16

19

NN NN NN NN
S O e W N

3

DYNAMICS OF DATA-DRIVEN AMBIGUITY SETS FOR
HYPERBOLIC CONSERVATION LAWS WITH UNCERTAIN INPUTS*

FRANCESCA BOSO*', DIMITRIS BOSKOS*f, JORGE CORTES!, SONIA MARTINEZ?,
AND DANIEL M. TARTAKOVSKYT

Abstract. Ambiguity sets of probability distributions are used to hedge against uncertainty
about the true probabilities of random quantities of interest (Qols). When available, these ambigu-
ity sets are constructed from both data (collected at the initial time and along the boundaries of
the physical domain) and concentration-of-measure results on the Wasserstein metric. To propagate
the ambiguity sets into the future, we use a physics-dependent equation governing the evolution of
cumulative distribution functions (CDF) obtained through the method of distributions. This study
focuses on the latter step by investigating the spatio-temporal evolution of data-driven ambiguity
sets and their associated guarantees when the random Qols they describe obey hyperbolic partial-
differential equations with random inputs. For general nonlinear hyperbolic equations with smooth
solutions, the CDF equation is used to propagate the upper and lower envelopes of pointwise ambi-
guity bands. For linear dynamics, the CDF equation allows us to construct an evolution equation
for tighter ambiguity balls. We demonstrate that, in both cases, the ambiguity sets are guaranteed
to contain the true (unknown) distributions within a prescribed confidence.
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1. Introduction. Hyperbolic conservation laws describe a wide spectrum of en-
gineering applications ranging from multi-phase flows [8] to networked traffic [19]. The
underlying dynamics is described by first-order hyperbolic partial differential equa-
tions (PDEs) with non-negligible parametric uncertainty, induced by factors such
as limited and/or noisy measurements and random fluctuations of environmental at-
tributes. Decisions based, in whole or in part, on predictions obtained from such mod-
els have to account for this uncertainty. The decision maker often has no distributional
knowledge of the parametric uncertainties affecting the model and uses data—often
noisy and insufficient—to make inferences about these distributions. Robust stochas-
tic programming [2] calls for a quantifiable description of sets of probability measures,
termed ambiguity sets, that contain the true (yet unknown) distribution with high
confidence (e.g., [24, 13, 28]). The availability of such sets underpins distribution-
ally robust optimization (DRO) formulations [2, 27] that are able of hedging against
these uncertainties. Ambiguity sets are typically defined either through moment con-
straints [10] or statistical metric-like notions such as ¢-divergences [1] and Wasser-
stein metrics [13], which allow the designer to identify distributions that are close to
the nominal distribution in the prescribed metric. Ideally, ambiguity sets should be
rich enough to contain the true distribution with high probability; be amenable to
tractable reformulations; capture distribution variations relevant to the optimization
problem without being overly conservative; and be data-driven. Wasserstein ambigu-
ity sets have emerged as an appropriate choice because of two reasons. First, they
provide computationally convenient dual reformulations of the associated DRO prob-
lems [13, 15]. Second, they penalize horizontal dislocations of the distributions [26],
which considerably affect solutions of the stochastic optimization problems. Fur-
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2 F. BOSO, D. BOSKOS, J. CORTES, S. MART{NEZ, D. M. TARTAKOVSKY

thermore, data-driven Wasserstein ambiguity sets are accompanied by finite-sample
guarantees of containing the true distribution with high confidence [14, 11, 33], re-
sulting in DRO problems with prescribed out-of-sample performance. Our recent
work [4, 5] has explored how ambiguity sets change under deterministic flow maps
generated by ordinary differential equations, and used this information in dynamic
DRO formulations. For these reasons, Wasserstein DRO formulations are utilized in a
wide range of applications including distributed optimization [9], machine learning [3],
traffic control [20], power systems [16], and logistics [17].

We consider two types of input ambiguity sets. The first is based on Wasser-
stein balls, whereas the second exploits CDF bands that contain the CDF of the true
distribution with high probability. Our focus is on the spatio-temporal evolution of
data-driven ambiguity sets (and their associated guarantees) when the random quan-
tities they describe obey hyperbolic PDEs with random inputs. Many techniques
can be used to propagate uncertainty affecting the inputs of a stochastic PDE to its
solution. We use the method of distributions (MD) [30], which yields a determinis-
tic evolution equation for the single-point cumulative distribution function (CDF) of
a model output [6]. This method provides an efficient alternative to numerically de-
manding Monte Carlo simulations (MCS), which require multiple solutions of the PDE
with repeated realizations of the random inputs. It is ideal for hyperbolic problems,
for which other techniques (such us stochastic finite elements and stochastic collo-
cation) can be slower than MCS [7]. In particular, when uncertainty in initial and
boundary conditions is propagated by a hyperbolic deterministic PDE with a smooth
solution, MD yields an exact CDF equation [31, 6]. Regardless of the uncertainty
propagation technique, data can be used both to characterize the statistical prop-
erties of the input distributions and reduce uncertainty by assimilating observations
into probabilistic model predictions via Bayesian techniques, e.g., [34].

The contributions of our study are threefold. First, we use data collected at the
initial time and along the boundaries of the physical domain to build ambiguity sets
that enjoy rigorous finite-sample guarantees for the input distributions. Specifically,
we construct data-driven pointwise ambiguity sets for the unknown true distributions
of parameterized random inputs, by transferring finite-sample guarantees for their
associated Wasserstein distance in the parameter domain. The resulting ambiguity
sets account for empirical information (from the data) without introducing arbitrary
hypotheses on the distribution of the random parameters. Second, we design tools
to propagate the ambiguity sets throughout space and time. The MD is employed to
propagate each ambiguous distribution within the data-driven input ambiguity sets
according to a physics-dependent CDF equation. For linear dynamics, we use the
CDF equation to construct an evolution equation for the radius of ambiguity balls
centered at the empirical distributions in the 1-Wasserstein (a.k.a. Kantorovich) met-
ric. For a wider class of nonlinear hyperbolic equations with smooth solutions, we
exploit the CDF equation to propagate the upper and lower envelopes of pointwise
ambiguity bands. These are formed through upper and lower envelopes that contain
all CDF's up to an assigned 1-Wasserstein distance from the empirical CDF. Third,
we use these uncertainty propagation tools to obtain pointwise ambiguity sets across
all locations of the space-time domain that contain their true distributions with pre-
scribed probability. Our method can handle both types of input ambiguity sets (based
on either Wasserstein balls or CDF bands), while maintaining their confidence guar-
antees upon propagation. This allows the decision maker to map their physics-driven
stretching/shrinking under the PDE dynamics.

This manuscript is for review purposes only.
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AMBIGUITY SETS FOR HYPERBOLIC CONSERVATION LAWS 3

2. Preliminaries. Let || - || and || - ||c denote the Euclidean and infinity norm
in R™, respectively. The diameter of a set S C R™ is defined as diam(S) := sup{||z —
Ylloo |2,y € S}. The Heaviside function H : R — R is H(z) = 0 for < 0 and
H(z) =1 for x > 0. We denote by B(R?) the Borel o-algebra on R?, and by P(R?)
the space of probability measures on (R% B(R?)). For pu € P(R?), its support is
the closed set supp(u) := {r € R?|u(U) > 0 for each neighborhood U of z} or,
equivalently, the smallest closed set with measure one. We denote by Cdf[P] the
cumulative distribution function associated with the probability measure P on R and
by CD(I) the set of all CDFs of scalar random variables whose induced probability
measures are supported on the interval I C R. Given p > 1, Pp(Rd) = {p €
PRY)| [oa |[|Pdp < oo} is the set of probability measures in P(R?) with finite p-th
moment. The Wasserstein distance of u,v € P,(R?) is

W)= (ot { [ - ylatnan}) "

TEM(p,v)

where M (u, v) is the set of all probability measures on R? x R? with marginals 1 and
v, respectively, also termed couplings. For scalar random variables, the Wasserstein
distance W, between two distributions p and v with CDFs F' and G is, cf. [32],
Wy (u,v) = (fol |F=1(t) — Gil(t)|pdt)1/p, where F~! denotes the generalized inverse
of F, F~1(y) =inf{t € R| F(t) > y}. For p = 1, one can use the representation

(2.1) Wier) = [ 1F(s) = Glo)lds

Given two measurable spaces (2, F) and (£, F'), and a measurable function ¥ from
(Q, F) to (', F"), the push-forward map ¥y assigns to each measure g in (2, F) a
new measure v in (', ') defined by v := U pu iff v(B) = u(¥~(B)) for all B € F'.
The map V4 is linear and satisfies W40, = dy () with d,, the Dirac mass at w € Q.

