]. This method provides an efficient alternative to numerically de-60

manding Monte Carlo simulations (MCS), which require multiple solutions of the PDE61

with repeated realizations of the random inputs. It is ideal for hyperbolic problems,62

for which other techniques (such us stochastic finite elements and stochastic collo-63

cation) can be slower than MCS [7]. In particular, when uncertainty in initial and64

boundary conditions is propagated by a hyperbolic deterministic PDE with a smooth65

solution, MD yields an exact CDF equation [31, 6]. Regardless of the uncertainty66

propagation technique, data can be used both to characterize the statistical prop-67

erties of the input distributions and reduce uncertainty by assimilating observations68

into probabilistic model predictions via Bayesian techniques, e.g., [34].69

The contributions of our study are threefold. First, we use data collected at the70

initial time and along the boundaries of the physical domain to build ambiguity sets71

that enjoy rigorous finite-sample guarantees for the input distributions. Specifically,72

we construct data-driven pointwise ambiguity sets for the unknown true distributions73

of parameterized random inputs, by transferring finite-sample guarantees for their74

associated Wasserstein distance in the parameter domain. The resulting ambiguity75

sets account for empirical information (from the data) without introducing arbitrary76

hypotheses on the distribution of the random parameters. Second, we design tools77

to propagate the ambiguity sets throughout space and time. The MD is employed to78

propagate each ambiguous distribution within the data-driven input ambiguity sets79

according to a physics-dependent CDF equation. For linear dynamics, we use the80

CDF equation to construct an evolution equation for the radius of ambiguity balls81

centered at the empirical distributions in the 1-Wasserstein (a.k.a. Kantorovich) met-82

ric. For a wider class of nonlinear hyperbolic equations with smooth solutions, we83

exploit the CDF equation to propagate the upper and lower envelopes of pointwise84

ambiguity bands. These are formed through upper and lower envelopes that contain85

all CDFs up to an assigned 1-Wasserstein distance from the empirical CDF. Third,86

we use these uncertainty propagation tools to obtain pointwise ambiguity sets across87

all locations of the space-time domain that contain their true distributions with pre-88

scribed probability. Our method can handle both types of input ambiguity sets (based89

on either Wasserstein balls or CDF bands), while maintaining their confidence guar-90

antees upon propagation. This allows the decision maker to map their physics-driven91

stretching/shrinking under the PDE dynamics.92
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2. Preliminaries. Let ‖ · ‖ and ‖ · ‖∞ denote the Euclidean and infinity norm93

in Rn, respectively. The diameter of a set S ⊂ Rn is defined as diam(S) := sup{‖x−94

y‖∞ |x, y ∈ S}. The Heaviside function H : R → R is H(x) = 0 for x < 0 and95

H(x) = 1 for x ≥ 0. We denote by B(Rd) the Borel σ-algebra on Rd, and by P(Rd)96

the space of probability measures on (Rd,B(Rd)). For µ ∈ P(Rd), its support is97

the closed set supp(µ) := {x ∈ Rd |µ(U) > 0 for each neighborhood U of x} or,98

equivalently, the smallest closed set with measure one. We denote by Cdf[P ] the99

cumulative distribution function associated with the probability measure P on R and100

by CD(I) the set of all CDFs of scalar random variables whose induced probability101

measures are supported on the interval I ⊂ R. Given p ≥ 1, Pp(Rd) := {µ ∈102

P(Rd) |
∫
Rd ‖x‖

pdµ <∞} is the set of probability measures in P(Rd) with finite p-th103

moment. The Wasserstein distance of µ, ν ∈ Pp(Rd) is104

Wp(µ, ν) :=
(

inf
π∈M(µ,ν)

{∫

Rd×Rd
‖x− y‖pπ(dx, dy)

})1/p

,105
106

whereM(µ, ν) is the set of all probability measures on Rd×Rd with marginals µ and107

ν, respectively, also termed couplings. For scalar random variables, the Wasserstein108

distance Wp between two distributions µ and ν with CDFs F and G is, cf. [32],109

Wp(µ, ν) =
( ∫ 1

0
|F−1(t)−G−1(t)|pdt

)1/p
, where F−1 denotes the generalized inverse110

of F , F−1(y) = inf{t ∈ R |F (t) > y}. For p = 1, one can use the representation111

W1(µ, ν) =

∫

R
|F (s)−G(s)|ds.(2.1)112

113

Given two measurable spaces (Ω,F) and (Ω′,F ′), and a measurable function Ψ from114

(Ω,F) to (Ω′,F ′), the push-forward map Ψ# assigns to each measure µ in (Ω,F) a115

new measure ν in (Ω′,F ′) defined by ν := Ψ#µ iff ν(B) = µ(Ψ−1(B)) for all B ∈ F ′.116

The map Ψ# is linear and satisfies Ψ#δω = δΨ(ω) with δω the Dirac mass at ω ∈ Ω.117

3. Problem formulation. We consider a hyperbolic model for u(x, t),118

∂u

∂t
+∇ · (q(u;θq)) = r(u;θr), x ∈ Ω, t > 0(3.1)119

120

subject to initial and boundary conditions121

u(x, t = 0) = u0(x), x ∈ Ω122

u(x, t) = ub(x, t), x ∈ Γ, t > 0,(3.2)123124

restricting ourselves to problems with smooth solutions. Equation (3.1), with the125

given flux q(u;θq) and source term r(u;θr), is defined on a d-dimensional semi-infinite126

spatial domain Ω ⊂ Rd, and by the parameters θq and θr, that can be spatially and/or127

temporally varying. The boundary function ub(x, t) is prescribed at the upstream128

boundary Γ. For the sake of brevity, we do not consider different types of boundary129

conditions, although the procedure can be adjusted accordingly. Randomness in the130

initial and/or boundary conditions, u0(x) and ub(x, t), renders (3.1) stochastic. We131

make the following hypotheses.132

Assumption 3.1 (Deterministic dynamics). We assume all parameters in (3.1)133

(i.e., all physical parameters specifying the flux q, θq, and the source term r, θr) are134

deterministic, and the flux q is divergence-free once evaluated for a specific value of135

u(x, t) = U , ∇ · q(U ;θq) = 0.136
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Assumption 3.2 (Existence and uniqueness of local solutions within a time hori-137

zon). There exists T ∈ (0,∞] such that for each initial and boundary condition from138

their probability space, the solution u(x, t) of (3.1) is smooth and defined on Ω×[0, T ).139

Regarding Assumption 3.2, we refer to [25] for a theoretical treatment of local140

existence theorems. In the absence of direct access to the distribution of the ini-141

tial and boundary conditions, we analyze their samples from independent realizations142

of (3.2). Specifically, we measure the initial condition u0 for all x ∈ Ω and get con-143

tinuous measurements of ub at each boundary point for all times (for instance, in a144

traffic flow scenario with Ω representing a long highway segment, a traffic helicopter145

might pass above the area at the same time each morning and take a photo from146

the segment that provides the initial condition for the traffic density u, whereas u at147

the segment boundary is continuously measured by a single-loop detector. Assump-148

tions 3.1 and 3.2 require traffic conditions far from congestion, with deterministic149

parameters describing the flow, specifically maximum velocity and maximum traffic150

density). We are interested in exploiting the samples to construct ambiguity sets that151

contain the temporally- and spatially-variable one-point probability distributions of152

u0(t) and ub(x, t) with high confidence. We consider initial and boundary conditions153

that are specified by a finite number of random parameters.154

Assumption 3.3 (Input parameterization). The initial and boundary conditions155

are parameterized by a := (a1, . . . , an) from a compact subset of Rn, i.e., u0(x) ≡156

u0(x; a) and ub(x, t) ≡ ub(x, t; a). The parameterizations are globally Lipschitz with157

respect to a for each initial position x and boundary pair (x, t). Specifically,158

|u0(x; a)− u0(x; a′)| ≤ L0(x)‖a− a′‖ ∀x ∈ Ω, a,a′ ∈ Rn,(3.3a)159

|ub(x, t; a)− ub(x, t; a′)| ≤ Lb(x, t)‖a− a′‖ ∀x ∈ Γ, t ≥ 0, a,a′ ∈ Rn,(3.3b)160161

for some continuous functions L0 : Ω→ R≥0 and Lb : Γ× R≥0 → R≥0.162

We denote by P true
a the distribution of the parameters in Rn, by P true

u0(x) the induced163

distribution of u0(x; a) at the spatial point x, and by P true
ub(x,t)

the distribution of164

ub(x, t; a) at each boundary point x and time t ≥ 0. We use the superscript ‘true’ to165

emphasize that we refer to the corresponding true distributions, that are unknown.166

We denote by F true
u0(x) ≡ Cdf

[
P true
u0(x)

]
and F true

ub(x,t)
≡ Cdf

[
P true
ub(x,t)

]
their associated167

CDFs and make the following hypothesis for data assimilation.168

Assumption 3.4 (Input samples). We have access to N independent pairs of169

initial and boundary condition samples, (u1
0, u

1
b), . . . , (u

N
0 , u

N
b ), generated by corre-170

sponding independent realizations a1, . . . ,aN of the parameters in Assumption 3.3.171

Under these hypotheses, we seek to derive pointwise characterizations of ambigu-172

ity sets for the CDF of u at each location (x, t) in space and time, starting with their173

characterization for the initial and boundary data. We are interested in defining the174

ambiguity sets in terms of plausible CDFs at each (x, t), and exploiting the known175

dynamics (3.1) to propagate the one-point CDFs of u(x, t) in space and time.176

Problem statement. Given β, we seek to determine sets P0
x, x ∈ Ω and Pbx,t,177

(x, t) ∈ Γ×R≥0 of CDFs that contain the corresponding true CDFs F true
u0(x) and F true

ub(x,t)
178

for the initial and boundary conditions, respectively, with confidence 1− β,179

P({F true
u0(x) ∈ P

0
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pbx,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.180

181

We further seek to leverage the PDE dynamics to propagate the ambiguity sets of the182

initial and boundary data and obtain a pointwise characterization of ambiguity sets183
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Px,t containing the CDF of u(x, t) at each x ∈ Ω and t ∈ [0, T ) with confidence 1−β,184

