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Abstract— This paper studies the characterization of Wasser-
stein ambiguity sets for dynamic random variables when noisy
partial observations are progressively collected from their
evolving distribution. The ambiguity sets are accompanied by
quantitative guarantees about the true distribution of the data,
which renders them appropriate for the formulation of robust
stochastic optimization problems. To describe the evolution of
the variable, we consider a linear discrete-time dynamic model
with random initial conditions, stochastic uncertainty in the
dynamics, and partial noisy measurements. The probability
distribution of all the involved random elements is supposed to
be unknown. To make inferences about the distribution of the
state vector, we collect several output samples from multiple
realizations of the process. We use a classical Luenberger
observer to obtain full-state estimators for the independent
realizations and exploit these further to build the centers of
the ambiguity sets.

I. INTRODUCTION

Making decisions under uncertainty is an unavoidable task
for a wide range of today’s engineering applications, where
the complexity of the encountered systems does not allow
the deterministic modeling of all their components. Thus, the
designer seeks to infer about the properties of such elements
via the collection of data. This leads to the formulation
of data-driven stochastic optimization problems to provide
quantitative decisions in the face of uncertainty, finding
applications in numerous domains such as finance, networked
control systems, and machine learning. The articulation of
these problems via distributionally robust optimization, seeks
to provide guaranteed results against credible variations of
the data. This is accomplished by evaluating the optimal
worst-case performance over an ambiguity set of probability
distributions that contains the true one with high confidence.
Typical Distributionally Robust Optimization (DRO) formu-
lations are based on the assumption that the samples gener-
ated from the distribution are measured in a direct manner
and can all be obtained right away. This paper instead looks
at scenarios where the random variable evolves dynamically
and partial measurements of the data are collected, possibly
corrupted by noise. Our goal is to build reliable ambiguity
sets for such cases by leveraging the underlying dynamics.
We also study how the probabilistic properties of the noise
affect the ambiguity set size while maintaining the same
guarantees.

Literature review: Stochastic optimization is a well es-
tablished research area, with several techniques available to
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provide optimal decisions in the face of uncertainty [1].
Typical objectives include expected-cost minimization, and
chance-constrained optimization, among others. For stochas-
tic programs, model imperfections occur naturally due to
a lack of knowledge on random elements and have led to
distributionally robust variants of the problems at hand [2],
[3], [4]. This is typical in data-driven cases, where the
probability distribution of the random variables is inferred
in an approximate manner using a finite amount of collected
data [5]. To hedge against data uncertainty, optimal transport
ambiguity sets have emerged as a promising way to consider
all distributions up to some distance from the sample average
approximation in the Wasserstein metric [6], using recent
concentration of measure results [7]. The work [8] introduces
tractable reformulations of DRO problems with Wasserstein
ambiguity sets accompanied by finite-sample performance
guarantees, which have later been exploited for chance-
constrained programs [9], [10]. The work [11] develops
distributed optimization algorithms using Wasserstein balls,
while optimal transport ambiguity sets have also been re-
cently connected to regularization for machine learning [12],
[13]. The paper [14] exploits Wasserstein balls to robustify
data-driven online optimization algorithms, and [15] lever-
ages them for the design of distributionally robust Kalman
filters. Time-varying aspects of such ambiguity sets are con-
sidered in [16] for dynamic traffic models, and in [17], which
constructs Wasserstein ambiguity balls using progressively
assimilated dynamic data for processes with random initial
conditions. Compared to [17], the present paper addresses
nontrivial generalizations, because (i) the state distribution
does no longer evolve under deterministic dynamics, due to
internal noise and, most notably, (ii) noisy partial measure-
ment are considered, which generate an additional stochastic
element that requires quantification for the ambiguity set
guarantees.