3. Problem formulation. We consider a hyperbolic model for u(x,t),

(3.1) % +V-(q(u;0y) =r(u;0,), x€Q, t>0

subject to initial and boundary conditions

u(x,t =0) =up(x), x€N
(3.2) u(x,t) =up(x,t), xe€l, t>0,

restricting ourselves to problems with smooth solutions. Equation (3.1), with the
given flux q(u; 8,) and source term r(u; 6,), is defined on a d-dimensional semi-infinite
spatial domain Q C R?, and by the parameters 0, and 0, that can be spatially and/or
temporally varying. The boundary function u,(x,t) is prescribed at the upstream
boundary I'. For the sake of brevity, we do not consider different types of boundary
conditions, although the procedure can be adjusted accordingly. Randomness in the
initial and/or boundary conditions, ug(x) and us(x,t), renders (3.1) stochastic. We
make the following hypotheses.

AssuMPTION 3.1 (Deterministic dynamics). We assume all parameters in (3.1)
(i.e., all physical parameters specifying the flux q, 04, and the source term r, 6,.) are
deterministic, and the flur q is divergence-free once evaluated for a specific value of
u(x,t) =U, V-q(U;8,) =0.

This manuscript is for review purposes only.
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AssuMPTION 3.2 (Existence and uniqueness of local solutions within a time hori-
zon). There exists T € (0,00] such that for each initial and boundary condition from
their probability space, the solution u(x,t) of (3.1) is smooth and defined on Q2x[0,T).

Regarding Assumption 3.2, we refer to [25] for a theoretical treatment of local
existence theorems. In the absence of direct access to the distribution of the ini-
tial and boundary conditions, we analyze their samples from independent realizations
of (3.2). Specifically, we measure the initial condition ug for all x €  and get con-
tinuous measurements of u, at each boundary point for all times (for instance, in a
traffic flow scenario with €2 representing a long highway segment, a traffic helicopter
might pass above the area at the same time each morning and take a photo from
the segment that provides the initial condition for the traffic density u, whereas u at
the segment boundary is continuously measured by a single-loop detector. Assump-
tions 3.1 and 3.2 require traffic conditions far from congestion, with deterministic
parameters describing the flow, specifically maximum velocity and maximum traffic
density). We are interested in exploiting the samples to construct ambiguity sets that
contain the temporally- and spatially-variable one-point probability distributions of
uo(t) and up(x,t) with high confidence. We consider initial and boundary conditions
that are specified by a finite number of random parameters.

AssUMPTION 3.3 (Input parameterization). The initial and boundary conditions
are parameterized by a := (a1,...,a,) from a compact subset of R", i.e., up(x) =
ug(x;a) and up(x,t) = up(x,t;a). The parameterizations are globally Lipschitz with
respect to a for each initial position x and boundary pair (x,t). Specifically,

(3.3a) lug(x;a) —up(x;a’)| < Lo(x)[|la—a'|| VxeQ, a,a" R,
(3.3b) |up(x,t;a) —wp(x,t;a")| < Ly(x,t)Ja—a’| vxel, t>0, aa eR"

for some continuous functions Lo : @ = R>g and Ly : I' x R>g — R>o.

We denote by Pi™ the distribution of the parameters in R™, by Piglfi) the induced
distribution of ug(x;a) at the spatial point x, and by P4¢ . the distribution of

up(x,t)
up(x, t;a) at each boundary point x and time ¢ > 0. We use the superscript ‘true’ to
emphasize that we refer to the corresponding true distributions, that are unknown.
We denote by Fgg‘(li) = Cdf [P;Z‘(li)] and ng‘(lit) = Cdf [PZ;‘(lfct)} their associated
CDF's and make the following hypothesis for data assimilation.
ASsSUMPTION 3.4 (Input samples). We have access to N independent pairs of
initial and boundary condition samples, (uj,ui),...,(u) ,ud’), generated by corre-

sponding independent realizations a', ... aYN of the parameters in Assumption 3.5.

Under these hypotheses, we seek to derive pointwise characterizations of ambigu-
ity sets for the CDF of u at each location (x,t) in space and time, starting with their
characterization for the initial and boundary data. We are interested in defining the
ambiguity sets in terms of plausible CDFs at each (x,¢), and exploiting the known
dynamics (3.1) to propagate the one-point CDFs of u(x,t) in space and time.

PROBLEM STATEMENT. Given (3, we seek to determine sets P2, x € Q and P,lzyt,
(x,t) € I'xR>q of CDFs that contain the corresponding true CDFs FZZ‘(‘f{) and Ff”r)‘(lfc 0
for the initial and boundary conditions, respectively, with confidence 1 — j3,

P{Fe) € PLVx € QF N{FI ) € Py, V(x,t) €T x Rxo}) > 1— 4.

uo (x up

We further seek to leverage the PDE dynamics to propagate the ambiguity sets of the
initial and boundary data and obtain a pointwise characterization of ambiguity sets

This manuscript is for review purposes only.



AMBIGUITY SETS FOR HYPERBOLIC CONSERVATION LAWS 5
184 Py containing the CDF of u(x,t) at each x € Q and t € [0,T) with confidence 1 — 3,
188 P(Fyin € Pxt V(x,1) € 2 x [0,T)) > 1 8.

187 Section 4 exploits the compactly supported parameterization of the initial and bound-
188 ary data to build ambiguity sets which enjoy rigorous finite-sample guarantees. Sec-
189 tion 5 derives a deterministic PDE for the CDF of u(x,t), which enables the inves-
190 tigation of how the difference between CDFs (and, by integration, their Wasserstein
191 distance) evolves in space and time. Section 6 characterizes how the input ambiguity
192 sets propagate in space and time under the same confidence guarantees.

193 4. Data-driven ambiguity sets for inputs. Using Assumptions 3.3 and 3.4,
194 at each x € Q and boundary pair (x,t) € I" x R>, we define empirical distributions

1 X 1 X
1o DN pN 1 Ny . = ;
195 Puo(x) = Puo(x)(a yee,alt )= N g 5u6(x) = E Sup(x;at)s
i=1 =

N N
~ ~ 1 1
196 Pﬁ(x,t) = Pi\;(x’t)(al, coalY) = N E 5u;;(x,t) =% E Ouy (x,t5a7)
i=1 i=1

195 with associated CDFs FN o := Cdf [PY ] and FN = Cdf [PN ] We em-
199  ploy these empirical distributions to build pointwise ambzguzty sets based on concent-
)0 ration-of-measure results for the 1-Wasserstein distance. Specifically, we exploit com-
1 pactness of the initial and boundary data parameterization together with the following
2 confidence guarantees about the Wasserstein distance between the empirical and true
3 distribution of compactly supported random variables (see [5]).

204 LEMMA 4.1 (Ambiguity radius). Let (X;);en be a sequence of i.i.d. R™-valued
205 random variables that have a compactly supported distribution p and let p := diam(supp(p))/2.§
206 Then, forp>1, N > 1, and € > 0, P(W,(i™, pn) < en(B,p)) > 1 — 3, where

1
(ln(CCB 1))% L ifp>n/2,

207 (4.1) en(B,p) == h~ (IH(C’B ) p, if p=mn/2,

n 1 .
(71 (CB )) NL%, if p<n/2,

bS] \»—‘
m‘,__

c

200 V= % Z 19x,, the constants C' and ¢ depend only on p, n, and h~ L is the inverse
210 of h(zx) = x2/[ln(2 +1/2)]%, = > 0.

211 This result quantifies the radius ex (8, p) of an ambiguity ball that contains the true
212 distribution with high probability. The radius decreases with the number of sam-
213 ples and can be tuned by the confidence level 1 — 3, allowing the decision maker to
214 choose the desired level of conservativeness. The explicit determination of ¢ and C
215 in (4.1) through the analysis in [14] for the whole spectrum of data dimensions n
216 and Wasserstein exponents p can become cumbersome. Nevertheless, (4.1) provides
217 explicit ambiguity radius ratios for any pair of sample sizes once a confidence level is
218 fixed. Recall that, according to Assumption 3.3, the mapping of the parameters to
219 the initial and boundary data is globally Lipschitz. The following result, whose proof
220 is given in Appendix A, is useful to quantify the Wasserstein distance between the
221 true and empirical distribution at each input location.

This manuscript is for review purposes only.
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LEMMA 4.2 (Wasserstein distance under Lipschitz maps). If T : R — R™ is
Lipschitz with constant L > 0, namely, | T(z) — T (y)|| < L||x — y||, then for any pair
of distributions pu, v on R™ it holds that W, (p,v) < LW, (Tiup, Tyv).

Using Lemmas 4.1 and 4.2 together with the finite-sample guarantees in the parameter
domain, we next obtain a characterization of initial and boundary value ambiguity sets
through pointwise Wasserstein balls. To express the ambiguity sets in terms of CDF's,
we will interchangeably denote by W,(Fx,, Fx,) = Wp(Px,, Px,) the Wasserstein
distance between any two scalar random variables X;, X9 with distributions Px,,
Px, and associated CDFs Fx, = Cdf[Px,]|, Fx, = Cdf[Px,].