P(F true
u(x,t) ∈ Px,t ∀(x, t) ∈ Ω× [0, T )) ≥ 1− β.185

186

Section 4 exploits the compactly supported parameterization of the initial and bound-187

ary data to build ambiguity sets which enjoy rigorous finite-sample guarantees. Sec-188

tion 5 derives a deterministic PDE for the CDF of u(x, t), which enables the inves-189

tigation of how the difference between CDFs (and, by integration, their Wasserstein190

distance) evolves in space and time. Section 6 characterizes how the input ambiguity191

sets propagate in space and time under the same confidence guarantees.192

4. Data-driven ambiguity sets for inputs. Using Assumptions 3.3 and 3.4,193

at each x ∈ Ω and boundary pair (x, t) ∈ Γ× R≥0, we define empirical distributions194

P̂Nu0(x) ≡ P̂
N
u0(x)(a

1, . . . ,aN ) :=
1

N

N∑

i=1

δui0(x) ≡
1

N

N∑

i=1

δu0(x;ai),195

P̂Nub(x,t) ≡ P̂
N
ub(x,t)

(a1, . . . ,aN ) :=
1

N

N∑

i=1

δuib(x,t) ≡
1

N

N∑

i=1

δub(x,t;ai),196

197

with associated CDFs F̂Nu0(x) := Cdf
[
P̂Nu0(x)

]
and F̂Nub(x,t) := Cdf

[
P̂Nub(x,t)

]
. We em-198

ploy these empirical distributions to build pointwise ambiguity sets based on concent-199

ration-of-measure results for the 1-Wasserstein distance. Specifically, we exploit com-200

pactness of the initial and boundary data parameterization together with the following201

confidence guarantees about the Wasserstein distance between the empirical and true202

distribution of compactly supported random variables (see [5]).203

Lemma 4.1 (Ambiguity radius). Let (Xi)i∈N be a sequence of i.i.d. Rn-valued204

random variables that have a compactly supported distribution µ and let ρ := diam(supp(µ))/2.205

Then, for p ≥ 1, N ≥ 1, and ε > 0, P(Wp(µ̂
N , µ) ≤ εN (β, ρ)) ≥ 1− β, where206

εN (β, ρ) :=





(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > n/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = n/2,
(

ln(Cβ−1)
c

) 1
n ρ

N
1
n
, if p < n/2,

(4.1)207

208

µ̂N := 1
N

∑N
i=1 δXi , the constants C and c depend only on p, n, and h−1 is the inverse209

of h(x) = x2/[ln(2 + 1/x)]2, x > 0.210

This result quantifies the radius εN (β, ρ) of an ambiguity ball that contains the true211

distribution with high probability. The radius decreases with the number of sam-212

ples and can be tuned by the confidence level 1 − β, allowing the decision maker to213

choose the desired level of conservativeness. The explicit determination of c and C214

in (4.1) through the analysis in [14] for the whole spectrum of data dimensions n215

and Wasserstein exponents p can become cumbersome. Nevertheless, (4.1) provides216

explicit ambiguity radius ratios for any pair of sample sizes once a confidence level is217

fixed. Recall that, according to Assumption 3.3, the mapping of the parameters to218

the initial and boundary data is globally Lipschitz. The following result, whose proof219

is given in Appendix A, is useful to quantify the Wasserstein distance between the220

true and empirical distribution at each input location.221
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Lemma 4.2 (Wasserstein distance under Lipschitz maps). If T : Rn → Rm is222

Lipschitz with constant L > 0, namely, ‖T (x)− T (y)‖ ≤ L‖x− y‖, then for any pair223

of distributions µ, ν on Rn it holds that Wp(µ, ν) ≤ LWp(T#µ, T#ν).224

Using Lemmas 4.1 and 4.2 together with the finite-sample guarantees in the parameter225

domain, we next obtain a characterization of initial and boundary value ambiguity sets226

through pointwise Wasserstein balls. To express the ambiguity sets in terms of CDFs,227

we will interchangeably denote by Wp(FX1
, FX2

) ≡ Wp(PX1
, PX2

) the Wasserstein228

distance between any two scalar random variables X1, X2 with distributions PX1
,229

PX2
and associated CDFs FX1

= Cdf[PX1
], FX2

= Cdf[PX2
].230

Proposition 4.3 (Input ambiguity sets). Assume that N pairs of input samples231

are collected according to Assumption 3.4 and let232

ρa := diam(supp(P true
a ))/2(4.2)233234

and ā ∈ Rn such that ‖a − ā‖∞ ≤ ρa for all a ∈ supp(P true
a ). Given a confidence235

level 1− β, define the ambiguity sets236

P0
x :=

{
F ∈ CD([α0(x), γ0(x)]) |W1(F̂Nu0(x), F ) ≤ L0(x)εN (β, ρa)

}
237

Pbx,t :=
{
F ∈ CD([αb(x, t), γb(x, t)]) |W1(F̂Nub(x,t), F ) ≤ Lb(x, t)εN (β, ρa)

}
,238

239

for x ∈ Ω and x ∈ Γ, t ≥ 0, respectively, where240

[α0(x), γ0(x)] := [u0(x; ā)−
√
nL0(x)ρa, u0(x; ā) +

√
nL0(x)ρa](4.3a)241

[αb(x, t), γb(x, t)] := [ub(x, t; ā)−
√
nLb(x, t)ρa, ub(x, t; ā) +

√
nLb(x, t)ρa],(4.3b)242243

and L0(x), Lb(x, t), and εN (β, ρa) are given by (3.3a), (3.3b), and (4.1). Then,244

P({F true
u0(x) ∈ P

0
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pbx,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.(4.4)245

246

Proof. For the selected confidence 1− β, we get from Lemma 4.1 with p = 1 that247

P(W1(P̂Na , P
true
a ) ≤ εN (β, ρa)) ≥ 1− β.(4.5)248249

Denoting by u0[x] the mapping a 7→ u0[x](a) := u0(x; a), it follows from elementary250

properties of the pushforward map given in section 2 that P̂Nu0(x) = u0[x]#P̂
N
a and251

P true
u0(x) = u0[x]#P

true
a , where P̂Na := 1

N

∑N
i=1 δai . Thus, we obtain from the Lipschitz252

hypothesis (3.3a) and Lemma 4.2 that253

W1(P̂Nu0(x), P
true
u0(x)) ≤ L0(x)W1(P̂Na , P

true
a ), ∀x ∈ Ω.254

255

Since P true
u0(x) = u0[x]#P

true
a , we get from (3.3a), (4.3a), and the selection of ā that256

P true
u0(x) is supported on [α0(x), γ0(x)], and hence, that F true

u0(x) ∈ CD([α0(x), γ0(x)]) for257

all x ∈ Ω. Analogously, we have that258

W1(P̂Nub(x,t), P
true
ub(x,t)

) ≤ Lb(x, t)W1(P̂Na , P
true
a )259

260

and F true
ub(x,t)

∈ CD([αb(x, t), γb(x, t)]) for all (x, t) ∈ Γ× R≥0. Consequently261

{W1(P̂Na , P
true
a ) ≤ εN (β, ρa)} ⊂ {W1(P̂Nu0(x), P

true
u0(x)) ≤ L0(x)εN (β, ρa) ∀x ∈ Ω}262

∩ {W1(P̂Nub(x,t), P
true
ub(x,t)

) ≤ Lb(x, t)εN (β, ρa) ∀(x, t) ∈ Γ× R≥0}.263
264

Thus, since each F true
u0(x) ∈ CD([α0(x), γ0(x)]) and F true

ub(x,t)
∈ CD([αb(x, t), γb(x, t)]), we265

deduce (4.4) from the definitions of the ambiguity sets.266
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We next consider an alternative characterization of the ambiguity sets, which en-267

ables the exploitation of a propagation tool applicable to a wider class of PDE dynam-268

ics, yet at the cost of increased conservativeness. These ambiguity sets are built using269

pointwise confidence bands (thereinafter termed ambiguity bands), enclosed between270

upper and lower CDF envelopes that contain the true CDF at each spatio-temporal271

location with prescribed probability. We rely on the next result, whose proof is given272

in Appendix A, providing upper and lower CDF envelopes for any CDF F and dis-273

tance ρ, cf. Figure 1, so that the CDF of any distribution with 1-Wasserstein distance274

at most ρ from F is pointwise between these envelopes.275

𝐹−1(𝑦) ℝ𝑏

𝑈

𝑎

ℱ𝜌
up
[𝐹]

1

𝐹

𝑡

𝐹(𝑡)

𝑦

ℱ𝜌
up

𝐹 𝑡 = 𝑦
𝑡𝜌
up

𝐹

Fig. 1. Illustration of the upper CDF envelope Fup
ρ [F ] (in yellow) of F (in red). For each

point (t, y) in the graph of Fup
ρ [F ], the blue area enclosed among the lines parallel to the axes that

originate from (t, y) and F is equal to ρ.

Lemma 4.4 (Upper and lower CDF envelopes). Let F ∈ CD([a, b]), define276

tup
ρ [F ] ≡ tup

ρ,[a,b][F ] := sup
{
τ ∈ [a, b]

∣∣∣
∫ b

τ

(1− F (t))dt ≥ ρ
}

277

tlow
ρ [F ] ≡ tlow

ρ,[a,b][F ] := inf
{
τ ∈ [a, b]

∣∣∣
∫ τ

a

F (t)dt ≥ ρ
}

278
279

for any 0 < ρ ≤ min{
∫ b
a
F (t)dt,

∫ b
a

(1 − F (t))dt}, and the corresponding upper and280

lower CDF envelopes Fup
ρ [F ] ≡ Fup

ρ,[a,b][F ] and F low
ρ [F ] ≡ F low

ρ,[a,b][F ]281

Fup
ρ [F ](t) :=





0, if t ∈ (−∞, a)

sup
{
z ∈ [F (t), 1]

∣∣ ∫ z
F (t)

(F−1(y)− t)dy ≤ ρ
}
, if t ∈ [a, tup

ρ [F ])

1, if t ∈ [tup
ρ [F ],∞),

282

F low
ρ [F ](t) :=





0, if t ∈ (−∞, tlow
ρ [F ])

inf
{
z ∈ [0, F (t)]

∣∣ ∫ F (t)

z
(t− F−1(y))dy ≤ ρ

}
, if t ∈ [tlow

ρ [F ], b)

1, if t ∈ [b,∞).