Statement of contributions: We build ambiguity sets for
dynamically evolving random variables of an unknown dis-
tribution using progressively collected samples from multiple
realizations of the process. Our contributions are focused
on establishing quantifiable characterizations of Wasserstein
ambiguity sets with rigorous probabilistic guarantees under
several nonidealities associated to the data assimilation. We
construct ambiguity sets for dynamic processes with random
initial conditions and further uncertainty in the dynamics.
The probabilistic model of the random elements is unknown
and we make inferences about the process distribution along
time using incrementally assimilated samples. Our main



contribution is the construction of ambiguity sets for the
evolving random variable under partial-state measurements
that are corrupted by noise. This is accomplished by using
an observer to approximate the dynamics’ state value from
the output samples, and exploiting concentration of measure
results to quantify reliable closeness to the empirical distri-
bution, while accounting for the estimation error. The results
are validated in simulation for an optimal sensor placement
example. We note that our objective is fundamentally differ-
ent from classical Kalman filtering, where the initial state and
dynamics noise distributions are known and Gaussian, and
hence, the state distribution over time is a known Gaussian
random variable too. Here, instead, we are interested to infer
about the unknown state distribution from data collected by
multiple executions of the dynamical system. Thus, for each
such execution we use a suboptimal state estimator, precisely
due to the fact that we have no concrete knowledge of the
state and noise random models. Due to space constraints, all
proofs are omitted and will appear elsewhere

II. PRELIMINARIES

Here we present general notation and concepts from
probability theory that will be used throughout the paper.

Notation: We denote by ‖ · ‖p the p-th norm in Rn, p ∈
[1,∞], using also the shorter notation ‖ · ‖ ≡ ‖ · ‖2 for the
Euclidean norm. Let Bn∞(ρ) denote the ball of center zero
and radius ρ in Rn with the norm ‖·‖∞. We use the notation
[n1 : n2] for the set of integers {n1, n1 + 1, . . . , n2} ⊂
N ∪ {0} =: N0. The diameter of a set S ⊂ Rn is defined as
diam(S) := sup{‖x− y‖∞ |x, y ∈ S} and for z ∈ Rn, S+
z := {x+z |x ∈ S}. We denote the induced Euclidean norm
of a matrix A ∈ Rm×n by ‖A‖ := max‖x‖=1 ‖Ax‖/‖x‖.
Given B ⊂ Ω, we denote by 1B the indicator function of B
on Ω, with 1B(x) = 1 for x ∈ B and 1B(x) = 0 for x /∈ B.

Probability Theory: We denote by B(Rd) the Borel σ-
algebra on Rd, and by P(Rd) the probability measures
on (Rd,B(Rd)). For any real number p ≥ 1, Pp(Rd) :=
{µ ∈ P(Rd) |

∫
Rd ‖x‖

pdµ < ∞} is the set of probability
measures in P(Rd) with finite p-th moment. Given p ≥ 1,
the Wasserstein distance between µ, ν ∈ Pp(Rd) is

Wp(µ, ν) :=
(

inf
π∈H(µ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

,

where H(µ, ν) is the set of all probability measures on
Rd × Rd with marginals µ and ν, respectively. For any
µ ∈ P(Rd), its support is the closed set supp(µ) :=
{x ∈ Rd |µ(U) > 0 for each neighborhood U of x},
or equivalently, the smallest closed set with measure one.
Given a measurable space (Ω,F), an exponent p ≥ 1, the
convex function ψp(x) := ex

p − 1, and the linear space
of scalar random variables Lψp := {X |E[ψp(|X|/t)] <
∞ for some t > 0} on (Ω,F), the ψp-Orlicz norm (cf. [18,
Section 2.7.1]) of X ∈ Lψp is

‖X‖ψp := inf{t > 0 |E[ψp(|X|/t)] ≤ 1}.

When p = 1 and p = 2, each random variable in Lψp
is sub-exponential and sub-Gaussian, respectively. We also

denote by ‖X‖p ≡
(
E
[
|X|p

]) 1
p the norm of a scalar random

variable with finite p-th moment, i.e., the classical norm in
Lp(Ω). The interpretation of ‖ · ‖p as the p-norm of a vector
in Rn or a random variable in Lp should be clear from the
context throughout the paper. Given a set {Xi}i∈I of random
variables, we denote by σ({Xi}i∈I) the σ-algebra generated
by them. We conclude with a useful technical result whose
proof follows from Fubini’s theorem [19, Theorem 2.6.5].