PROPOSITION 4.3 (Input ambiguity sets). Assume that N pairs of input samples
are collected according to Assumption 3.4 and let

(4.2) pa = diam (supp(PL"™)) /2

and a € R™ such that ||a — a||s < pa for all a € supp(PL™°). Given a confidence
level 1 — 3, define the ambiguity sets

Py = {F € CD([ao(x), 70 (x)]) | Wi ( uo(pr) < Lo(x)en(B, pa) }
Pro = {F € CD([an(x,1), (%, O))) | Wi(F ()0 F) < Lo(x,)en (B, pa) s
forxeQ and x €T, t > 0, respectively, where

(4.3a) [ao (%), 70(%)] := [uo(x;8) — VLo (X)pas to(X; @) + v1Lo(X)pal

(4.3b)  [ow(x,1), %(x,1)] = [up(x,t;8) — V/nLy(x,1)pa, up(x, t;8) + VnLy(X, ) pal,
and Lo(x), Ly(x,t), and en (53, pa) are given by (3.3a), (3.3b), and (4.1). Then,
(4.4)  PHFI) e PLvx e QY N{FX ) € PL V(x,1) €T x Ryo}) > 1.

uo(x)

Proof. For the selected confidence 1 — 3, we get from Lemma 4.1 with p = 1 that
(4.5) P(W1(BY, Pi™®) < ex(B,pa)) > 1 - 6.

Denoting by uo[x] the mapping a — wug[x](a) := up(x;a), it follows from elementary
properties of the pushforward map glven in section 2 that P o) = = wo[x ]#Pzi\' and

nge) = ug[x]x P, where Pajlv == Ei:l ai. Thus, we obtain from the Lipschitz

hypothesis (3.3a) and Lemma 4.2 that

Wi(PY o, P )) < Lo(x)W1 (PY, PE), vx € Q.

x)?

Since Pff‘g;i) = wuo[x]xP™Me, we get from (3.3a), (4.3a), and the selection of a that
Ptrue s supported on [ag(x),70(x)], and hence, that Ftr“e) € CD(Jap(x),v0(x)]) for

uo (x) wo (x
allox € Q. Analogously, we have that
WP s PES 1) < Li(x, ) Wi (P, P)

up (%,8)7 7 up (1)

and Ft“(lfi 1 € CD([aw(x, 1), 1 (x, t)]) for all (x,t) € I' x R>o. Consequently

{(Wi(PN, P) < en (B, pa)} € {Wi(P
N {wy (PN

uo(x)7 Pt;l(lfc)) < LO(X)GN(B?pa) Vx € Q}
Ptrue ) S Lb(x7t)eN(/6a pa) V(X7t) el'x RZO}

up (,6) Ly (x,)

Thus, since each F,;"t0) € CD([ao(x),70(x)]) and Fs ) € CD([an(x, 1), (%, 1)]), w
deduce (4.4) from the definitions of the ambiguity sets. D

This manuscript is for review purposes only.
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AMBIGUITY SETS FOR HYPERBOLIC CONSERVATION LAWS 7

We next consider an alternative characterization of the ambiguity sets, which en-
ables the exploitation of a propagation tool applicable to a wider class of PDE dynam-
ics, yet at the cost of increased conservativeness. These ambiguity sets are built using
pointwise confidence bands (thereinafter termed ambiguity bands), enclosed between
upper and lower CDF envelopes that contain the true CDF at each spatio-temporal
location with prescribed probability. We rely on the next result, whose proof is given
in Appendix A, providing upper and lower CDF envelopes for any CDF F' and dis-
tance p, cf. Figure 1, so that the CDF of any distribution with 1-Wasserstein distance
at most p from F' is pointwise between these envelopes.

. ty' [F]
% PIFl =y 1 /‘r__
F, P[F] y v
T R : :
a t Fl(y) b R

Fic. 1. Illustration of the upper CDF envelope FpY[F| (in yellow) of F (in red). For each
point (t,y) in the graph of Fp¥[F), the blue area enclosed among the lines parallel to the azes that
originate from (t,y) and F is equal to p.

LEMMA 4.4 (Upper and lower CDF envelopes). Let F' € CD([a,b]), define

HP[F) = £ [F] := sup Te[a,b}‘ /b(l—F(t))dtzp}

tlpow[F] = ti)o’v[fl’b] [F] := mf T € [a,b] ‘ / t)dt > p

for any 0 < p < min{f; F(t)dt,f;(l — F(t))dt}, and the corresponding upper and

lower CDF envelopes F,P[F] = ]-';f[’a’b} [F] and F)*™[F] = ]:loa lF]
0, if t € (—o0,a)
FoPIF|(t) := { sup {z 1] | fF(t Hy) —t)dy < p} if t € [a, t“p[ D
1, if ¢ € [thP[F], 00),
0, if t € (—oo0, "V [F])
FF () = Qint {z € 0, F@)| [7O@ = Fl@)dy < p}, ifte EVFLY)
1, if t € [b, 00).

Then, both FP[F] and F,*™[F] are continuous CDFs in CD([a,b]) and for any F' €
CD([a,b]) with W1 (F, F") < p, it holds that

(4.6) FXNF)(t) < F'(t) < FpP[F](t), VteR.

We rely on Lemma 4.4 to obtain in the next result ambiguity bands for the inputs
that share the confidence guarantees with the ambiguity sets of Proposition 4.3.

COROLLARY 4.5 (Input ambiguity bands). Assume N pairs of input samples
are collected according to Assumption 3.4 and let p, and a as in the statement of

This manuscript is for review purposes only.
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Proposition 4.3. Given a confidence level 1 — 3, define the ambiguity sets

PLE = {F € CD(R) | FX%0) foo (0 m0 00 i ) (U) < F(U)

~

up N
< F o) o) 10 60 o 0} (U) YU € R
b,Env R (e)'\'4 =
Pre™ = {F € CD(R) | Fitic ) fo () s ()] oy () (U) < F(U)
up oN
S F oyl )20 ] En ey (U) VU € R

forx € Q and (x,t) € ' x Rxq, respectively, where

(4.8a) po(x) := Lo(x)en (B, pa)
(48b) pb(x7t) = Lb(xvt)EN(ﬁ7pa)7

and [ag(x), 70(x)], [e(x, 1), (%, t)], en (B, pa) given by (4.3a), (4.3b), and (4.1). Thenl}
(4.9) PUEIS) € PYE™ vx € QN {Fie ) € Poy™ V(x,t) €T x Rxo}) > 1 - 6.

Proof. By (4.4) and (4.9), it suffices to show that P C PZF™ and P}, C Pi:ltanv
for all x € Q and (x,t) € Q x R, respectively, with P{ and P,’;t given in Propo-
sition 4.3. Let x € Q and F € P2. Then, we get from the definition of P2 and
(4.8a) that F' € CD([ap(x),70(x)]) and Wl(ﬁqfé,F) < Lo(x)en (B, pa) = po(x). Thus,
since F' € CD([ap(x),v0(x)]), we can invoke Lemma 4.4 and deduce from (4.6) that

F € PYEY. Analogously, P, C PLEN for all (x,t) € Q x R>o. |

x,t

REMARK 4.6 (Confidence bands for components of non-scalar random variables).
Confidence bands for scalar random variables are well-studied in the statistics liter-
ature [22]. Their construction has been originally based on the Kolmogorov-Smirnov
test [18], [29], for which rigorous confidence guarantees have been introduced in [12]
and further refined in [21]. A key difference of our approach is that we obtain anal-
ogous guarantees for an infinite (in fact uncountable) number of random variables,
indexed by all spatio-temporal locations. This is achievable by using the Wasserstein
ball guarantees in the finite-dimensional but in general non-scalar parameter space.
Therefore, resorting to traditional confidence band guarantees [21] is possible only in
the restrictive case where we consider a single random parameter for the inputs. [

We next present explicit constructions for the upper and lower CDF envelopes of
the empirical CDF. For n,m € N and t € R, we use the conventions [n : m| = () when
m < n and [t,t) = . The proof of the following result is given in Appendix A.

ProrosITION 4.7 (Upper CDF envelope for discrete distributions).  Let Fe
CD([a,b]) be the CDF of a discrete distribution with positive mass ¢; at a finite number
of points t;, i € [1 : N]| satisfying a =: to < t1 < --- < ty < b and define b; ; =
ZZ:j(tk —tj)ck, for 0 < j < i <N, (with b;; = 0 for any other i,j € Ng). Given
p >0 with by = Zﬁvzl(ti —a)e; > p, let j1:=0, 41 :=min{i € [1: N]|b; 0 > p} and

Je41 =max{j € [Jk : ]| bi,; > pr+1, k=1,... knax
Tht1 1= min{i S [Zk +1: N]|bi,jk+1 > p}, k=1,..., knax — 1,

where knyax == min{k € N|by j, ., < p}. Then, all indices ji,ix are well defined and

(4.10) Ik < Jk+1 < ik < ig+1 Vk € [1 : k‘max],
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where iy, . +1:= N + 1. Also, for each k € [1 : kyax], let
p—be; o
Aty = 27%“, T =t — Aty, L E iy g1 — 1]
I=jrt1
p—b ip—1
— i —1,0 . .
Ay = ﬁ, Ye = Z a+ Aye, L€ [kt frr — 1.
£ =1

Then, 1y are defined for all £ € [i; : N| and form a strictly increasing sequence with

(4.11) <t <y, S
- < t]k+1_1 < Tik <-

<t <. . <

= = tjkmax+1*

< Tig—1 < th <
- < Tigp1—1 < t]k+1 =
1< Ty, . <

<t

x+1 — “%kmax

< Tigpagr1—1 = TN <1j, <tn.