283

284

Then, both Fup
ρ [F ] and F low

ρ [F ] are continuous CDFs in CD([a, b]) and for any F ′ ∈285

CD([a, b]) with W1(F, F ′) ≤ ρ, it holds that286

F low
ρ [F ](t) ≤ F ′(t) ≤ Fup

ρ [F ](t), ∀t ∈ R.(4.6)287288

We rely on Lemma 4.4 to obtain in the next result ambiguity bands for the inputs289

that share the confidence guarantees with the ambiguity sets of Proposition 4.3.290

Corollary 4.5 (Input ambiguity bands). Assume N pairs of input samples291

are collected according to Assumption 3.4 and let ρa and ā as in the statement of292
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Proposition 4.3. Given a confidence level 1− β, define the ambiguity sets293

P0,Env
x :=

{
F ∈ CD(R) | F low

ρ0(x),[α0(x),γ0(x)][F̂
N
u0(x)](U) ≤ F (U)294

≤ Fup
ρ0(x),[α0(x),γ0(x)][F̂

N
u0(x)](U) ∀U ∈ R

}
,295

Pb,Env
x,t :=

{
F ∈ CD(R) | F low

ρb(x,t),[αb(x,t),γb(x,t)]
[F̂Nub(x,t)](U) ≤ F (U)296

≤ Fup
ρb(x,t),[αb(x,t),γb(x,t)]

[F̂Nub(x,t)](U) ∀U ∈ R
}
,297

298

for x ∈ Ω and (x, t) ∈ Γ× R≥0, respectively, where299

ρ0(x) := L0(x)εN (β, ρa)(4.8a)300

ρb(x, t) := Lb(x, t)εN (β, ρa),(4.8b)301302

and [α0(x), γ0(x)], [αb(x, t), γb(x, t)], εN (β, ρa) given by (4.3a), (4.3b), and (4.1). Then303

P({F true
u0(x) ∈ P

0,Env
x ∀x ∈ Ω} ∩ {F true

ub(x,t)
∈ Pb,Env

x,t ∀(x, t) ∈ Γ× R≥0}) ≥ 1− β.(4.9)304
305

Proof. By (4.4) and (4.9), it suffices to show that P0
x ⊂ P0,Env

x and Pbx,t ⊂ P
b,Env
x,t306

for all x ∈ Ω and (x, t) ∈ Ω × R≥0, respectively, with P0
x and Pbx,t given in Propo-307

sition 4.3. Let x ∈ Ω and F ∈ P0
x. Then, we get from the definition of P0

x and308

(4.8a) that F ∈ CD([α0(x), γ0(x)]) and W1(F̂Nu0
, F ) ≤ L0(x)εN (β, ρa) = ρ0(x). Thus,309

since F ∈ CD([α0(x), γ0(x)]), we can invoke Lemma 4.4 and deduce from (4.6) that310

F ∈ P0,Env
x . Analogously, Pbx,t ⊂ P

b,Env
x,t for all (x, t) ∈ Ω× R≥0.311

Remark 4.6 (Confidence bands for components of non-scalar random variables).312

Confidence bands for scalar random variables are well-studied in the statistics liter-313

ature [22]. Their construction has been originally based on the Kolmogorov-Smirnov314

test [18], [29], for which rigorous confidence guarantees have been introduced in [12]315

and further refined in [21]. A key difference of our approach is that we obtain anal-316

ogous guarantees for an infinite (in fact uncountable) number of random variables,317

indexed by all spatio-temporal locations. This is achievable by using the Wasserstein318

ball guarantees in the finite-dimensional but in general non-scalar parameter space.319

Therefore, resorting to traditional confidence band guarantees [21] is possible only in320

the restrictive case where we consider a single random parameter for the inputs. �321

We next present explicit constructions for the upper and lower CDF envelopes of322

the empirical CDF. For n,m ∈ N and t ∈ R, we use the conventions [n : m] = ∅ when323

m < n and [t, t) = ∅. The proof of the following result is given in Appendix A.324

Proposition 4.7 (Upper CDF envelope for discrete distributions). Let F̂ ∈325

CD([a, b]) be the CDF of a discrete distribution with positive mass ci at a finite number326

of points ti, i ∈ [1 : N ] satisfying a =: t0 ≤ t1 < · · · < tN ≤ b and define bi,j :=327 ∑i
k=j(tk − tj)ck, for 0 ≤ j ≤ i ≤ N , (with bi,j = 0 for any other i, j ∈ N0). Given328

ρ > 0 with bN,0 =
∑N
i=1(ti − a)ci > ρ, let j1 := 0, i1 := min{i ∈ [1 : N ] | bi,0 ≥ ρ} and329

jk+1 := max{j ∈ [jk : ik] | bik,j ≥ ρ}+ 1, k = 1, . . . , kmax330

ik+1 := min{i ∈ [ik + 1 : N ] | bi,jk+1
≥ ρ}, k = 1, . . . , kmax − 1,331332

where kmax := min{k ∈ N | bN,jk+1
≤ ρ}. Then, all indices jk, ik are well defined and333

jk < jk+1 ≤ ik < ik+1 ∀k ∈ [1 : kmax],(4.10)334335
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where ikmax+1 := N + 1. Also, for each k ∈ [1 : kmax], let336

∆t` :=
ρ− b`,jk+1∑`
l=jk+1

cl
, τ` := tjk+1

−∆t`, ` ∈ [ik : ik+1 − 1]337

∆y` :=
ρ− bik−1,`

tik − t`
, y` :=

ik−1∑

l=1

cl + ∆y`, ` ∈ [jk : jk+1 − 1].338

339

Then, τ` are defined for all ` ∈ [i1 : N ] and form a strictly increasing sequence with340

t0 = tj1 ≤ · · · ≤ tj2−1 ≤ τi1 ≤ · · · ≤ τi2−1 < tj2 ≤ · · ·(4.11)341

≤ tjk ≤ · · · ≤ tjk+1−1 ≤ τik ≤ · · · ≤ τik+1−1 < tjk+1
≤ · · ·342

≤ tjkmax
≤ · · · ≤ tjkmax+1−1 ≤ τikmax

≤ · · ·343

≤ τikmax+1−1 = τN < tjkmax+1
≤ tikmax

< tN .344345

Further, the upper CDF envelope F̂ up ≡ Fup
ρ [F̂ ] of F̂ is given as346

F̂ up(t) =347




0 if t ∈ (−∞, a),

z` + (y` − z`)
tik−t`
tik−t

if t ∈ [t`, t`+1), ` ∈ [jk : jk+1 − 2], k ∈ [1 : kmax],

if t ∈ [tjk+1−1, τik), ` = jk+1 − 1, k ∈ [1 : kmax],

zjk+1−1 + (z` − zjk+1−1) t`+1−τ`
t`+1−t if t ∈ [τ`, τ`+1), ` ∈ [ik : ik+1 − 2], k ∈ [1 : kmax],

if t ∈ [τik+1−1, tjk+1
), ` = ik+1 − 1, k ∈ [1 : kmax],

1 if t ∈ [τN ,∞),

348

349

where z` :=
∑`
l=0 cl, ` ∈ [0 : N ] and c0 := 0.350

𝜏𝑖𝑘 ℝ𝑏𝑡𝑗𝑘

ℱ𝜌
up[𝐹]

1

𝐹

𝜏𝑖𝑘+1−1

𝑦𝑗𝑘+1−1

𝑡𝑗𝑘+1

𝑡𝑖𝑘 𝑡𝑖𝑘+1
𝑡𝑗𝑘+1−1

Δ𝑦𝑗𝑘+1−1

Δ𝑡𝑖𝑘

𝑡𝑖𝑘max𝑎

𝑦𝑗𝑘

𝑧𝑖𝑘
𝑧𝑖𝑘+1−1

𝝆

𝝆

𝝆

𝑦low

𝑦beg
𝑦

𝑡beg
𝑡

𝑡rt𝑡end
𝑡𝑗𝑘max+1

𝜏𝑁

𝑡𝑁

Fig. 2. Illustration of how the upper CDF envelope Fup
ρ [F ] (in yellow) is constructed for a

discrete distribution with a finite number of atoms.

Proposition 4.7 is illustrated in Figure 2. To construct lower CDF envelopes,351

we introduce the reflection F refl
( a+b2 , 12 )

[F ] of a function F around the point (a+b
2 , 1

2 ),352

i.e., F refl
( a+b2 , 12 )

[F ](t) := 1 − F (a + b − t), t ∈ R. We also define the right-continuous353

version rc[G] of an increasing function G by rc[G](t) := lims↘tG(s), that satisfies354 ∫ t
a
G(s)ds =

∫ t
a

rc[G](s)ds. Combining this with the fact that G−1 ≡ (rc[G])−1 when355
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G is increasing, we deduce from Lemma 4.4 that the upper and lower CDF envelopes356

of a CDF F are well defined and, in fact, are the same with those of any increasing357

function G agreeing with F everywhere except from its points of discontinuity, i.e.,358

with rc[G] = F . The next result explicitly constructs lower CDF envelopes by reflect-359

ing the upper CDF envelopes of reflected CDFs. Its proof is given in Appendix A.360

Lemma 4.8 (Lower CDF envelope via reflection). Let F ∈ CD([a, b]) and ρ > 0361

with ρ ≤
∫ b
a
F (t)dt. Then, the lower CDF envelope of F satisfies362

F low
ρ [F ] = F refl

( a+b2 , 12 )

[
Fup
ρ

[
F refl

( a+b2 , 12 )

[
F
]]]
.363

364

Using Lemma 4.8, one can leverage Proposition 4.7 to obtain the lower CDF365

envelope F low
ρ [F ] of a discrete distribution F ∈ CD([a, b]) with mass ci > 0 at a finite366

number of points a =: t0 ≤ t1 < · · · < tN ≤ b for any ρ > 0 with ρ ≤
∫ b
a
F (t)dt.367