Lemma 2.1: (Expectation inequality). Consider the inde-
pendent random vectors X and Y , taking values in Rn1 and
Rn2 , respectively, and let g(X,Y ) be integrable. Assume that
E[g(x, Y )] ≥ k(x) for some integrable function k and all
x ∈ K ⊂ supp(X) ⊂ Rn1 . Then, E[g(X,Y )] ≥ E[k(X)].

III. PROBLEM FORMULATION

Consider a stochastic optimization problem where the ob-
jective function x 7→ f(x, ξ) depends on a random variable ξ
whose distribution Pξ is unknown. To hedge this uncertainty,
rather than using the empirical distribution

PNξ :=
1

N

N∑
i=1

δξi , (1)

formed by N i.i.d. samples ξ1, . . . , ξN of Pξ to compute a
sample average approximation of the expected value of f ,
one can instead consider the worst-case expectation problem

inf
x∈X

sup
P∈PN

EP [f(x, ξ)],

over some ambiguity set PN of probability measures. Differ-
ent approaches exist to construct these ambiguity sets so that
they contain the true distribution Pξ with high confidence.
We are interested in approaches that employ data, and in
particular the empirical distribution PNξ , to construct them.
In the present setup, the data is generated by a dynamical
system subject to disturbances, and we only collect partial
(instead of full) measurements that are distorted by noise.
Therefore, it is no longer obvious how to build a candidate
state distribution as in (1) from the collected samples.
Further, we seek to address this in a distributionally robust
way, i.e., finding a suitable replacement P̂Nξ for (1) together
with an associated ambiguity set, by exploiting the dynamics
of the underlying process.

We consider data generated by a discrete-time system

ξk+1 = Aξk +Gwk + rk, ξk ∈ Rd, wk ∈ Rq, (2a)

with linear output

ζk = Hξk + vk, ζk ∈ Rr. (2b)

The initial condition ξ0 and the noise wk and vk, k ∈ N0

in the dynamics and the measurements, respectively, are
random variables with an unknown distribution, whereas rk is
a deterministic and known input signal. We seek to build an
ambiguity set for the state distribution at certain time ` ∈ N,
by collecting data from multiple independent realizations of
the process, denoted by ξi, i ∈ [1 : N ]. This can occur, for
instance, when the same process is executed repeatedly, or



in multi-agent scenarios where identical entities are subject
to the same dynamics. To formally describe the problem,
we consider a large enough probability space (Ω,F ,P)
containing all random elements from these realizations, and
make the following sampling assumption.

Assumption 3.1: (Sampling schedule). For each realiza-
tion i of system (2), output samples ζi0, . . . , ζ

i
` are collected

over the discrete time instants of the sampling horizon [0 : `].
Obtaining quantifiable characterizations for the ambiguity

sets requires some further hypotheses on the classes of the
distributions Pξ0 of the initial condition, Pwk of the dynamics
noise, and Pvk of the measurement errors (cf. Figure 1).
These assumptions are made for individual realizations
and allow us to consider non-identical observation error
distributions—in this way, we allow for the case where each
realization is measured by a non-identical sensor of variable
precision.

Assumption 3.2: (Distribution classes). Consider a finite
sequence of realizations ξi, i ∈ [1 : N ] of (2a) with
associated outputs given by (2b), and noise elements wik,
vik, k ∈ N0.
H1: The distributions Pξi0 , i ∈ [1 : N ], are identically
distributed; further Pwik , i ∈ [1 : N ], are identically
distributed for all k ∈ N0.
H2: The sigma fields σ({ξi0} ∪ {wik}k∈N0

)
, σ
(
{vik}k∈N0

)
,

i ∈ [1 : N ] are independent.
H3: The supports of the distributions Pξi0 and Pwik , k ∈ N0

are compact, centered at the origin, and have diameters 2ρξ0
and 2ρw, respectively, for all i.
H4: The components of the random vectors vik have uni-
formly bounded Lp and ψp-Orlicz norms, as follows,

0 < mv ≤ ‖vik,l‖p ≤Mv, ‖vik,l‖ψp ≤ Cv,

for all k ∈ N0, i ∈ [1 : N ], and l ∈ [1 : r], where p ≥ 1.
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Fig. 1: Illustration of the probabilistic models for the random
variables in the dynamics and observations according to Assump-
tion 3.2.