Further, the upper CDF envelope Foe = ]-'”p[ ] ofF is given as

F'™(t) =
0 if t € (—o0,a),
2o+ (yo — 20) 5 t; if t € [tg, tm) 0€ [t jusr — 2,k €1 kmaxl,
ift €[ty -1, ), £ = Jrs1 — Lk € [1: kmax],
if t € [1g,7041), 2 € [ig : tpr1 — 2],k € [1: kmax)s
[
[

) te41—Te
ij-f-l*l) tor1—t

Zjrt1—1 + (Zf

lft S le+1_1, Jk+1) € = ik+1 — 1,]{3 c []. . kmax],

1 if t € [Tv, 00),
4
where zg := Y ,_yc, L €[0: N] and co := 0.
1
—
Al E FPIF]
P
Zigy1—1 = d
Zik ‘ |
Ayfk+1_1
i 7g —
YL @3 e N
Yk ]
e o S ey
t, & tn A g
\ o e e ' begl tend lrt
a ik Gikwr=1Tigg ikas ™ tjkmax+1tikmax b R t
Cigpr—1

Fic. 2. Illustration of how the upper CDF envelope ]’EP[F] (in yellow) is constructed for a
discrete distribution with a finite number of atoms.

Proposition 4.7 is illustrated in Figure 2. To construct lower CDF envelopes,

we introduce the reflection ]-'(riﬁb 1\[F] of a function F around the point (%%, 1),

]-'r& )[F](t) =1—F(a+b—1t),t € R. We also define the right-continuous
2

1
version rc[é] of an increasing function G by rc[G](t) = limg; G(s), that satisfies
f; G(s)ds = fa rc[G](s)ds. Combining this with the fact that G=1 = (rc[G]) !

when
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G is increasing, we deduce from Lemma 4.4 that the upper and lower CDF envelopes
of a CDF F' are well defined and, in fact, are the same with those of any increasing
function G agreeing with F' everywhere except from its points of discontinuity, i.e.,
with rc[G] = F. The next result explicitly constructs lower CDF envelopes by reflect-
ing the upper CDF envelopes of reflected CDFs. Its proof is given in Appendix A.

LEMMA 4.8 (Lower CDF envelope via reflection). Let F' € CD([a,b]) and p > 0
with p < fab F(t)dt. Then, the lower CDF envelope of F salisfies

FOF = Bl [F (P

Using Lemma 4.8, one can leverage Proposition 4.7 to obtain the lower CDF
envelope F)°V[F] of a discrete distribution F' € CD([a, b]) with mass ¢; > 0 at a finite

number of points a =: tg < t; < --- <ty < b for any p > 0 with p < f; F(t)dt.

5. CDFs and 1-Wasserstein Distance propagation via the Method of
Distributions. Here we develop the necessary tools to propagate in space and time
the input ambiguity sets constructed in section 4. To obtain an evolution equation for
the single-point cumulative distribution function Fy ;) of u(x,t), we introduce the
random variable II(U, x,t) = H(U — u(x,t)), parameterized by U € R. The ensemble
mean of IT over all possible realizations of u at a point (x,t) is the single-point CDF

(I(U,x,t)) = Fux,p)-

The dependence of F,(x ) on U € R is implied. We henceforth use the notation Q=
RxQ)IT=RxI,and X = (U,x) € R x R, Using the Method of Distributions [30],
one can obtain the next result, whose derivation is summarized in Appendix B.

THEOREM 5.1 (Physics-driven CDF equation [6]).  Let F, ), X € Q, and
Fuyxt), (x,t) € I' x R, be the CDFs of the initial and boundary conditions in
(3.2). Under Assumptions 3.1 and 3.2, the CDF Fy (x4 as a solution of (3.1) obeys

aF‘u(x,t)

(5.1) o

+A-VE,n=0, XeQte(0,T)
with A = (q(U;0,),7(U;0,)) and V = (V,8/8U), with ¢ = dq/dU, and subject to
wnitial and boundary conditions F (x) and Fy, (x,1), respectively.

The CDF evolution is governed by the linear hyperbolic PDE (5.1), which is

specific for the physical model (3.1). The next result exploits the properties of (5.1)
to obtain an upper bound across space and time on the difference between two CDF's.

COROLLARY 5.1 (Propagation of upper bound on difference between CDF's).
; - : 1 2 1 2
Consider a pair of input CDFs Fug(x), Fuo(x), x € 2, and Fub(x,t), Fub(x’t), (x,t) €
I' x R>q such that

leo®)] = leoX)| = [Fuy =~ Frigol: VX EQ

U

(52) D] 2 & 0] = [Fh o — Fo ol V&) €T x R,

Then, it holds that

(5'3) |€()~(, t)l 2 |F1}(x,t) - Fj(x7t)| = |€()~(7 t)l’ V(§7 t) € ﬁ x [O,T)’
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where Fj(xﬁ and Fi(xi) are the solutions of (5.1) for the corresponding initial and
boundary data, with e(X,t) obeying

%JFA.%M:(), XeNt>0
le(X,t = 0)| = |eo(X)], xeN
(5.4) le(x,t)| = en(%, 1)1, Xel,t>0

Proof. Exploiting the linearity of (5.1), one can write an equation for the differ-
ence &(X,1) = F, y — I}

u u(x,t)’

Oe ~ o~

aJrA-Va:O, xeQte(0,7)

e(X,t = 0) = £0(X), Xe
(5.5) (X, 1) = ep(X, 1), xel,t>0
where €0(X) = F, ) = Fr o and ep(X,t) = F, . — F? ) are the initial and
boundary differences, resp. (5.5) can be expressed as the ODE system % =0,
% = A, s > 0 with initial/boundary conditions assigned at the intersection between

the characteristic lines and the noncharacteristic surface delimiting the space-time
domain. Pointwise input differences £q(X) and £,(X,t) are conserved and propagate
rigidly along deterministic characteristic lines, hence retaining the sign set by the in-
put. Since the system dynamics does not change the sign of € along the deterministic
characteristic lines, € and |e| obey the same dynamics

%w&ﬂdzo, xeQte(0,T)
le(X,t = 0)] = |eo(X)], xeQ
(5.6) e, )| = |en(X, 1)l X eT x Rso.

For eg(X,t) and e(X,t) as in (5.2), and |e(X,t)| obeying (5.4), (5.6) implies (5.3). 0O
The next result shows that propagation in space and time of CDFs is monotonic.

COROLLARY 5.2 (Propagation of CDF's is monotonic). Consider a pair of input
CDFs F! F? x € Q, and Fjb( F? (x,t) € T' x R>q such that

o(x)? " ug(x)? x,t)7 T up(x,t)’
1 2 = -0
Fugi) 2 Fipy  ¥X €10
(5.7) Foon) = Foven V(X 1) €T x Rxg
Furthermore, we assume Fi(xﬁ and sz(ng) to be solutions of (5.1) with Fio(x), Fjb(x@

F2

up (x,t)

and F?

w0 () wiatial and boundary conditions, respectively. Then, it holds that

(5.8) Froey = Flon, X €Qx [0,T).

Proof. The discrepancy &(X,t) = Fi(x " fFj(x "

initial and boundary conditions, consistently with (5.7), it holds that e(X,¢) > 0 for
all x € Q,t € (0,T), hence (5.8). d

obeys (5.5). Given non-negative
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The CDF equation (5.1) provides a computational tool for the space-time prop-
agation of the CDFs of the inputs. If the governing equation (3.1) is linear, we
show next that one can obtain an evolution equation in the form of a PDE for the
1-Wasserstein distance between each pair of distributions describing the same under-
lying physical process.

THEOREM 5.2 (Physics-driven 1-Wasserstein discrepancy equation). Consider a
pair of distributions Fj(x y and F? obeying (5.1), and assume linearity of (3.1).
) defined by (2.1),

(x,t)

Then, the 1-Wasserstein discrepancy between Fi(x £ and F?

u(x,t

wi(x,t) = [g [Fyery = FipenldU, obeys

0
%—i—q Vw, — 7w =0, x€t>0
wi(x,t=0) = wp(x), x €0
(5.9) w1 (x,t) = wp(x,t), xel,t>0,
with wo(x) = [ |F} o) — Fruo (x)|dU and wy = [ |F} s (x,8) ~ ub(xt)|dU the input

dzscrepanczes

Proof. (o 9) follows from (5.4) by integration along U € R assuming F'! W, t)(U =
+too) = u(x (U = £00), for all x € 0, > 0, accounting for the linearity of q(U)
and r(U).

Corollary 5.1 and the following Corollary 5.3 take advantage of the linearity and
hyperbolic structure of (5.4) and (5.9), respectively, and identify a dynamic bound
for the evolution of the pointwise CDF absolute difference and their 1-Wasserstein
distance, respectively, once the corresponding discrepancies are set at the initial time
and along the boundaries.