5. CDFs and 1-Wasserstein Distance propagation via the Method of368

Distributions. Here we develop the necessary tools to propagate in space and time369

the input ambiguity sets constructed in section 4. To obtain an evolution equation for370

the single-point cumulative distribution function Fu(x,t) of u(x, t), we introduce the371

random variable Π(U,x, t) = H(U − u(x, t)), parameterized by U ∈ R. The ensemble372

mean of Π over all possible realizations of u at a point (x, t) is the single-point CDF373

〈Π(U,x, t)〉 = Fu(x,t).374375

The dependence of Fu(x,t) on U ∈ R is implied. We henceforth use the notation Ω̃ ≡376

R×Ω, Γ̃ ≡ R× Γ, and x̃ ≡ (U,x) ∈ R ×Rd. Using the Method of Distributions [30],377

one can obtain the next result, whose derivation is summarized in Appendix B.378

Theorem 5.1 (Physics-driven CDF equation [6]). Let Fu0(x), x ∈ Ω, and379

Fub(x,t), (x, t) ∈ Γ × R≥0, be the CDFs of the initial and boundary conditions in380

(3.2). Under Assumptions 3.1 and 3.2, the CDF Fu(x,t) as a solution of (3.1) obeys381

(5.1)
∂Fu(x,t)

∂t
+ Λ · ∇̃Fu(x,t) = 0, x̃ ∈ Ω̃, t ∈ (0, T )382

with Λ = (q̇(U ;θq), r(U ;θr)) and ∇̃ = (∇, ∂/∂U), with q̇ = ∂q/∂U , and subject to383

initial and boundary conditions Fu0(x) and Fub(x,t), respectively.384

The CDF evolution is governed by the linear hyperbolic PDE (5.1), which is385

specific for the physical model (3.1). The next result exploits the properties of (5.1)386

to obtain an upper bound across space and time on the difference between two CDFs.387

Corollary 5.1 (Propagation of upper bound on difference between CDFs).388

Consider a pair of input CDFs F 1
u0(x), F

2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈389

Γ× R≥0 such that390

|e0(x̃)| ≥ |ε0(x̃)| = |F 1
u0(x) − F

2
u0(x)|, ∀x̃ ∈ Ω̃391

|eb(x̃, t)| ≥ |εb(x̃, t)| = |F 1
ub(x,t)

− F 2
ub(x,t)

|, ∀(x̃, t) ∈ Γ̃× R≥0.(5.2)392
393

Then, it holds that394

|e(x̃, t)| ≥ |F 1
u(x,t) − F

2
u(x,t)| = |ε(x̃, t)|, ∀(x̃, t) ∈ Ω̃× [0, T ),(5.3)395

396
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where F 1
u(x,t) and F 2

u(x,t) are the solutions of (5.1) for the corresponding initial and397

boundary data, with e(x̃, t) obeying398

∂|e|
∂t

+ Λ · ∇̃|e| = 0, x̃ ∈ Ω̃, t > 0399

|e(x̃, t = 0)| = |e0(x̃)|, x̃ ∈ Ω̃400

|e(x̃, t)| = |eb(x̃, t)|, x̃ ∈ Γ̃, t > 0(5.4)401402

Proof. Exploiting the linearity of (5.1), one can write an equation for the differ-403

ence ε(x̃, t) = F 1
u(x,t) − F

2
u(x,t),404

∂ε

∂t
+ Λ · ∇̃ε = 0, x̃ ∈ Ω̃, t ∈ (0, T )405

ε(x̃, t = 0) = ε0(x̃), x̃ ∈ Ω̃406

ε(x̃, t) = εb(x̃, t), x̃ ∈ Γ̃, t > 0(5.5)407408

where ε0(x̃) = F 1
u0(x) − F

2
u0(x) and εb(x̃, t) = F 1

ub(x,t)
− F 2

ub(x,t)
are the initial and409

boundary differences, resp. (5.5) can be expressed as the ODE system dε
ds = 0,410

dx̃
ds = Λ, s > 0 with initial/boundary conditions assigned at the intersection between411

the characteristic lines and the noncharacteristic surface delimiting the space-time412

domain. Pointwise input differences ε0(x̃) and εb(x̃, t) are conserved and propagate413

rigidly along deterministic characteristic lines, hence retaining the sign set by the in-414

put. Since the system dynamics does not change the sign of ε along the deterministic415

characteristic lines, ε and |ε| obey the same dynamics416

∂|ε|
∂t

+ Λ · ∇̃|ε| = 0, x̃ ∈ Ω̃, t ∈ (0, T )417

|ε(x̃, t = 0)| = |ε0(x̃)|, x̃ ∈ Ω̃418

|ε(x̃, t)| = |εb(x̃, t)|, x̃ ∈ Γ̃× R≥0.(5.6)419420

For e0(x̃, t) and eb(x̃, t) as in (5.2), and |e(x̃, t)| obeying (5.4), (5.6) implies (5.3).421

The next result shows that propagation in space and time of CDFs is monotonic.422

Corollary 5.2 (Propagation of CDFs is monotonic). Consider a pair of input423

CDFs F 1
u0(x), F

2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈ Γ× R≥0 such that424

F 1
u0(x) ≥ F

2
u0(x) ∀x̃ ∈ Ω̃425

F 1
ub(x,t)

≥ F 2
ub(x,t)

∀(x̃, t) ∈ Γ̃× R≥0(5.7)426
427

Furthermore, we assume F 1
u(x,t) and F 2

u(x,t) to be solutions of (5.1) with F 1
u0(x), F

1
ub(x,t)

428

and F 2
u0(x), F

2
ub(x,t)

initial and boundary conditions, respectively. Then, it holds that429

F 1
u(x,t) ≥ F

2
u(x,t),∀x̃ ∈ Ω̃× [0, T ).(5.8)430

431

Proof. The discrepancy ε(x̃, t) = F 1
u(x,t)−F

2
u(x,t) obeys (5.5). Given non-negative432

initial and boundary conditions, consistently with (5.7), it holds that ε(x̃, t) ≥ 0 for433

all x̃ ∈ Ω̃, t ∈ (0, T ), hence (5.8).434
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The CDF equation (5.1) provides a computational tool for the space-time prop-435

agation of the CDFs of the inputs. If the governing equation (3.1) is linear, we436

show next that one can obtain an evolution equation in the form of a PDE for the437

1-Wasserstein distance between each pair of distributions describing the same under-438

lying physical process.439

Theorem 5.2 (Physics-driven 1-Wasserstein discrepancy equation). Consider a440

pair of distributions F 1
u(x,t) and F 2

u(x,t) obeying (5.1), and assume linearity of (3.1).441

Then, the 1-Wasserstein discrepancy between F 1
u(x,t) and F 2

u(x,t) defined by (2.1),442

ω1(x, t) =
∫
R |F

1
u(x,t) − F

2
u(x,t)|dU , obeys443

∂ω1

∂t
+ q̇ · ∇ω1 − ṙ ω1 = 0, x ∈ Ω, t > 0444

ω1(x, t = 0) = ω0(x), x ∈ Ω445

ω1(x, t) = ωb(x, t), x ∈ Γ, t > 0,(5.9)446447

with ω0(x) =
∫
R |F

1
u0(x) − F 2

u0(x)|dU and ωb =
∫
R |F

1
ub(x,t)

− F 2
ub(x,t)

|dU the input448

discrepancies.449

Proof. (5.9) follows from (5.4) by integration along U ∈ R assuming F 1
u(x,t)(U =450

±∞) = F 2
u(x,t)(U = ±∞), for all x ∈ Ω, t > 0, accounting for the linearity of q(U)451

and r(U).452

Corollary 5.1 and the following Corollary 5.3 take advantage of the linearity and453

hyperbolic structure of (5.4) and (5.9), respectively, and identify a dynamic bound454

for the evolution of the pointwise CDF absolute difference and their 1-Wasserstein455

distance, respectively, once the corresponding discrepancies are set at the initial time456

and along the boundaries.457

Corollary 5.3 (Physics-driven 1-Wasserstein dynamic bound). Consider the458

input CDF pairs F 1
u0(x), F

2
u0(x), x ∈ Ω, and F 1

ub(x,t)
, F 2

ub(x,t)
, (x, t) ∈ Γ × R≥0. Let459

w(x, t) be the solution of (5.9) with initial and boundary conditions satisfying460

w0(x) ≥ ω0(x) = W1

(
F 1
u0(x), F

2
u0(x)

)
∀x ∈ Ω461

wb(x, t) ≥ ωb(x, t) = W1

(
F 1
ub(x,t)

, F 2
ub(x,t)

)
∀(x, t) ∈ Γ× R≥0.(5.10)462

463

Then, it holds that464

ω1(x, t) = W1

(
F 1
u(x,t), F

2
u(x,t)

)
≤ w(x, t) ∀(x, t) ∈ Ω× R≥0,(5.11)465

466

where F 1
u(x,t) and F 2

u(x,t) are the solutions of (5.1) for the corresponding initial and467

boundary distributions.468

Proof. (5.11) follows from condition (5.10) and having w(x, t) and ω1(x, t) that469

fulfill (5.9) with conditions w0, wb and ω0, ωb, respectively.470

6. Ambiguity set propagation under finite-sample guarantees. Here we471

combine the results from sections 4 and 5 to build pointwise ambiguity sets for the472

distribution of u(x, t) over the whole spatio-temporal domain. We first consider the473

general PDE model (3.1) and study how the input ambiguity bands of Corollary 4.5474

propagate in space and time using the CDF equation (5.1).475

Theorem 6.1 (Ambiguity band evolution via the CDF dynamics). Assume that476

N pairs of input samples are collected according to Assumption 3.4. Consider a con-477

fidence 1− β and the CDFs478

F low
u0(x) := F low

ρ0(x),[α0(x),γ0(x)]

[
F̂Nu0(x)

]
, x ∈ Ω479
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F low
ub(x,t)

:= F low
ρb(x,t),[αb(x,t),γb(x,t)]

[
F̂Nub(x,t)

]
, (x, t) ∈ Γ× R≥0480

F up
u0(x) := Fup

ρ0(x),[α0(x),γ0(x)]

[
F̂Nu0(x)