Since the collected measurements give no direct access
to the system’s state distribution, we aim to leverage the
dynamics and estimate the state from the assimilated output
values. To guarantee some boundedness notion for the state
estimation errors over a sufficient evolution horizon, we
make some further assumptions for the dynamics.

Assumption 3.3: (Detectability). The pair (A,H) is de-
tectable, i.e., A+KH is convergent for some K ∈ Rd×r.

Problem statement: Under Assumptions 3.1 and 3.2 on
measurements and distributions of N realizations of the
system (2), we seek to construct an estimator ξ̂i`(ζ

i
0, . . . , ζ

i
`)

for the state of each realization to build an ambiguity set for
the state distribution at time ` with probabilistic guarantees.
Further, under Assumption 3.3 on system detectability, we
aim to characterize the effect of the estimation precision on
the quality of the ambiguity sets.

We proceed to address this problem in Section IV by
exploiting a Luenberger observer to estimate the states of
the collected data and using them to replace the classical em-
pirical distribution (1) in the ambiguity-set construction. To
obtain the guarantees we leverage concentration inequalities
to bound the distance between the updated empirical distri-
bution and the true state-distribution with high confidence.
The precise effect of measurement noise in the ambiguity
radius is quantified in Section V, where we also study the
increase of ambiguity radius due to the noise and the positive
effect on it of detectability for longer evolution horizons.

IV. STATE-ESTIMATOR BASED AMBIGUITY SETS

We turn to address the question of how to construct an
ambiguity set at certain time instant `, when samples are
collected according to Assumption 3.1 from (2). If we had
access to N independent full-state samples ξ1, . . . , ξN from
the distribution of ξ at `, we could construct an ambiguity
ball in the Wasserstein metric Wp, that is centered at the
empirical distribution (1) with ξi ≡ ξi` and contains the
true distribution with high confidence. In particular, for any
confidence 1 − β > 0, it is possible, cf. [8, Theorem 3.5],
to specify an ambiguity ball radius εN (β) so that the true
distribution of ξ` is in this ball with confidence 1− β, i.e.,

P(Wp(P
N
ξ`
, Pξ`) ≤ εN (β)) ≥ 1− β.

Instead, since we only can collect noisy partial measurements
of the state, we use a Luenberger observer to estimate ξ. The
dynamics of the observer, initiated from zero, is given by

ξ̂k+1 = Aξ̂k +K(Hξ̂k − ζk) + rk, ξ̂0 = 0, (3)

where K is a constant gain matrix. We thus define the
(dynamic) estimator-based empirical distribution

P̂Nξk :=
1

N

N∑
i=1

δξ̂ik
, (4)

formed by using the corresponding estimates from system (3)
for the independent realizations of (2a). Denoting by ek :=
ξk− ξ̂k the error between (2a) and the observer (3), the error
dynamics is

ek+1 = Fek +Gwk +Kvk, e0 = ξ0,

where F := A+KC and ξ0 is the initial condition of (2a).
In particular,

ek = F kξ0 +

k−1∑
κ=0

(
FκGwk−κ−1 + FκKvk−κ−1

)
(5)



for all k ≥ 1. To build the ambiguity set at time `, we set
its center at the estimator-based empirical distribution P̂Nξ`
given by (4). In what follows, we leverage concentration
of measure results to quantify an ambiguity radius ψN (β)
so that the resulting Wasserstein ball contains the true
distribution with a given confidence 1− β.

Note that the random variable ξik of a system real-
ization at time k is a function ξik(ξi0,w

i
k) of the ran-

dom initial condition ξi0 and the dynamics noise wi
k ≡

(wi0, . . . , w
i
k−1). Analogously, the estimated state ξ̂ik of each

observer realization is a stochastic variable ξ̂ik(ξi0,w
i
k,v

i
k)

with additional randomness induced through the output noise
vik ≡ (vi0, . . . , v

i
k−1). Using the compact notation ξ0 ≡

(ξ10 , . . . , ξ
N
0 ), wk ≡ (w1

k, . . . ,w
N
k ), and vk ≡ (v1k, . . . ,v

N
k )

for the corresponding initial conditions, dynamics noise,
and output noise of all realizations, respectively, we can
denote the true- and estimator-based-empirical distributions
at time ` as PNξ` (ξ0,w`) and P̂Nξ` (ξ0,w`,v`). If we view
the initial conditions and the corresponding internal noise
of the realizations ξi over the whole time horizon as deter-
ministic quantities, we use the alternative notation PNξ` (z,ω)

and P̂Nξ` (z,ω,v`) for the corresponding distributions, where
z = (z1, . . . , zN ), z1 ≡ ξ10 , . . . , z