O

COROLLARY 5.3 (Physics-driven 1-Wasserstein dynamic bound). Consider the
input CDF pairs Fulo(x), F? x € Q, and Fulb(x’t), Ffb(x’t), (x,t) € I' x R>qg. Let

wo (x)?

w(x,t) be the solution of (5.9) with initial and boundary conditions satisfying

(5.10) wp(x,t) > wb(x, t)y=w (Flb(x t)7F35(x t)) V(x,t) € I' x R>q.
Then, it holds that
(5.11) wi(x,t) =W, (Fi(xyty Ff(xyt)) <w(x,t) VY(x,t) € QxRso,

where Fi(xi) and Fj(x’t) are the solutions of (5.1) for the corresponding initial and
boundary distributions.

Proof. (5.11) follows from condition (5.10) and having w(x,t) and wq(x,t) that
fulfill (5.9) with conditions wg, wp and wg,wp, respectively. d

6. Ambiguity set propagation under finite-sample guarantees. Here we
combine the results from sections 4 and 5 to build pointwise ambiguity sets for the
distribution of u(x,t) over the whole spatio-temporal domain. We first consider the
general PDE model (3.1) and study how the input ambiguity bands of Corollary 4.5
propagate in space and time using the CDF equation (5.1).

THEOREM 6.1 (Ambiguity band evolution via the CDF dynamics). Assume that
N pairs of input samples are collected according to Assumption 3.4. Consider a con-

fidence 1 — 8 and the CDFs

~

low N
Funt) = Fpol faotme) [Funeo) s X €
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~

low N
Fub(x t) ‘pr(x t),[ep (%,) 775 (%,t)] [ up (X, t)] (X7 t) el x RZO

up . _ N
Fuato = F oot fanmmntal Fuoeo], X €0
up up N
Fub(x t) ]:pb(x,t),[ab(x,t),wb(x,t)] [Fub(x,t)]’ (X’ t) € I'x Rxo,

with [ao(x), Y0(X)], [an(X,1), v (x, )] and po(x), pp(x,t) as given in (4.3a), (4.3b) and

(4.8a), (4.8b), respectively. Let Fvljz‘)’cv,t) and Fu(x y be the solutions of (5.1) with the

corresponding input CDF's above and define the ambiguity sets
P = {F eCDR)|Fx, <F < F,b. VU ER}, x€Qtel0,T).
Then IED(Ftrue ’PE“" V(x,t) e x[0,T)) >1-5.
Proof. Let
A:={(a.. )GRN"|F3“§) e PYEv (Al . alV)vx € Q
N EME e Pry™(@l,. L aN) V(x,t) €T x Rxo},

with P2Env and Pb v as given in Corollary 4.5, where we emphasize their dependence
on the parameter reahzations. Then, we have from (4.9) that

(6.1) P((al,...,aV) e 4) >1- 3.

Next, let (al,...,a") € A and F x) = Fu 0 L..,al), x e Q Fb(xt) =
Fqﬁ(x t)( al,...,al), (x,t) eI x Rxg be the associated empirical input CDFs. These
generate the corresponding lower CDF envelopes Flo"("x) Flo‘z’x)( al,...,a") and
Ften = Fton(@l,...,a") given in the statement, and we deduce from the defi-
nitions of A and the ambiguity sets P21V, Pﬁ:]fnv that F,"t0 (U) > F, O‘E’x)(U) for all
UeR,x€Qand Ftr‘zf( »(U) > Fu‘Z‘g’x y(U) for all U € R, (x,1) € I' x R>o. Thus, we

obtain from Corollary 5.2 applied with F! = F% and F2? = F'°V that
Ewey(U) = By oy (U) YU €R, (x,t) € 2% [0,T).

u u

Analogously, we get that Fi1¢, (U) < F;l(px’t)(U) for all U € R, (x,t) € Q x [0,T),

and we deduce from the definition of the ambiguity sets PE‘“’ in the statement that
i, e PR (al,...,a") VU R, (x,t) € 2 x [0,T).

The result now follows from (6.1). |

Under linearity of the dynamics, we can exploit Corollary 5.3 to propagate the
tighter Wasserstein input ambiguity balls of Proposition 4.3.

THEOREM 6.2 (Ambiguity set evolution for linear dynamics). Assume that PDE
(3.1) is linear and N pairs of input samples are collected according to Assumption 3.4.
Consider a confidence level 1 — B and let w(x,t) be the solution of (5.9) with wy(x) =
Lo(x)en (5, pa), x € Q and wy(x,t) = Ly(x,t)en (8, pa), (x,t) € I' X R>g, and Lo(x),

Ly(x,t), pa, and en(B, pa) given by (3.3a), (3.3b), (4.2), and (4.1). Let FJ\(’x y be
the solution of (5.1) with the empirical input CDF's ﬁqu(x) and ﬁqu(x 4 s given in

section 4 and define the ambiguity sets
Pt = {F € CDR) | Wi(F), ., F) Sw(x,t)}, x€Q,teRs.

u(

Then P(FIe, € Py Y(x,1) € 2 x Ryg) > 1 — 5.
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Proof. Let A := {(a',...,a") € RN"[F"e, € PR(a',....a") V¥x € @ A
qui‘(l;,t) e Py, (a,...,aV) V(x,t) € I x Ry}, with P{ and P}, as given in Proposi-
tion 4.3. Then, we have from (4.4) that (6.1) holds. Next, let (al,...,a") € A and
Fi\g(x) = Fé\g(x)(al,...,aN), x € Q, Fé\b[(x’t) = Fqﬁ(xt)(al,...,aN), (x,t) € ' x R>g

be the associated input CDFs. From the definition of P¢, PL, and wo, wy, we get
Wi (ﬁN F”ue)) <wp(x) VxeQ

uo (%)~ uo(x

Wi (EN o, Fimte ) Swp(x,t) ¥(x,t) €T x R

uy (x,t)

~

Thus, applying Corollary 5.3 with F! = FN and F? = Firve, W (qugxyt), F&iet)) <
w(x, t), for all (x,t) € Q x Rxp, and it follows from the definition of Py ; that
Ftl&l:jt) S Px,t(al, - ,aN) V(X, t) €0 x RZO'

u

Combining this with (6.1) for A as given in this proof yields the result. d

7. Numerical example. In this section, we illustrate the use of the ambigu-
ity propagation tools developed above in a numerical example. We consider a one-
dimensional version of (3.1) with linear

(7.1) q(u) =u, and r(u;6,.)=0u, 6,€R,
defined in 2 = R>( and subject to the following initial and boundary conditions

u(z,0) =up=a1+az, x>0
(7.2) u(0,t) = up(t) = a1 + az (1 + agsin(27t)), t>0

(note that this fulfills the most restrictive conditions of Theorem 5.2). Because of
(7.2), in the following we drop the dependence of the input and boundary conditions
from z. Randomness is introduced by the finite set of (n = 3) i.i.d. uncertain
parameters a = (a1, as,as), which vary in [0, 1]"; according to (4.2), pa = 1/2. We
choose a uniform distribution to be the data-generating distribution for a. Both
ug and up(t) are random non-negative variables which are defined on the compact
supports [0,2] and [0, 2 + max (0, sin (27t))], respectively.

7.1. Shape and size of the input ambiguity sets. We consider data-driven
1-Wasserstein ambiguity sets for the parameters a, which are constructed according
to Lemma 4.1 using p = 1 and n = 3. We choose the radius ex (53, pa) in (4.1) for a
given sample size N and a fixed 8. Threshold radii for different size of the sample N
and identical confidence level 1— 5 can be constructed in relative terms, as exemplified
in [5]. By adjusting ex (8, pa), the decision-maker determines the level of conserva-
tiveness of the ambiguity set, and the distributional robustness as a consequence.
The ambiguity sets for the parameters are scaled into pointwise ambiguity sets for
the inputs following Proposition 4.3, via the definition of the Lipschitz constants

pPo = LOGN(ﬁaPa), with Lo = \/57

(7.3) pp(t) = Lp(t)en (B, pa), with Ly(t) := \/2 + 2sin?(2t) + 2 max (0, sin(27t)).

Second, we construct conservative ambiguity envelopes for the initial and the bound-
ary conditions characterized by a 1-Wasserstein discrepancy larger than py and py(t),
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respectively, according to Proposition 4.7. These upper and lower envelopes define
an ambiguity band which enjoys the same performance guarantees as the previously
defined 1-Wasserstein ambiguity sets. We denote with p§™ > pg and pf™ (t) > py(t)
the 1-Wasserstein discrepancy between the upper and lower distributions defining the
initial and boundary ambiguity bands, respectively.