]
, x ∈ Ω481

F up
ub(x,t)

:= Fup
ρb(x,t),[αb(x,t),γb(x,t)]

[
F̂Nub(x,t)

]
, (x, t) ∈ Γ× R≥0,482

483

with [α0(x), γ0(x)], [αb(x, t), γb(x, t)] and ρ0(x), ρb(x, t) as given in (4.3a), (4.3b) and484

(4.8a), (4.8b), respectively. Let F low
u(x,t) and F up

u(x,t) be the solutions of (5.1) with the485

corresponding input CDFs above and define the ambiguity sets486

PEnv
x,t :=

{
F ∈ CD(R) |F low

u(x,t) ≤ F ≤ F
up
u(x,t) ∀U ∈ R

}
, x ∈ Ω, t ∈ [0, T ).487

488

Then P(F true
u(x,t) ∈ P

Env
x,t ∀(x, t) ∈ Ω× [0, T )) ≥ 1− β.489

Proof. Let490

A := {(a1, . . . ,aN ) ∈ RNn |F true
u0(x) ∈ P

0,Env
x (a1, . . . ,aN ) ∀x ∈ Ω491

∧ F true
ub(x,t)

∈ Pb,Env
x,t (a1, . . . ,aN ) ∀(x, t) ∈ Γ× R≥0},492

493

with P0,Env
x and Pb,Env

x,t as given in Corollary 4.5, where we emphasize their dependence494

on the parameter realizations. Then, we have from (4.9) that495

P((a1, . . . ,aN ) ∈ A) ≥ 1− β.(6.1)496497

Next, let (a1, . . . ,aN ) ∈ A and F̂Nu0(x) ≡ F̂Nu0(x)(a
1, . . . ,aN ), x ∈ Ω, F̂Nub(x,t) ≡498

F̂Nub(x,t)(a
1, . . . ,aN ), (x, t) ∈ Γ×R≥0 be the associated empirical input CDFs. These499

generate the corresponding lower CDF envelopes F low
u0(x) ≡ F low

u0(x)(a
1, . . . ,aN ) and500

F low
ub(x,t)

≡ F low
ub(x,t)

(a1, . . . ,aN ) given in the statement, and we deduce from the defi-501

nitions of A and the ambiguity sets P0,Env
x , Pb,Env

x,t that F true
u0(x)(U) ≥ F low

u0(x)(U) for all502

U ∈ R,x ∈ Ω and F true
ub(x,t)

(U) ≥ F low
ub(x,t)

(U) for all U ∈ R, (x, t) ∈ Γ× R≥0. Thus, we503

obtain from Corollary 5.2 applied with F 1
u ≡ F true

u and F 2
u ≡ F low

u that504

F true
u(x,t)(U) ≥ F low

u(x,t)(U) ∀U ∈ R, (x, t) ∈ Ω× [0, T ).505
506

Analogously, we get that F true
u(x,t)(U) ≤ F up

u(x,t)(U) for all U ∈ R, (x, t) ∈ Ω × [0, T ),507

and we deduce from the definition of the ambiguity sets PEnv
x,t in the statement that508

F true
u(x,t) ∈ P

Env
x,t (a1, . . . ,aN ) ∀U ∈ R, (x, t) ∈ Ω× [0, T ).509

510

The result now follows from (6.1).511

Under linearity of the dynamics, we can exploit Corollary 5.3 to propagate the512

tighter Wasserstein input ambiguity balls of Proposition 4.3.513

Theorem 6.2 (Ambiguity set evolution for linear dynamics). Assume that PDE514

(3.1) is linear and N pairs of input samples are collected according to Assumption 3.4.515

Consider a confidence level 1−β and let w(x, t) be the solution of (5.9) with w0(x) =516

L0(x)εN (β, ρa), x ∈ Ω and wb(x, t) = Lb(x, t)εN (β, ρa), (x, t) ∈ Γ×R≥0, and L0(x),517

Lb(x, t), ρa, and εN (β, ρa) given by (3.3a), (3.3b), (4.2), and (4.1). Let F̂Nu(x,t) be518

the solution of (5.1) with the empirical input CDFs F̂Nu0(x) and F̂Nub(x,t) as given in519

section 4 and define the ambiguity sets520

Px,t :=
{
F ∈ CD(R) |W1(F̂Nu(x,t), F ) ≤ w(x, t)

}
, x ∈ Ω, t ∈ R≥0.521

522

Then P(F true
u(x,t) ∈ Px,t ∀(x, t) ∈ Ω× R≥0) ≥ 1− β.523
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14 F. BOSO, D. BOSKOS, J. CORTÉS, S. MART́ıNEZ, D. M. TARTAKOVSKY

Proof. Let A := {(a1, . . . ,aN ) ∈ RNn |F true
u0(x) ∈ P

0
x(a1, . . . ,aN ) ∀x ∈ Ω ∧524

F true
ub(x,t)

∈ Pbx,t(a1, . . . ,aN ) ∀(x, t) ∈ Γ× R≥0}, with P0
x and Pbx,t as given in Proposi-525

tion 4.3. Then, we have from (4.4) that (6.1) holds. Next, let (a1, . . . ,aN ) ∈ A and526

F̂Nu0(x) ≡ F̂Nu0(x)(a
1, . . . ,aN ), x ∈ Ω, F̂Nub(x,t) ≡ F̂Nub(x,t)(a

1, . . . ,aN ), (x, t) ∈ Γ × R≥0527

be the associated input CDFs. From the definition of P0
x, Pbx,t and w0, wb we get528

W1

(
F̂Nu0(x), F

true
u0(x)

)
≤ w0(x) ∀x ∈ Ω529

W1

(
F̂Nub(x,t), F

true
ub(x,t)

)
≤ wb(x, t) ∀(x, t) ∈ Γ× R≥0.530

531

Thus, applying Corollary 5.3 with F 1 ≡ F̂Nu and F 2 ≡ F true
u , W1

(
F̂Nu(x,t), F

true
u(x,t)

)
≤532

w(x, t), for all (x, t) ∈ Ω× R≥0, and it follows from the definition of Px,t that533

F true
u(x,t) ∈ Px,t(a

1, . . . ,aN ) ∀(x, t) ∈ Ω× R≥0.534
535

Combining this with (6.1) for A as given in this proof yields the result.536

7. Numerical example. In this section, we illustrate the use of the ambigu-537

ity propagation tools developed above in a numerical example. We consider a one-538

dimensional version of (3.1) with linear539

q(u) = u, and r(u; θr) = θru, θr ∈ R,(7.1)540541

defined in Ω = R≥0 and subject to the following initial and boundary conditions542

u(x, 0) = u0 = a1 + a2, x ≥ 0543

u(0, t) = ub(t) = a1 + a2 (1 + a3 sin(2πt)) , t ≥ 0(7.2)544545

(note that this fulfills the most restrictive conditions of Theorem 5.2). Because of546

(7.2), in the following we drop the dependence of the input and boundary conditions547

from x. Randomness is introduced by the finite set of (n = 3) i.i.d. uncertain548

parameters a = (a1, a2, a3), which vary in [0, 1]n; according to (4.2), ρa = 1/2. We549

choose a uniform distribution to be the data-generating distribution for a. Both550

u0 and ub(t) are random non-negative variables which are defined on the compact551

supports [0, 2] and [0, 2 + max (0, sin (2πt))], respectively.552

7.1. Shape and size of the input ambiguity sets. We consider data-driven553

1-Wasserstein ambiguity sets for the parameters a, which are constructed according554

to Lemma 4.1 using p = 1 and n = 3. We choose the radius εN (β, ρa) in (4.1) for a555

given sample size N and a fixed β. Threshold radii for different size of the sample N556

and identical confidence level 1−β can be constructed in relative terms, as exemplified557

in [5]. By adjusting εN (β, ρa), the decision-maker determines the level of conserva-558

tiveness of the ambiguity set, and the distributional robustness as a consequence.559

The ambiguity sets for the parameters are scaled into pointwise ambiguity sets for560

the inputs following Proposition 4.3, via the definition of the Lipschitz constants561

ρ0 = L0εN (β, ρa), with L0 :=
√

2,562

ρb(t) = Lb(t)εN (β, ρa), with Lb(t) :=

√
2 + 2 sin2(2πt) + 2 max(0, sin(2πt)).(7.3)563

564

Second, we construct conservative ambiguity envelopes for the initial and the bound-565

ary conditions characterized by a 1-Wasserstein discrepancy larger than ρ0 and ρb(t),566
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respectively, according to Proposition 4.7. These upper and lower envelopes define567

an ambiguity band which enjoys the same performance guarantees as the previously568

defined 1-Wasserstein ambiguity sets. We denote with ρEnv
0 ≥ ρ0 and ρEnv

b (t) ≥ ρb(t)569

the 1-Wasserstein discrepancy between the upper and lower distributions defining the570

initial and boundary ambiguity bands, respectively.571

For both inputs, the maximum pointwise Wasserstein distance ρ0,max and ρb,max(t)572

corresponds to the local size of the support. 1-Wasserstein discrepancies larger than573

the maximum value denote uniformative ambiguity sets. For the chosen scenario,574

ρ0,max = 2 and ρb,max(t) = 2 + max(0, sin(2πt)) for the initial and the boundary val-575

ues, respectively. A comparison of ρb(t), ρ
Env
b (t) and ρb,max(t) is presented in Figure 3576

for different sample sizes N and identical confidence level 1 − β. The corresponding577

values for the initial condition can be read in the same figure at t = 0 because of the578

imposed continuity between initial and boundary conditions at t = 0. Regardless of579

the chosen shape of the ambiguity set, larger N determines smaller ambiguity sets580

characterized by smaller 1-Wasserstein discrepancies. By construction, 1-Wasserstein581

ambiguity sets defined through (7.3) are sharper than the corresponding ambiguity582

bands drawn geometrically via Proposition 4.7 at all times. The temporal behavior583

of ρb(t) is determined by the Lipschitz scaling function Lb(t) in (7.3); in this case it584

is periodic and bounded. Figures 4 and 5 show the corresponding ambiguity bands

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time

10−1

100

101

1-
W

as
se

rs
te

in
d

is
ta

n
ce

ρb,max(t)

]
ρEnv
b (t)

]
ρb(t)

N = 25 N = 100

Fig. 3. Characteristic 1-Wasserstein distances for the pointwise ambiguity sets for ub(0, t).
Black lines correspond to the ρb(t) bounds set in Corollary 4.5 and used to define 1-Wasserstein
ambiguity sets. Yellow lines indicate ρEnv

b (t), the sample-dependent 1-Wasserstein discrepancy be-
tween envelopes defined via the Proposition 4.7 procedure. The line pattern indicates the size of the
data sample N , as listed in the legend. The maximum theoretical 1-Wasserstein discrepancy for
ub(0, t), ρb,max(t), is also drawn (red circles).