N ≡ ξN0 , and ω =
(ω1, . . . ,ωN ), ω1 ≡ w1

` , . . . ,ω
N ≡ wN

` . We also denote
by Pξ` the true distribution of the data at discrete time `,
where due to (2a),

ξ` = A`ξ0 +

`−1∑
k=0

AkGw`−k−1 +

`−1∑
k=0

Akr`−k−1. (6)

Then, it follows from H1 and H2 in Assumption 3.2 that the
random states ξi` of the system realizations are independent
and identically distributed. Leveraging this, our goal is to
associate to each confidence 1 − β, an ambiguity radius
ψN (β) so that

P(Wp(P̂
N
ξ`
, Pξ`) ≤ ψN (β)) ≥ 1− β, (7)

where P̂Nξ` ≡ P̂Nξ` (ξ0,w`,v`) is a random measure as
above, and Pξ` is the true distribution. To achieve this, we
decompose the confidence as the product of two factors:

1− β = (1− βnom)(1− βns). (8)

The first factor (the nominal component “nom”) is devoted
to control the Wasserstein distance between the true empir-
ical distribution and the true state distribution Pξ` . While
the second factor (the noise component “ns”) is aimed at
capturing the Wasserstein distance between the true- and the
estimator-based-empirical distributions, which differ due to
measurement noise. Assuming a uniform bound for the latter
of these two Wasserstein distances (an assumption whose
justification we address in the next section), we obtain the
following desired ambiguity sets, which is our central result.

Theorem 4.1: (Ambiguity radius under noisy dynamics
and observations). Consider data collected from N realiza-
tions of system (2) in accordance to Assumptions 3.1 and 3.2,

and a confidence 1− β. Let βnom, βns ∈ (0, 1) satisfying (8)
and assume that there is an ε̂N (βns) so that

P
(
Wp(P̂

N
ξ`

(z,ω,v`), P
N
ξ`

(z,ω)) ≤ ε̂N (βns)
)
≥ 1− βns,

(9)

for all (z,ω) ∈ BNd∞ (ρξ0) × BN`q∞ (ρw), where PNξ` and
P̂Nξ` are the true- and estimator-based-empirical distribution,
respectively. Then, (7) is fulfilled with the ambiguity radius

ψN (β) := εN (βnom, ρξ`) + ε̂N (βns), (10)

εN (β, ρ) :=



(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > d/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = d/2,(
ln(Cβ−1)

c

) 1
d ρ

N
1
d
, if p < d/2,

(11)

where h(x) := x2

(ln(2+1/x))2 , x > 0, the constants C and c
depend only on p and d, and

ρξ` :=
√
d‖A`‖ρξ0 +

√
q

`−1∑
k=0

‖AkG‖ρw. (12)

V. DEVIATION BETWEEN TRUE AND ESTIMATED
AMBIGUITY CENTER

In this section, we show that for any confidence 1 −
βns, there exists a Wasserstein distance ε̂N (βns) so that
the hypothesis (9) of Theorem 4.1 is valid. This needs to
hold for all initial condition and noise values in the set
BNd∞ (ρξ0) × BN`q∞ (ρw), which contains the support of the
corresponding random elements’ distributions. To character-
ize the ambiguity radius ε̂N which guarantees (9) we exploit
the subsequent intermediate results.