For both inputs, the maximum pointwise Wasserstein distance pg max and pp. max (t)l
corresponds to the local size of the support. 1-Wasserstein discrepancies larger than
the maximum value denote uniformative ambiguity sets. For the chosen scenario,
P0,max = 2 and pp max(t) = 2 + max(0, sin(27t)) for the initial and the boundary val-
ues, respectively. A comparison of p,(t), pE™V(¢) and pp max(t) is presented in Figure 3
for different sample sizes N and identical confidence level 1 — 5. The corresponding
values for the initial condition can be read in the same figure at ¢ = 0 because of the
imposed continuity between initial and boundary conditions at ¢ = 0. Regardless of
the chosen shape of the ambiguity set, larger N determines smaller ambiguity sets
characterized by smaller 1-Wasserstein discrepancies. By construction, 1-Wasserstein
ambiguity sets defined through (7.3) are sharper than the corresponding ambiguity
bands drawn geometrically via Proposition 4.7 at all times. The temporal behavior
of py(t) is determined by the Lipschitz scaling function Ly(t) in (7.3); in this case it
is periodic and bounded. Figures 4 and 5 show the corresponding ambiguity bands

=== N=25 — N =100
10" 4
(4]
Q
=)
- P ()
.4 N “ -
= . . . .
g
T 104
1%
i
[«5]
N
0
<
B Pb(t)___ -
0 TN e TN e
10-1 1% N7 Sao ~_-" ~<
0.00 0.25 0.50  0.75 1.00 1.25 1.50 1.75 2.00

time

Fic. 3. Characteristic 1-Wasserstein distances for the pointwise ambiguity sets for up(0,t).
Black lines correspond to the py(t) bounds set in Corollary 4.5 and used to define 1-Wasserstein

ambiguity sets. Yellow lines indicate pr”'”(t), the sample-dependent 1-Wasserstein discrepancy be-

tween envelopes defined via the Proposition 4.7 procedure. The line pattern indicates the size of the
data sample N, as listed in the legend. The maximum theoretical 1-Wasserstein discrepancy for
up(0,1), Pp,max(t), is also drawn (red circles).

for up and u(t) at a given time ¢, respectively, for the same values of sample size N
and identical confidence level 1 — 3. Both upper and lower envelopes are data-driven,
i.e., they depend on the empirical distribution of a specific sample. We also show the
1-Wasserstein discrepancy between the upper and lower envelopes.

7.2. Propagation of the ambiguity set. Pointwise 1-Wasserstein distances
for the inputs can be propagated in space and in time to describe the behavior of
the ambiguous distributions using (5.9), under the assumption of linear dynamics.
Solving (5.9) yields a quantitative measure of the stretch/shrink of the ambiguity ball
in each space-time location. True (unknown) distributions as well as their empirical
approximations describing the given physical dynamics evolve according to (5.1); the
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Fic. 4. Ambiguity band for the distributions of ug for different sample size N and identical
1. Scatter points represent the empirical distribution Fé\g.

confidence level 1 — 3. We use 0, = —
Dashed yellow lines represent the conservative envelopes (with respect to a minimum 1-Wasserstein

distance pg) constructed according to Proposition 4.7. The 1-Wasserstein discrepancies for the am-
biguity band - computed between the upper and the lower envelope - are reported in the corresponding

panels, also indicating po.

N =25 N =100
1.0 - o
wh=112 WP =0.93 .
084 : Fuo 4 ()
89 py=0.147 oy =0.093
t=0.75 : t=0.75
~ 0.6 : T
0.4 1 : 1 ',
024 - - /
0.0 F : : : : . .
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
U U

FiGc. 5. Ambiguity band for the distributions of up(t) at t = 0.75 for different sample size
N and identical confidence level 1 — 5. We use 6, = —1. Scatter points represent the empirical

distribution F\i\g(t)‘ Dashed yellow lines represent the conservative envelopes (with respect to a min-
imum 1-Wasserstein distance py(t)) constructed according to Proposition 4.7. The 1-Wasserstein

discrepancies for the ambiguity band are reported in the corresponding panels, also indicating py(t).

latter provide an anchor for the pointwise ambiguity balls in (x,t). In Figure 6 we
present the solution of (5.9), wy(z,t), solved using pg and p(t) as defined in (7.3) as
initial and boundary conditions, respectively. The ambiguity ball shrinks with respect
to the input conditions as an effect of a depletion dynamics imposed by (3.1) with the
given choice of 0, = —1. As expected, the smaller the sample size N, the larger the
radius of the ambiguity ball as quantified by wi (z, t).

The dynamic evolution of ambiguity bands is determined by the evolution of the
upper and lower envelopes for the input samples, cf. Proposition 4.7, for given sample
size N and confidence level 1 — 8. The envelopes evolve according to (5.1), thus
requiring no linearity assumption for (3.1). As such, ambiguity bands, while possibly
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N =25 N =100 wy ()
: 0.20

0.18
0.15
0.12
0.10
0.08
0.05
0.03
0.00

0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 1.5 2.0
T T

F1G. 6. wi(z,t) as a solution of (5.9) with wo(x) = po and wy(z,t) = pp(t) for different sample
size N (N = 25 in the left panel, and N = 100 in the right panel) and identical confidence level
1—B. The dotted line represents the domain partition between regions where information originates
from either the initial or the boundary condition. We use 6, = —1.

being more conservative than 1-Wasserstein ambiguity sets in terms of size, can be
evolved for a wider class of hyperbolic equations. Ambiguity bands are equipped with
1-Wasserstein measures, as the 1-Wasserstein distance between the upper and the
lower envelope represents the maximum distance between any pair of distributions
within the band, and it is constructed to be always larger or equal than the local
radius of the corresponding ambiguity ball. Confidence guarantees established for the
inputs (Corollary 4.5) withstand propagation, as demonstrated in Theorem 6.1.

For a given choice of N, we compare the propagation of 1-Wasserstein ambiguity
sets with input conditions defined by (7.3) to the data-driven dynamic ambiguity
bands constructed via Proposition 4.7 and subject to the input envelopes represented
in Figures 4 and 5. The corresponding w; maps are shown in Figure 7 (top row).
In both cases, the pointwise 1-Wasserstein distance undergoes the same dynamics
established by (5.9), but subject to different inputs (represented in Figure 3). In each
spatial location, it is possible to track the temporal behavior of the ambiguity set size
for both shapes, as shown for two representative locations in Figure 7 (bottom row).
The size of both ambiguity sets decreases from the maximum imposed at the initial
time for ¢t < x, and reflects the temporal signature of the boundary, dampened as an
effect of depletion dynamics introduced by (7.1) with 6, = —1, for ¢t > z.

8. Conclusions. We have provided computational tools in the form of PDEs for
the space-time propagation of pointwise ambiguity sets for random variables obeying
hyperbolic conservation laws. The initial and boundary conditions of these propaga-
tion PDEs depend on the data-driven characterization of the ambiguity sets at the
initial time and along the physical boundaries of the spatial domain. We have intro-
duced both 1-Wasserstein ambiguity balls and ambiguity bands, formed through upper
and lower CDF envelopes containing all distributions with an assigned 1-Wasserstein
distance from their empirical CDFs. The former are propagated by evolving the am-
biguity radius according to a dynamic law that can be derived exactly in the case of
linear physical models. The latter are propagated by solving the CDF equation for
both the upper and the lower CDF envelope defining the ambiguity band. In this
second case, both linear and non linear physical processes can be described exactly
in CDF terms, provided that no shock develops in the physical model solution. The
performance guarantees for the input ambiguity sets of both types are demonstrated
to withstand propagation through the physical dynamics. These computational tools
allow the modeler to map the physics-driven stretch/ shrink of the ambiguity sets
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wi(z,t) anV(x,t)
2 2
10°
= 1 10!
0 - ! 0 1072
0 1 2
X
10 wp x=0.2 10° x=1.0
- ~———— ] '
=100 I 100 _\\ .~
S
S 107 5 N~ N\ 10~
S I~ N/\/\
1072 : 102
0 1 2 0 1 2
t t

Fic. 7. Top row: 1-Wasserstein distance maps for the radius of the ambiguity balls wi(x,t)
with input radii (7.3) (left), and the ambiguity band wP™(z,t) (right), where wi™(z,t) =
Wy (F! u(z . 5& t)), Bottom row: 1-Wasserstein distance profiles at given locations x = {0.2,1.}.

The black solid line reflects the 1-Wasserstein ambiguity radius w1 (z,t), whereas the yellow dashed
line represents the 1-Wasserstein distance of the ambiguity band, w]f:n"(z,t). The mazximum the-
oretical 1-Wasserstein discrepancy is also drawn, wi®*(z,t) (marked red line). The location of
the cross-sections is indicated in the top-row contour plots in the corresponding column (r = 0.2
and x = 1, respectively), whereas the demarcation line t = x 1is indicated in the bottom panels.
Parameters are set to: N = 100, 6, = —1.

size, enabling dynamic evaluations of distributional robustness. Future research will
consider systems of conservation laws with joint one-point CDFs, the characterization
of ambiguity sets when shocks are formed under nonlinear dynamics, the assimilation
of data collected within the space-time domain, the application of these results in
distributionally robust optimization problems, and sharper concentration-of-measure
results to reduce conservativeness of the ambiguity sets for small numbers of samples.

Appendix A. Technical proofs from Section 4.  We collect here basic
properties of generalized CDF inverses used in the following:
(GI1) F(t) <y =t < F1(y);
(GI2) F(t1) Sy < F(t2) = t1 < F ' (y) <tz
(GI3) t < F(y) = F(t) < y;
(GI4) F(t) = F(t1) Vt € [t1,t2) ANF(t1) <y < F(ty) = F~(y) = ta.