585
for u0 and ub(t) at a given time t, respectively, for the same values of sample size N586

and identical confidence level 1−β. Both upper and lower envelopes are data-driven,587

i.e., they depend on the empirical distribution of a specific sample. We also show the588

1-Wasserstein discrepancy between the upper and lower envelopes.589

7.2. Propagation of the ambiguity set. Pointwise 1-Wasserstein distances590

for the inputs can be propagated in space and in time to describe the behavior of591

the ambiguous distributions using (5.9), under the assumption of linear dynamics.592

Solving (5.9) yields a quantitative measure of the stretch/shrink of the ambiguity ball593

in each space-time location. True (unknown) distributions as well as their empirical594

approximations describing the given physical dynamics evolve according to (5.1); the595
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Fig. 4. Ambiguity band for the distributions of u0 for different sample size N and identical

confidence level 1 − β. We use θr = −1. Scatter points represent the empirical distribution F̂Nu0
.

Dashed yellow lines represent the conservative envelopes (with respect to a minimum 1-Wasserstein
distance ρ0) constructed according to Proposition 4.7. The 1-Wasserstein discrepancies for the am-
biguity band - computed between the upper and the lower envelope - are reported in the corresponding
panels, also indicating ρ0.
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Fig. 5. Ambiguity band for the distributions of ub(t) at t = 0.75 for different sample size
N and identical confidence level 1 − β. We use θr = −1. Scatter points represent the empirical

distribution F̂N
ub(t)

. Dashed yellow lines represent the conservative envelopes (with respect to a min-

imum 1-Wasserstein distance ρb(t)) constructed according to Proposition 4.7. The 1-Wasserstein
discrepancies for the ambiguity band are reported in the corresponding panels, also indicating ρb(t).

latter provide an anchor for the pointwise ambiguity balls in (x, t). In Figure 6 we596

present the solution of (5.9), w1(x, t), solved using ρ0 and ρb(t) as defined in (7.3) as597

initial and boundary conditions, respectively. The ambiguity ball shrinks with respect598

to the input conditions as an effect of a depletion dynamics imposed by (3.1) with the599

given choice of θr = −1. As expected, the smaller the sample size N , the larger the600

radius of the ambiguity ball as quantified by w1(x, t).601

The dynamic evolution of ambiguity bands is determined by the evolution of the602

upper and lower envelopes for the input samples, cf. Proposition 4.7, for given sample603

size N and confidence level 1 − β. The envelopes evolve according to (5.1), thus604

requiring no linearity assumption for (3.1). As such, ambiguity bands, while possibly605
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Fig. 6. w1(x, t) as a solution of (5.9) with w0(x) = ρ0 and wb(x, t) = ρb(t) for different sample
size N (N = 25 in the left panel, and N = 100 in the right panel) and identical confidence level
1−β. The dotted line represents the domain partition between regions where information originates
from either the initial or the boundary condition. We use θr = −1.

being more conservative than 1-Wasserstein ambiguity sets in terms of size, can be606

evolved for a wider class of hyperbolic equations. Ambiguity bands are equipped with607

1-Wasserstein measures, as the 1-Wasserstein distance between the upper and the608

lower envelope represents the maximum distance between any pair of distributions609

within the band, and it is constructed to be always larger or equal than the local610

radius of the corresponding ambiguity ball. Confidence guarantees established for the611

inputs (Corollary 4.5) withstand propagation, as demonstrated in Theorem 6.1.612

For a given choice of N , we compare the propagation of 1-Wasserstein ambiguity613

sets with input conditions defined by (7.3) to the data-driven dynamic ambiguity614

bands constructed via Proposition 4.7 and subject to the input envelopes represented615

in Figures 4 and 5. The corresponding w1 maps are shown in Figure 7 (top row).616

In both cases, the pointwise 1-Wasserstein distance undergoes the same dynamics617

established by (5.9), but subject to different inputs (represented in Figure 3). In each618

spatial location, it is possible to track the temporal behavior of the ambiguity set size619

for both shapes, as shown for two representative locations in Figure 7 (bottom row).620

The size of both ambiguity sets decreases from the maximum imposed at the initial621

time for t < x, and reflects the temporal signature of the boundary, dampened as an622

effect of depletion dynamics introduced by (7.1) with θr = −1, for t > x.623

8. Conclusions. We have provided computational tools in the form of PDEs for624

the space-time propagation of pointwise ambiguity sets for random variables obeying625

hyperbolic conservation laws. The initial and boundary conditions of these propaga-626

tion PDEs depend on the data-driven characterization of the ambiguity sets at the627

initial time and along the physical boundaries of the spatial domain. We have intro-628

duced both 1-Wasserstein ambiguity balls and ambiguity bands, formed through upper629

and lower CDF envelopes containing all distributions with an assigned 1-Wasserstein630

distance from their empirical CDFs. The former are propagated by evolving the am-631

biguity radius according to a dynamic law that can be derived exactly in the case of632

linear physical models. The latter are propagated by solving the CDF equation for633

both the upper and the lower CDF envelope defining the ambiguity band. In this634

second case, both linear and non linear physical processes can be described exactly635

in CDF terms, provided that no shock develops in the physical model solution. The636

performance guarantees for the input ambiguity sets of both types are demonstrated637

to withstand propagation through the physical dynamics. These computational tools638

allow the modeler to map the physics-driven stretch/ shrink of the ambiguity sets639
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Fig. 7. Top row: 1-Wasserstein distance maps for the radius of the ambiguity balls w1(x, t)
with input radii (7.3) (left), and the ambiguity band wEnv

1 (x, t) (right), where wEnv
1 (x, t) =

W1(F low
u(x,t)

, F up
u(x,t)

). Bottom row: 1-Wasserstein distance profiles at given locations x = {0.2, 1.}.
The black solid line reflects the 1-Wasserstein ambiguity radius w1(x, t), whereas the yellow dashed
line represents the 1-Wasserstein distance of the ambiguity band, wEnv

1 (x, t). The maximum the-
oretical 1-Wasserstein discrepancy is also drawn, wmax

1 (x, t) (marked red line). The location of
the cross-sections is indicated in the top-row contour plots in the corresponding column (x = 0.2
and x = 1, respectively), whereas the demarcation line t = x is indicated in the bottom panels.
Parameters are set to: N = 100, θr = −1.

size, enabling dynamic evaluations of distributional robustness. Future research will640

consider systems of conservation laws with joint one-point CDFs, the characterization641

of ambiguity sets when shocks are formed under nonlinear dynamics, the assimilation642

of data collected within the space-time domain, the application of these results in643

distributionally robust optimization problems, and sharper concentration-of-measure644

results to reduce conservativeness of the ambiguity sets for small numbers of samples.645

Appendix A. Technical proofs from Section 4. We collect here basic646

properties of generalized CDF inverses used in the following:647

(GI1) F (t) < y ⇒ t < F−1(y);648

(GI2) F (t1) ≤ y ≤ F (t2)⇒ t1 ≤ F−1(y) ≤ t2;649

(GI3) t < F−1(y)⇒ F (t) < y;650

(GI4) F (t) = F (t1) ∀t ∈ [t1, t2) ∧ F (t1) < y ≤ F (t2)⇒ F−1(y) = t2.651

Proof of Lemma 4.2. Let T̂ : Rn × Rn → Rm × Rm with T̂ (x, y) = (T (x), T (y)),652

consider an optimal coupling π for which the infimum in the definition of the distance653

Wp(µ, ν) is attained, and define π̂ := T̂#π = π ◦ T̂−1. Then, it follows that π̂(A ×654

Rm) = (π ◦ T̂−1)(A×Rm) = π(T−1(A)× T−1(Rm)) = µ(T−1(A)) = T#µ(A). Hence,655

T#µ is a marginal of π̂ and similarly T#ν, i.e., π̂ is a coupling between T#µ and T#ν.656

Let φ : Rm×Rm → R with φ(x, y) = ‖x−y‖p and T̂ as given above. Then, we obtain657
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from the change of variables formula and the Lipschitz hypothesis that658

(LHS) =

∫

Rm×Rm
‖x̂− ŷ‖pπ̂(dx̂, dŷ) =

∫

Rm×Rm
φ(x̂, ŷ)π̂(dx̂, dŷ)659

=

∫

Rn×Rn
φ ◦ T̂ (x, y)π(dx, dy) =

∫

Rn×Rn
φ(T (x), T (y))π(dx, dy)660

=

∫

Rn×Rn
‖T (x)− T (y)‖pπ(dx, dy) ≤

∫

Rn×Rn
Lp‖x− y‖pπ(dx, dy) = (RHS).661

662

Thus, we get W p
p (T#µ, T#ν) ≤ (LHS) ≤ (RHS) = LpW p

p (µ, ν), implying the result.663

Proof of Lemma 4.4. We show that Fup
ρ [F ] is continuous and increasing, and664

hence, it is also a CDF, as it takes values in [0, 1] (the proof for F low
ρ [F ] is analogous).665

Notice first that due to (GI1), i.e., that F (t) < y ⇒ t < F−1(y), the mapping666

z 7→
∫ z
F (t)

(F−1(y) − t)dy is strictly increasing for z ∈ [F (t), 1]. Combining this667

fact with continuity of z 7→
∫ z
F (t)

(F−1(y) − t)dy, we deduce existence of a unique668

z ∈ [F (t), 1] so that Fup
ρ [F ](t) = z and

∫ z
F (t)