Lemma 5.1: (Distance between true- and estimator-
based-empirical distribution). Let (z,ω) ∈ BNd∞ (ρξ0) ×
BN`q∞ (ρw) and consider the discrete distribution PNξ` ≡
PNξ` (z,ω) = 1

N

∑N
i=1 δξi`(zi,ωi) and the empirical distribu-

tion P̂Nξ` ≡ P̂Nξ` (z,ω,v`) = 1
N

∑N
i=1 δξ̂i`(zi,ωi,vi`)

, where v`
is the measurement noise of the realizations. Then,

Wp(P̂
N
ξ`
, PNξ` ) ≤ 2

p−1
p Mw + 2

p−1
p

( 1

N

N∑
i=1

(Ei)p
) 1
p

, (13)

where

Mw :=
√
d‖F `‖ρξ0 +

√
q

`−1∑
k=0

‖F kG‖ρw, (14a)

Ei ≡ Ei(vi) :=

`−1∑
k=0

‖F kK‖‖vi`−k−1‖1. (14b)

We next provide some bounds for the random variables
Ei.

Lemma 5.2: (Orlicz and Lp norm bounds for Ei). The
random variables Ei in (14b) satisfy

‖Ei‖ψp ≤ Cv := Cvr

`−1∑
k=0

‖F kK‖, (15a)



‖Ei‖p ≤Mv := Mvr

`−1∑
k=0

‖F kK‖, (15b)

‖Ei‖p ≥ mv := mvr
1
p

( `−1∑
k=0

‖F kK‖p
) 1
p

. (15c)

We also rely on the following concentration-of-measure
result around the mean of nonnegative independent random
variables to bound the term

(
1
N

∑N
i=1(Ei)p

) 1
p , and control

the Wasserstein distance between the true- and the estimator-
based empirical distribution.

Combining the results above with a generalization of the
concentration inequality in [18, Theorem 3.1.1] for random
variables with finite ψp norm, we obtain the main result of
this section regarding the ambiguity center difference.

Proposition 5.3: (Guarantees for distance between true-
and estimator-based-empirical distribution). Consider a
confidence 1− βns and let

ε̂N (βns) := 2
p−1
p

(
Mw + Mv + Mvα

−1
p

(
R2

c′N
ln

2

βns

))
,

(16)

with Mw, Mv given by (14a), (15b),

R := Cv/mv + 1/ ln 2, (17)

and Cv , mv as in (15a), (15c). Then, (9) is fulfilled.
The combination of Theorem 4.1 and Proposition 5.3

yields the following result.
Corollary 5.4: (Explicit ambiguity radius characteriza-

tion). Consider data collected from N realizations of system
(2) in accordance to Assumptions 3.1 and 3.2, and a confi-
dence 1− β. Let βnom, βns ∈ (0, 1) satisfying (8) and ε̂N as
given by (16). Then, (7) holds with the ambiguity radius (10).

We conclude this section by leveraging the detectability
assumption to quantify the size of the ambiguity radius as
a function of the estimation error as the sampling horizon
increases.

Proposition 5.5: (Noise ambiguity boundedness for de-
tectable systems). Consider data collected from N realiza-
tions of system (2), a confidence 1 − β as in (8), and let
all Assumptions 3.1, 3.2, and 3.3 hold. Then, the ambiguity
radius component ε̂N in (16) is uniformly bounded with
respect to the sampling horizon size. In particular, there exists
`0 ∈ N, so that for each ` ≥ `0, the constants Mw ≡Mw(`),
Mv ≡Mv(`), and R ≡ R(`) in the expression for ε̂N , given
by (14a), (15b), and (14a), are uniformly upper bounded as

Mw ≤
1

2

√
dρξ0 + 2

√
q

`0−1∑
k=0

‖F kG‖ρw,

Mv ≤ 2Mvr

`0−1∑
k=0

‖F kK‖,

R ≤ 2
Cv
mv

r
p−1
p

∑`0−1
k=0 ‖F kK‖(∑`0−1
k=0 ‖F kK‖p

) 1
p

.

VI. SENSOR PLACEMENT FOR OPTIMAL TRACKING

Consider a scenario where identical 1D particles track a
known trajectory χ, but start from a different initial condition
generated by a random distribution. Their continuous-time
dynamics is

ξ̇1(t) = ξ2(t),

ξ̇2(t) = ω2(χ(t)− ξ1(t)),

where ω > 0 is the tracking frequency, and their position is
measured at discrete time instants kτ , k = 0, 1, . . ., where
τ is the sampling period. Denoting by Â =

(
0 1

−ω2 0

)
the

system matrix and evaluating its exponential eÂt, we get the
sampled version (2a) of the particle dynamics, with A ≡ eÂτ ,
rk ≡

∫ τ
0
eÂ(τ−s)u(kτ + s)ds, u(t) := (0 ω2χ(t))>, and

wk ≡ 0. The output map (2b) is H ≡ (0 1) and we consider
nonzero measurement noise vk.