Proof of Lemma /.2. Let T : R" x R™ — R™ x R™ with T(z,y) = (T(z),T(y)),
consider an optimal coupling 7 for which the infimum in the definition of the distance
Wy (1, v) is attained, and define 7 := T#T( = mo T~ Then, it follows that 7(A x
R™) = (moT (A xR™) = n(T~1A) x T-HR™)) = u(T~(A)) = Tyup(A). Hence,
Ty p is a marginal of 7 and similarly Tiuv, i.e., T is a coupling between Txp and Typv.
Let ¢ : R™ xR™ — R with ¢(z,y) = ||z —y||P and T as given above. Then, we obtain
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from the change of variables formula and the Lipschitz hypothesis that

(LHS) = / 17 — (P73 (dz, df) = / $(2,9)7(dz, dj)
RmXR’VYL R

m wRmMm

- / b0 Pz, y)m(dz, dy) = / (T (), T(y))m(d, dy)
R7 xR R xR»

= / 1T () = T(y)||P7(de, dy) < / LP|lx — y||Pn(dz, dy) = (RHS).
R7 xR"™ R™ xR™

Thus, we get W) (Typ, Tyv) < (LHS) < (RHS) = LPW} (u, v), implying the result. O

Proof of Lemma 4.4. We show that ]-';lp[F | is continuous and increasing, and
hence, it is also a CDF, as it takes values in [0, 1] (the proof for ]-"}JOW [F] is analogous).
Notice first that due to (GI1), i.e., that F(t) < y = t < F~(y), the mapping
z f;(t)(Ffl(y) — t)dy is strictly increasing for z € [F(t),1]. Combining this
fact with continuity of z — [ ;(t)(F ~1(y) — t)dy, we deduce existence of a unique
z € [F(t),1] so that F)P[F](t) = z and f;(t)(F_l(y) —t)dy = p for all t € [a,t;P[F]).
To show that F)P[F] is increasing, let a < t; <tz < tyP[F] with F P[F](t1) = 21 and
FpP[F|(t2) = 2o and assume w.l.o.g. that F'(t2) < z;. Then, we have that

Z1

= U (P ) - )y > / U (P ) - )y > [ -y,

F(tl) F(tg) F(t2)

where we exploited that F' is increasing in the first inequality. Thus, we get that
29 > 71, because also f;f‘ztz)(F*(y) —t3)dy = p. To prove continuity, let ¢, — t €
[a, tyP[F]) and {2, },en with F)P[F](t,) = z,. Then, we have that

[ -t = [ -

P(t) F(t)

F(t) zZu
+ / (F~1(y) — t)dy + / (t—t,)dy,

F(t,) F(t,)

. Zy _ F _ Zy
or equivalently, F(t)(F Yy) —t)dy = p — fF((:,,))(F Yy) — t)dy — F(tu)(t — t,)dy.
Since 0 < F(t,) < 2z, < 1, and t, — t we get that f;?t )(t —t,)dy — 0. For the
other term, we have w.l.o.g. that F(t,) <y < F(t). It then follows from (GI2) that

t, < F~'(y) <t and therefore | flf((t?)(F_l(y) —t)dy| < ffgj) |t, — t|dy — 0. Thus,

(A1) / T F ) — )y p= / L (Fy) - tdy

F(t) F(t)

for a unique z € [F'(t),1]. Since 2’ — f;/(t) (F~1(y) — t)dy is strictly increasing (near
z) and continuous, its inverse is well defined and continuous (see e.g., [35, Theorem 5,
Page 168]). Thus, we get from (A.1) that 2, — 2, establishing continuity of FP[F].

Next, let F € CD([a,b]) with Wy (F, F') < p. Equivalently, [ |F'(t) — F(t)|dt <
p. We show (4.6) by contradiction. Assume w.l.o.g. that the upper bound in (4.6)
is violated, and there exists t* with F'(t*) > F P[F](t*). Then necessarily t* €
[a, t3P[F]), and since F'(t*) > F(t*), (GI1) implies that F~'(F’(t*)) > t*. Hence,
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F=L(F'(t*))) is nonempty and we get from (GI3) that F’(t) > F(t) for all t €
[t*, F~1(F'(t*))). Consequently, we obtain

FHF' (%))
p>/ 120 )|dt>/ P (#) — F(t)|dt
t

*

*

P A GG
:/ (F~ (y)*t*)dy>/ (F~ (y) —t")dy = p,

B(t*) B(t*)

F'(t*)) FY(F'(t)
- / * (F(t) — F(t))dt > / (F(t*) — F(t))dt

which is a contradiction. 0

Proof of Proposition 4.7. We break the proof into several steps.

Step 1: all indices ji and iy are well defined and satisfy (4.10). We need to
establish that the min and max operations for the definitions of these indices are not
taken over the empty set. To show this for all k¥ € [1 : kmax], we verify the following
Induction Hypothesis (IH):

(IH)  For each k € [1: kmax|, jk, ix are well defined, ji < ix, and b;, ;, > p.

All properties of (IH) can be directly checked for k = 1 by the definition of j; and
i1, and the assumption by g > p. For the general case, let k < knax — 1 and assume
that (IH) is fulfilled. Then, ji11 is well defined because b;, ;, > p by (IH). To show
this also for 7541 we first establish that i, < V. Indeed, assume on the contrary that
i, = N. Then, from the definition of ji. 1 we have that b;, j, ., < p and we get from
the definition of kpax that k > kpyax, which is a contradiction. Since i, < N, [ig41 : N]
is nonempty. Combining this with the fact that by j, ., > p, which follows from the
definition of kn.x and our assumption k < knax, we deduce that the minimum in
the definition of i;41 is taken over a non-empty set. Hence, iry1 is well defined. In
addition, we get from the definitions of jiy1 and ix41 that jr11 < igy1 and from the
definition of iy that b, ., ;,., > p. Thus, we have shown (IH). Finally, ji,. +1 is
also well defined because b;, _ j. > p by (IH). Having established that j, and i,
are well defined for all k£ € [1 kmax +1], (4.10) follows directly from their expressions.
Step 2: establishing (4.11). By the definition of jiy1, we get
(A.2) b;

Tk Jk+1

<p VE€el:knax
In addition, we have that

(A.3) b;

tk+1—1,Jk41

<p Vk€l0: knax|

For k = 0 this follows from the definition of j; and ¢;. To show it also for k € [1 : kpax]
we consider two cases. If b, y1,j,,, > p, then, by definition, ix41 = ix + 1 and we get
from (A.2) that b;,, 1., = by j. < p- In the other case where b;, 11,,., < p,
(A.3) follows directly from the definition of i54+1. Next, note that due to (4.10) and
the fact that i, +1 = N + 1, the times 7, are indeed defined for all £ € [i; : N].
In addition, for each k € [1 : kpay] we get from (A.3) that p — by, > 0 for all
¢ € [ig : ig+1 —1]. Hence, Aty is positive and strictly decreasing with £ € [ix : ig11 —1]
and we have from the definition of the 7,’s that

(A4) T < 7o Yk €1 kmax), 6,0 € [ig :igye1 — 1] with £ < ¢/
(A.5) Tiper—1 < tj VEk € [1 : kmax]-

Jk+1
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By the definition of j;y1 we further obtain that

(A.6) b 1>p Ykel:kmaxl

Tk Jk+1—

From the latter and the definition of At;, , which implies that At;, Z;’“ c +

=Jk+1

biy, jus1 = P, We get that b, ;1 > Aty Zf’;jkﬂ ¢ + biy,,ji4r > OF equivalently, that
ik ik ik
Yo it a— Y (=t )a> A, Y as
l=jr4+1—1 l=jk+1 I=jr41
Z (tjk+1 - tjk+1*1)cl > Atik Z G < t.jk+1 - tjk+1*1 > Atik'
I=Jk+1 I=jKk1+1

Thus, we deduce from the definition of 7, with ¢ = 4y that 7;, > t;, ., 1 for k €
[1 : kmax). Using this, and recalling that {t,})Y, are strictly increasing, we get from
(4.10), (A.4), and (A.5), that {r,};_; are strictly increasing and (4.11) is satisfied.
Step 3: wverification of the formula for F' for t € (—o00,a) U [tn,00). For
t € (—o00,a), it follows directly from the definition of the upper CDF envelope. To es-
tablish it also when t € [Ty, 00), it suffices again from the definition of the upper CDF
envelope to show that 7y = t;P [F)], with tyP given in the statement of Lemma 4.4. To

show this, note that since by (4.11) ¢;, . 1 <7n <t ., we have
b R tn R i1 R
/ (1— P(t))dt = / (1— ()t = / (1— B(t))dt
TN N ™™~
tN . N
+ (1 - F(t))dt = (tjkmax+1 - TN) Z a+ bN,jkmax-;.u
ik +1 I=Jkmax+1

which, in turn, equals Aty le\;jk - c1+bnj,.. .- Thus, we get from the definition

of Aty that ffN(l —F(t))dt = W Zl]ijkmxﬂ ¢ +bN ..+ = P, and hence

=i kmax+1

7~ = sup{T € [a,b]| ff(l — ﬁ(t))dt > p} = t;p[ﬁ]. It remains to verify the formula
for FUP for all intermediate intervals, which are of the form [tpeg,tend). To each of
these intervals we also associate a right time-instant ¢,+. For each &k € [1 : kmax], theg,
tend, and t; are given by one of the following cases.