(F−1(y)− t)dy = ρ for all t ∈ [a, tup
ρ [F ]).669

To show that Fup
ρ [F ] is increasing, let a ≤ t1 < t2 < tup

ρ [F ] with Fup
ρ [F ](t1) = z1 and670

Fup
ρ [F ](t2) = z2 and assume w.l.o.g. that F (t2) < z1. Then, we have that671

ρ =

∫ z1

F (t1)

(F−1(y)− t1)dy ≥
∫ z1

F (t2)

(F−1(y)− t1)dy >

∫ z1

F (t2)

(F−1(y)− t2)dy,672

673

where we exploited that F is increasing in the first inequality. Thus, we get that674

z2 > z1, because also
∫ z2
F (t2)

(F−1(y) − t2)dy = ρ. To prove continuity, let tν → t ∈675

[a, tup
ρ [F ]) and {zν}ν∈N with Fup

ρ [F ](tν) = zν . Then, we have that676

∫ zν

F (tν)

(F−1(y)− tν)dy =

∫ zν

F (t)

(F−1(y)− t)dy677

+

∫ F (t)

F (tν)

(F−1(y)− t)dy +

∫ zν

F (tν)

(t− tν)dy,678

679

or equivalently,
∫ zν
F (t)

(F−1(y) − t)dy = ρ −
∫ F (t)

F (tν)
(F−1(y) − t)dy −

∫ zν
F (tν)

(t − tν)dy.680

Since 0 ≤ F (tν) < zν ≤ 1, and tν → t we get that
∫ zν
F (tν)

(t − tν)dy → 0. For the681

other term, we have w.l.o.g. that F (tν) ≤ y ≤ F (t). It then follows from (GI2) that682

tν ≤ F−1(y) ≤ t and therefore
∣∣ ∫ F (t)

F (tν)
(F−1(y)− t)dy

∣∣ ≤
∫ F (t)

F (tν)
|tν − t|dy → 0. Thus,683

∫ zν

F (t)

(F−1(y)− t)dy → ρ =

∫ z

F (t)

(F−1(y)− t)dy(A.1)684

685

for a unique z ∈ [F (t), 1]. Since z′ 7→
∫ z′
F (t)

(F−1(y)− t)dy is strictly increasing (near686

z) and continuous, its inverse is well defined and continuous (see e.g., [35, Theorem 5,687

Page 168]). Thus, we get from (A.1) that zν → z, establishing continuity of Fup
ρ [F ].688

Next, let F ′ ∈ CD([a, b]) with W1(F, F ′) ≤ ρ. Equivalently,
∫ b
a
|F ′(t)− F (t)|dt ≤689

ρ. We show (4.6) by contradiction. Assume w.l.o.g. that the upper bound in (4.6)690

is violated, and there exists t∗ with F ′(t∗) > Fup
ρ [F ](t∗). Then necessarily t∗ ∈691

[a, tup
ρ [F ]), and since F ′(t∗) > F (t∗), (GI1) implies that F−1(F ′(t∗)) > t∗. Hence,692
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[t∗, F−1(F ′(t∗))) is nonempty and we get from (GI3) that F ′(t) ≥ F (t) for all t ∈693

[t∗, F−1(F ′(t∗))). Consequently, we obtain694

ρ ≥
∫ b

a

|F ′(t)− F (t)|dt ≥
∫ F−1(F ′(t∗))

t∗
|F ′(t)− F (t)|dt695

=

∫ F−1(F ′(t∗))

t∗
(F ′(t)− F (t))dt ≥

∫ F−1(F ′(t∗))

t∗
(F ′(t∗)− F (t))dt696

=

∫ F ′(t∗)

F (t∗)

(F−1(y)− t∗)dy >
∫ Fup

ρ [F ](t∗)

F (t∗)

(F−1(y)− t∗)dy = ρ,697

698

which is a contradiction.699

Proof of Proposition 4.7. We break the proof into several steps.700

Step 1: all indices jk and ik are well defined and satisfy (4.10). We need to701

establish that the min and max operations for the definitions of these indices are not702

taken over the empty set. To show this for all k ∈ [1 : kmax], we verify the following703

Induction Hypothesis (IH):704

(IH) For each k ∈ [1 : kmax], jk, ik are well defined, jk < ik, and bik,jk ≥ ρ.705706

All properties of (IH) can be directly checked for k = 1 by the definition of j1 and707

i1, and the assumption bN,0 > ρ. For the general case, let k ≤ kmax − 1 and assume708

that (IH) is fulfilled. Then, jk+1 is well defined because bik,jk ≥ ρ by (IH). To show709

this also for ik+1 we first establish that ik < N . Indeed, assume on the contrary that710

ik = N . Then, from the definition of jk+1 we have that bik,jk+1
< ρ and we get from711

the definition of kmax that k ≥ kmax, which is a contradiction. Since ik < N , [ik+1 : N ]712

is nonempty. Combining this with the fact that bN,jk+1
> ρ, which follows from the713

definition of kmax and our assumption k < kmax, we deduce that the minimum in714

the definition of ik+1 is taken over a non-empty set. Hence, ik+1 is well defined. In715

addition, we get from the definitions of jk+1 and ik+1 that jk+1 < ik+1 and from the716

definition of ik+1 that bik+1,jk+1
≥ ρ. Thus, we have shown (IH). Finally, jkmax+1 is717

also well defined because bikmax ,jkmax
≥ ρ by (IH). Having established that jk and ik718

are well defined for all k ∈ [1 : kmax +1], (4.10) follows directly from their expressions.719

Step 2: establishing (4.11). By the definition of jk+1, we get720

bik,jk+1
< ρ ∀k ∈ [1 : kmax].(A.2)721722

In addition, we have that723

bik+1−1,jk+1
< ρ ∀k ∈ [0 : kmax].(A.3)724725

For k = 0 this follows from the definition of j1 and i1. To show it also for k ∈ [1 : kmax]726

we consider two cases. If bik+1,jk+1
≥ ρ, then, by definition, ik+1 = ik + 1 and we get727

from (A.2) that bik+1−1,jk+1
= bik,jk+1

< ρ. In the other case where bik+1,jk+1
< ρ,728

(A.3) follows directly from the definition of ik+1. Next, note that due to (4.10) and729

the fact that ikmax+1 = N + 1, the times τ` are indeed defined for all ` ∈ [i1 : N ].730

In addition, for each k ∈ [1 : kmax] we get from (A.3) that ρ − b`,jk+1
> 0 for all731

` ∈ [ik : ik+1−1]. Hence, ∆t` is positive and strictly decreasing with ` ∈ [ik : ik+1−1]732

and we have from the definition of the τ`’s that733

τ` < τ`′ ∀k ∈ [1 : kmax], `, `′ ∈ [ik : ik+1 − 1] with ` < `′(A.4)734

τik+1−1 < tjk+1
∀k ∈ [1 : kmax].(A.5)735
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736

By the definition of jk+1 we further obtain that737

bik,jk+1−1 ≥ ρ ∀k ∈ [1 : kmax].(A.6)738739

From the latter and the definition of ∆tik , which implies that ∆tik
∑ik
l=jk+1

cl +740

bik,jk+1
= ρ, we get that bik,jk+1−1 ≥ ∆tik

∑ik
l=jk+1

cl + bik,jk+1
, or equivalently, that741

ik∑

l=jk+1−1

(tl − tjk+1−1)cl −
ik∑

l=jk+1

(tl − tjk+1
)cl ≥ ∆tik

ik∑

l=jk+1

cl ⇔742

ik∑

l=jk+1

(tjk+1
− tjk+1−1)cl ≥ ∆tik

ik∑

l=jk+1

cl ⇔ tjk+1
− tjk+1−1 ≥ ∆tik .743

744

Thus, we deduce from the definition of τ` with ` ≡ ik that τik ≥ tjk+1−1 for k ∈745

[1 : kmax]. Using this, and recalling that {t`}N`=0 are strictly increasing, we get from746

(4.10), (A.4), and (A.5), that {τ`}N`=j1 are strictly increasing and (4.11) is satisfied.747

Step 3: verification of the formula for F̂ up for t ∈ (−∞, a) ∪ [τN ,∞). For748

t ∈ (−∞, a), it follows directly from the definition of the upper CDF envelope. To es-749

tablish it also when t ∈ [τN ,∞), it suffices again from the definition of the upper CDF750

envelope to show that τN = tup
ρ [F̂ ], with tup

ρ given in the statement of Lemma 4.4. To751

show this, note that since by (4.11) tjkmax+1−1 ≤ τN < tjkmax+1
, we have752

∫ b

τN

(1− F̂ (t))dt =

∫ tN

τN

(1− F̂ (t))dt =

∫ tjkmax+1

τN

(1− F̂ (t))dt753

+

∫ tN

tjkmax+1

(1− F̂ (t))dt = (tjkmax+1
− τN )

N∑

l=jkmax+1

cl + bN,jkmax+1
,754

755

which, in turn, equals ∆tN
∑N
l=jkmax+1

cl+bN,jkmax+1
. Thus, we get from the definition756

of ∆tN that
∫ b
τN

(1− F̂ (t))dt =
ρ−bN,jkmax+1∑N
l=jkmax+1

cl

∑N
l=jkmax+1

cl+ bN,jkmax+1
= ρ, and hence757

τN = sup{τ ∈ [a, b] |
∫ b
τ

(1 − F̂ (t))dt ≥ ρ} = tup
ρ [F̂ ]. It remains to verify the formula758

for F̂ up for all intermediate intervals, which are of the form [tbeg, tend). To each of759

these intervals we also associate a right time-instant trt. For each k ∈ [1 : kmax], tbeg,760

tend, and trt are given by one of the following cases.761

Case 1) tbeg = t` and tend = t`+1 with ` ∈ [jk : jk+1 − 2], and trt = tik ;762

Case 2) tbeg = tjk+1−1, tend = τik , and trt = tik ;763

Case 3) tbeg = τ` and tend = τ`+1 with ` ∈ [ik : ik+1 − 2], and trt = t`+1;764

Case 4) tbeg = τik+1−1, tend = tjk+1
, and trt = tik+1

.765

One can readily check from the formula for F̂ up that these cases cover all intermediate766

intervals. To verify the formula for all [tbeg, tend) we will exploit the following fact:767