We assume that noisy position measurements are avail-
able from each particle only during the first three discrete
time instants k = 0, 1, 2. Our goal is to leverage these
measurements and place a sensor at the location x which
minimizes the expected squared distance from the position of
the particle at k = 5. Namely, solve minx∈R EPξ5

[
f(x, ξ5)

]
,

with f(x, ξ) = |x − ξ|2. For this we use the outputs to
estimate the system state at k = 3, ξ̂3, and subsequently its
value at k = 5 exploiting knowledge on the dynamics, which
give ξ̂5 = A2ξ̂3 + Ar3 + r4. The unknown random initial
condition is supported on the set B2

∞(ρξ0). In particular,
we consider zero initial velocity and initial position dis-
tributed according to 0.1δ−3ρξ0/4 + 0.9U([ρξ0/2, ρξ0 ]), with
U denoting the uniform distribution. The noise distribution is
U([ρv/2, ρv]) and is captured by the same random variable
for all measurements of the same particle, to model a random
sensor offset for each measurement tuple (note that H2
does not require independence between the vk’s of the same
particle).

The problem is solved using two alternative approaches: 1)
The particle state is estimated using a classical Kalman
filter [20] and a Sample Average Approximation (SAA)
of the expected cost is exploited to solve the optimization
problem using the estimated states. 2) The particle state
is estimated by a dead-beat observer [21, Remark 7.1.4]
and a Distributionally Robust Optimization (DRO) problem
is solved employing the ambiguity sets of Theorem 4.1
centered at the estimator-based empirical distribution. For
each alternative approach, we use either a Kalman filter or
an observer to estimate the states of N independent particle
trajectories at k = 5, and exploit them to solve either the
SAA or the DRO problem, respectively. In both cases, the
estimation is performed in closed loop up to k = 3 using the
measurements, and the obtained value is pushed forward two
time steps to k = 5 by the dynamics, as described above.
Since we assume only knowledge of the support of the initial
conditions, we selected the covariance of an isotropic normal
distribution with more than 0.99 probability inside B2

∞(ρξ0)
for the Kalman filter initialization. Reasoning analogously
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Fig. 2: (a) shows the error evolution using the two alternative state estimators for 15 realizations of one experiment. Graph (b) depicts the
expected cost associated to the optimizer found by solving the SAA using a classical Kalman filter (in blue), and the DRO optimization
problem using a dead-beat observer (in red), for 10 independent realizations of the whole experiment.

for its noise parameters, we picked a covariance with the
same ‖·‖ψ2 norm as the worst-case distribution in [−ρv, ρv].
For the simulation results we selected χ(t) = 0.2t, ω = 2,
τ = π/9, ρξ = 2, ρv = 0.2, and the ambiguity radius ψN =
0.6, which is compliant with the noise ambiguity bound (16).
For the given statistics of the initial condition and the noise,
the observer gives a better estimate than the Kalman filter
(cf. Figure 2(a)), leading also to an improved expected cost,
when using the optimizer of the DRO solution compared to
its SAA counterpart. This is verified for 10 realizations of
the whole experiment with N = 30 independent trajectories
sampled for each of them (cf. Figure 2(b)).

VII. CONCLUSIONS

We have provided an ambiguity set construction frame-
work using partial-state measurements from dynamically
varying random variables with an unknown initial condition
distribution. Both the dynamics and the measurements are
subject to noise whose probability model is not explicitly
known. The ambiguity sets are built using an observer to
estimate the full state of each realization and leveraging
concentration of measure inequalities. For detectable sys-
tems, boundedness of the noise effect on the ambiguity
radius is also established. Future research will include the
consideration of time-varying and nonlinear dynamics, and
improving the noise effect on the ambiguity radius.
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