Case 1) theg = t¢ and teng = tep1 with £ € [ji @ jr1 — 2], and t = t;,;

Case 2) lpeg = tjy —15 tend = iy, and Ly = Ly, ;

Case 3) theg = 7¢ and tend = Te41 With £ € [ig @ igq1 — 2], and ty = teg1;

Case 4) theg = Tij 11, tend = tj,,,, and t,y =1
One can readily check from the formula for FP that these cases cover all intermediate
intervals. To verify the formula for all [theg, tena) We will exploit the following fact:

Fact I) For each of the Cases 1)-4) and pair (¢,y) with ¢t € (tbeg,tena) and
y = FP(t), it holds that F~1(y) = ty.

Step 4: Proof of Fact I. Recall that

Tht1*

(A7) oo (t) = sup { e [Fe).1)] /F() (F(y) — t)dy < p}
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and note that

Ft)
(A8) [ F -ty =ty vo<j<i<N.

F(t;)

We first consider Case 1). Let t € (tg,tp41) with £ € [jg : jx+1 — 2]. Then, we have
from (4.10) and (A.8) that

F(ty,) ) F(ti,) .
/ (F~(y) —t)dy > / (F7(y) = tj—1)dy = biy ji -1 > p,

F) Pty 1)

ﬁ(tik—l) ~ ﬁ(tik—l) ~
[ (F(y) - t)dy < / (F(y) — t;)dy = b 151 < p.
F(t) F(t;,.)

where we exploited (A.6) and (A.3) for each last inequality, respectively. Thus, it
follows from (A.7) that ﬁ(tik_l) < F\“p(t) < F\(tik), which implies by (GI4) that
F=L(F"(t)) = t; = t,. For Case 2), let t € (¢ Ti. ). Then, we get from (A.8)
and the definition of 7;, that

Jr+1—1s

~

ﬁ(tik) . ﬁ(tik) R ﬁ(tik)
/ (F1(y) - t)dy > / (F1(y) — 73y )dy = / (F1(y) — t;,.,)dy

F(t) F(tjk_*_l*l) F(tjk+1*1)
F(ti,) ik
+ /A (tjk+1 — Ty, )dy = bik,jk+1 + At Z a=p
Ftj ,-1) l=Jr+1

whereas by arguing precisely as in Case 1), we get that flg((;i“l)(ﬁ_l(y) —t)dy < p.

Thus, we deduce ﬁ(tik_l) < P () < ﬁ(tik), and hence, by (GI4), F~1(F"(t)) =
t;, = ti. The proof of Fact I for Cases 3) and 4) follows similar arguments and
exploits the orderings (4.10) and (4.11), and we omit it for space reasons.

Step 5: werification of the formula for Fup for t € la,7n). Let any interval
(tbeg, tend) as given by Cases 1)-4), let t € (tpeg,tend); {tv}ven C (tbeg;tend) With
t, ¢ theg, and denote y = F(t), y, = F'(t,), v € N. Due to Fact I, F~1(y) =

~ ~ n—1
trey,  F7(y,) =ty for all v € N. We use this together with 2 = F'P(¢) & ftF (z)(z—
F(s))ds = p and the continuity of F"P (which implies y, — Ybeg = ﬁ“p(tbeg)) to get

F='(y) _ F~ (yv) ~
/ (y— F(s))ds = / (yp — F(s))ds YveN«&
¢ ¢

r
J

t
trt tre R t tre -
/ (5 — Peg)ds + / (Uoos — F(s))ds =/ (Yo — Yiow)ds + / (Ve — F(s))ds <
t t t

tbeg

v

tre R
s / (yp — F(s))ds YWweN&
t

v

(y — F(s))d
"y - F(s))d

S

/ ) (Ybeg — ﬁ(s))ds o

tbeg

(y - ybeg)(trt - t) = (ybeg - ylow)(t - tbeg)7
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with Yiow = F(theg), cf. Figure 2. Hence, ¥ = Ybeg + (Ybeg — Yiow) ttt 2 = Ylow T (Ybeg —

ylow)tr;:tit_bfg. The proof is completed by verifying the formula for Fp at theg for each
interval given by Cases 1)—4), which follows from the definitions of y, and z. 0

Proof of Lemma 4.8. We exploit the following equivalences for any F' € CD([a, b])
and pair (¢,y) in the graph of its lower and upper CDF envelopes:

(A.9a) Y= .7':low @/ (F(s) —y)ds =
)

()
(A.9) y = FP[F 4@/ (y — F(s))ds

We also use the followmg elementary results about the left inverse of a CDF F €
CD(R), defined by F;i(y) := inf{t € R| F(t) > y}.

Fact IT) For any y € (0,1), F~'(1 —y) = a + b — F; (y), where F = F;ﬁib 1

Fact III) For any y € [0,1] and ¢ € R, j;Fg“(y) (y — F(s))ds = j; (y) (y — F(s))ds.

Next, let F' € CD([a, b]) and denote F = ]-'ri+b 1)[ ] and FUP = FyPIF F]. To prove the
result, we show that FOV[F](t) = .7-'(r w1y [F UP](t) for any t for which these values

are in (() 1) Let y =1 — F"(a+b—1t) = ]-"(r‘jib 1 [F“p](t) € (0, 1). We show that

[F].

1 y)ds = p, which by (A.9a) implies that }"10“’ = y. Indeed,
F ()
t t _
/ (F(s) — y)ds :/ (F(s) — (1 — F"(a+b—t)))ds
F=1(y) F-1(1—Fup(a+b—t))
t
:/ o (F(s)—(1—=F"(a+b—1)))ds
a+b—F 4 (FuP(atb—t))
Fp(F"(atb—t)) _ _
:/ (B (a+b—t) — F(s))ds
a+b—t
L(EF"P(a+b—t)) _ ~
:/ (F"(a+b—t) = F(s))ds = p,
a+b—t
where we used Fact II in the second equality, that the reflection around (“TH’, %),

i.e., the change of variables (¢,y) — (a +b —¢,1 — y) is an isometry in the third
equality, Fact III in the fourth equality, and the equivalent characterization (A.9b)
for y = F)P[F|(t) in the last equality. d

Proof of Fact II. Let y € (0,1). Then
Fl'1l—y)=inf{t eR|F(t) >1 -y} =inf F71((1 - y,00))
=sup F((—o0,1 —y]) =sup{t € R|F(t) <1—y}
—sup{t eR|1—F(a+b—1t) <1—y}
=sup{a+b—7,TER|1 - (T)gl—y}
—a+b+sup{—7,7 € R|F(r) >y}
—a+b—inf{r eR|F(r) >y} =a+b— eft(y)

where we used F' is increasing and inf I = sup I¢ for any intervals I, I¢ with TUI¢ =R
in the third equality. 0
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Proof of Fact III. To show the result we will prove that f;: ((yy))(y — F(s))ds =0.
left

Since F~1(y) > Flgf%(y), it suffices to consider the case of strict inequality. Then,

the result follows directly from the fact that F(s) =y for any s € (F (y), F~(y)),
which can be readily checked by the definitions of F~ and F;. O

Appendix B. Derivation of the CDF equation. An equation for the
Cumulative Distribution Function of u(x, t), solution of (3.1), obeying Assumption 3.1
and Assumption 3.2, is obtained via the Method of Distributions in three steps. First,
we rely on the following inequalities for the newly introduced random variable II(X, ?)

o omon gy o

(B.1) ot oU ot’ ouU

Second, we multiply (3.1) by —g—g and, accounting for (B.1), we obtain a stochastic
PDE for II(U, x, t):

o | oIl

with ¢ = 0q/0U. This formulation is exact in case of smooth solutions of (3.1) [23]
and whenever V - q(U) = 0. (B.2) is defined in an augmented (d + 1)-dimensional

space 2 = Q xR, and it is subject to initial and boundary conditions that follow from
the initial and boundary conditions of the original model

(U, x,t = 0) = Iy = H(U —up(x)), Xe
II(U,x,t) =1IL,(U,x,t) = H(U —wp(t)), xe€,U € Qy,t>0.

Finally, since the ensemble average of II is the CDF of u, Fy ) = (II(U,x,1)),
ensemble averaging of (B.2) yields (5.1). This equation is subject to initial and
boundary conditions along (T' x R)

Fupet) = Fupix)y XEQE=0
(Bg) Fu(x,t) = Fub(x,t)7 X € F, U e ]R,t > 0.

The relaxation of Assumptions 3.1 and 3.2 leads to different (and often approximated)
CDF equations: we refer to [6, 7] for a complete discussion.
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