Fact I) For each of the Cases 1)–4) and pair (t, y) with t ∈ (tbeg, tend) and768

y = F̂ up(t), it holds that F̂−1(y) = trt.769

Step 4: Proof of Fact I. Recall that770

F̂ up(t) = sup

{
z ∈ [F̂ (t), 1]

∣∣∣
∫ z

F̂ (t)

(F̂−1(y)− t)dy ≤ ρ
}

(A.7)771
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772

and note that773

∫ F̂ (ti)

F̂ (tj)

(F̂−1(y)− tj)dy = bi,j ∀ 0 ≤ j ≤ i ≤ N.(A.8)774

775

We first consider Case 1). Let t ∈ (t`, t`+1) with ` ∈ [jk : jk+1 − 2]. Then, we have776

from (4.10) and (A.8) that777

∫ F̂ (tik )

F̂ (t)

(F̂−1(y)− t)dy ≥
∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− tjk+1−1)dy = bik,jk+1−1 ≥ ρ,778

∫ F̂ (tik−1)

F̂ (t)

(F̂−1(y)− t)dy ≤
∫ F̂ (tik−1)

F̂ (tjk )

(F̂−1(y)− tjk)dy = bik−1,jk < ρ,779

780

where we exploited (A.6) and (A.3) for each last inequality, respectively. Thus, it781

follows from (A.7) that F̂ (tik−1) < F̂ up(t) ≤ F̂ (tik), which implies by (GI4) that782

F̂−1(F̂ up(t)) = tik ≡ trt. For Case 2), let t ∈ (tjk+1−1, τik). Then, we get from (A.8)783

and the definition of τik that784

∫ F̂ (tik )

F̂ (t)

(F̂−1(y)− t)dy ≥
∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− τik)dy =

∫ F̂ (tik )

F̂ (tjk+1−1)

(F̂−1(y)− tjk+1
)dy785

+

∫ F̂ (tik )

F̂ (tjk+1−1)

(tjk+1
− τik)dy = bik,jk+1

+ ∆tik

ik∑

l=jk+1

cl = ρ,786

787

whereas by arguing precisely as in Case 1), we get that
∫ F̂ (tik−1)

F̂ (t)
(F̂−1(y)− t)dy < ρ.788

Thus, we deduce F̂ (tik−1) < F̂ up(t) ≤ F̂ (tik), and hence, by (GI4), F̂−1(F̂ up(t)) =789

tik ≡ trt. The proof of Fact I for Cases 3) and 4) follows similar arguments and790

exploits the orderings (4.10) and (4.11), and we omit it for space reasons.791

Step 5: verification of the formula for F̂ up for t ∈ [a, τN ). Let any interval792

(tbeg, tend) as given by Cases 1)–4), let t ∈ (tbeg, tend), {tν}ν∈N ⊂ (tbeg, tend) with793

tν ↘ tbeg, and denote y ≡ F̂ up(t), yν ≡ F̂ up(tν), ν ∈ N. Due to Fact I, F̂−1(y) =794

trt, F̂−1(yν) = trt for all ν ∈ N. We use this together with z = F̂ up(t)⇔
∫ F̂−1(z)

t
(z−795

F̂ (s))ds = ρ and the continuity of F̂ up (which implies yν → ybeg ≡ F̂ up(tbeg)) to get796

∫ F−1(y)

t

(y − F̂ (s))ds =

∫ F−1(yν)

tν

(yν − F̂ (s))ds ∀ν ∈ N⇔797

∫ trt

t

(y − F̂ (s))ds =

∫ trt

tν

(yν − F̂ (s))ds ∀ν ∈ N⇔798

∫ trt

t

(y − F̂ (s))ds =

∫ trt

tbeg

(ybeg − F̂ (s))ds⇔799

∫ trt

t

(y − ybeg)ds+

∫ trt

t

(ybeg − F̂ (s))ds =

∫ t

tbeg

(ybeg − ylow)ds+

∫ trt

t

(ybeg − F̂ (s))ds⇔800

(y − ybeg)(trt − t) = (ybeg − ylow)(t− tbeg),801802
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with ylow = F̂ (tbeg), cf. Figure 2. Hence, y = ybeg +(ybeg−ylow)
t−tbeg

trt−t = ylow +(ybeg−803

ylow)
trt−tbeg

trt−t . The proof is completed by verifying the formula for F̂ up at tbeg for each804

interval given by Cases 1)–4), which follows from the definitions of y` and z`.805

Proof of Lemma 4.8. We exploit the following equivalences for any F ∈ CD([a, b])806

and pair (t, y) in the graph of its lower and upper CDF envelopes:807

y = F low
ρ [F ](t)⇔

∫ t

F−1(y)

(F (s)− y)ds = ρ(A.9a)808

y = Fup
ρ [F ](t)⇔

∫ F−1(y)

t

(y − F (s))ds = ρ.(A.9b)809
810

We also use the following elementary results about the left inverse of a CDF F ∈811

CD(R), defined by F−1
left(y) := inf{t ∈ R |F (t) ≥ y}.812

Fact II) For any y ∈ (0, 1), F−1(1− y) = a+ b− F̃−1
left(y), where F̃ ≡ F refl

( a+b2 , 12 )
[F ].813

Fact III) For any y ∈ [0, 1] and t ∈ R,
∫ F−1

left(y)

t
(y − F (s))ds =

∫ F−1(y)

t
(y − F (s))ds.814

Next, let F ∈ CD([a, b]) and denote F̃ ≡ F refl
( a+b2 , 12 )

[F ] and F̃ up ≡ Fup
ρ [F̃ ]. To prove the815

result, we show that F low
ρ [F ](t) = F refl

( a+b2 , 12 )

[
F̃ up](t) for any t for which these values816

are in (0, 1). Let y = 1 − F̃ up(a + b − t) = F refl
( a+b2 , 12 )

[
F̃ up](t) ∈ (0, 1). We show that817

∫ t
F−1(y)

(F (s)− y)ds = ρ, which by (A.9a) implies that F low
ρ [F ](t) = y. Indeed,818

∫ t

F−1(y)

(F (s)− y)ds =

∫ t

F−1(1−F̃up(a+b−t))
(F (s)− (1− F̃ up(a+ b− t)))ds819

=

∫ t

a+b−F̃−1
left(F̃

up(a+b−t))
(F (s)− (1− F̃ up(a+ b− t)))ds820

=

∫ F̃−1
left(F̃

up(a+b−t))

a+b−t
(F̃ up(a+ b− t)− F̃ (s))ds821

=

∫ F̃−1(F̃up(a+b−t))

a+b−t
(F̃ up(a+ b− t)− F̃ (s))ds = ρ,822

823

where we used Fact II in the second equality, that the reflection around (a+b
2 , 1

2 ),824

i.e., the change of variables (t, y) 7→ (a + b − t, 1 − y) is an isometry in the third825

equality, Fact III in the fourth equality, and the equivalent characterization (A.9b)826

for y = Fup
ρ [F ](t) in the last equality.827

Proof of Fact II. Let y ∈ (0, 1). Then828

F−1(1− y) = inf{t ∈ R |F (t) > 1− y} = inf F−1((1− y,∞))829

= supF−1((−∞, 1− y]) = sup{t ∈ R |F (t) ≤ 1− y}830

= sup{t ∈ R | 1− F̃ (a+ b− t) ≤ 1− y}831

= sup{a+ b− τ, τ ∈ R | 1− F̃ (τ) ≤ 1− y}832

= a+ b+ sup{−τ, τ ∈ R | F̃ (τ) ≥ y}833

= a+ b− inf{τ ∈ R | F̃ (τ) ≥ y} = a+ b− F̃−1
left(y),834835

where we used F is increasing and inf I = sup Ic for any intervals I, Ic with I∪Ic = R836

in the third equality.837
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Proof of Fact III. To show the result we will prove that
∫ F−1(y)

F−1
left(y)

(y−F (s))ds = 0.838

Since F−1(y) ≥ F−1
left(y), it suffices to consider the case of strict inequality. Then,839

the result follows directly from the fact that F (s) = y for any s ∈ (F−1
left(y), F−1(y)),840

which can be readily checked by the definitions of F−1 and F−1
left.841

Appendix B. Derivation of the CDF equation. An equation for the842

Cumulative Distribution Function of u(x, t), solution of (3.1), obeying Assumption 3.1843

and Assumption 3.2, is obtained via the Method of Distributions in three steps. First,844

we rely on the following inequalities for the newly introduced random variable Π(x̃, t)845

∂Π

∂t
= −∂Π

∂U

∂u

∂t
, ∇Π = −∂Π

∂U
∇u.(B.1)846

847

Second, we multiply (3.1) by − ∂Π
∂U and, accounting for (B.1), we obtain a stochastic848

PDE for Π(U,x, t):849

∂Π

∂t
+ q̇(U) · ∇Π = −∂Π

∂U
r(U), x ∈ Ω, U ∈ R, t > 0,(B.2)850

851

with q̇ = ∂q/∂U . This formulation is exact in case of smooth solutions of (3.1) [23]852

and whenever ∇ · q(U) = 0. (B.2) is defined in an augmented (d + 1)-dimensional853

space Ω̃ = Ω×R, and it is subject to initial and boundary conditions that follow from854

the initial and boundary conditions of the original model855

Π(U,x, t = 0) = Π0 = H(U − u0(x)), x̃ ∈ Ω̃856

Π(U,x, t) = Πb(U,x, t) = H(U − ub(t)), x ∈ Γ, U ∈ ΩU , t > 0.857858

Finally, since the ensemble average of Π is the CDF of u, Fu(x,t) = 〈Π(U,x, t)〉,859

ensemble averaging of (B.2) yields (5.1). This equation is subject to initial and860

boundary conditions along (Γ× R)861

Fu(x,t) = Fu0(x), x̃ ∈ Ω̃, t = 0862

Fu(x,t) = Fub(x,t), x ∈ Γ, U ∈ R, t > 0.(B.3)863864

The relaxation of Assumptions 3.1 and 3.2 leads to different (and often approximated)865

CDF equations: we refer to [6, 7] for a complete discussion.866
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